]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/pci/vmd.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / pci / vmd.c
1 /*
2 * Volume Management Device driver
3 * Copyright (c) 2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR 0
31 #define VMD_MEMBAR1 2
32 #define VMD_MEMBAR2 4
33
34 /*
35 * Lock for manipulating VMD IRQ lists.
36 */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41 * @node: list item for parent traversal.
42 * @rcu: RCU callback item for freeing.
43 * @irq: back pointer to parent.
44 * @virq: the virtual IRQ value provided to the requesting driver.
45 *
46 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47 * a VMD IRQ using this structure.
48 */
49 struct vmd_irq {
50 struct list_head node;
51 struct rcu_head rcu;
52 struct vmd_irq_list *irq;
53 unsigned int virq;
54 };
55
56 /**
57 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58 * @irq_list: the list of irq's the VMD one demuxes to.
59 * @vmd_vector: the h/w IRQ assigned to the VMD.
60 * @index: index into the VMD MSI-X table; used for message routing.
61 * @count: number of child IRQs assigned to this vector; used to track
62 * sharing.
63 */
64 struct vmd_irq_list {
65 struct list_head irq_list;
66 struct vmd_dev *vmd;
67 unsigned int vmd_vector;
68 unsigned int index;
69 unsigned int count;
70 };
71
72 struct vmd_dev {
73 struct pci_dev *dev;
74
75 spinlock_t cfg_lock;
76 char __iomem *cfgbar;
77
78 int msix_count;
79 struct msix_entry *msix_entries;
80 struct vmd_irq_list *irqs;
81
82 struct pci_sysdata sysdata;
83 struct resource resources[3];
84 struct irq_domain *irq_domain;
85 struct pci_bus *bus;
86
87 #ifdef CONFIG_X86_DEV_DMA_OPS
88 struct dma_map_ops dma_ops;
89 struct dma_domain dma_domain;
90 #endif
91 };
92
93 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
94 {
95 return container_of(bus->sysdata, struct vmd_dev, sysdata);
96 }
97
98 /*
99 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100 * but the MSI entry for the hardware it's driving will be programmed with a
101 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
102 * domain into one of its own, and the VMD driver de-muxes these for the
103 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
104 * and irq_chip to set this up.
105 */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108 struct vmd_irq *vmdirq = data->chip_data;
109 struct vmd_irq_list *irq = vmdirq->irq;
110
111 msg->address_hi = MSI_ADDR_BASE_HI;
112 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index);
113 msg->data = 0;
114 }
115
116 /*
117 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
118 */
119 static void vmd_irq_enable(struct irq_data *data)
120 {
121 struct vmd_irq *vmdirq = data->chip_data;
122 unsigned long flags;
123
124 raw_spin_lock_irqsave(&list_lock, flags);
125 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
126 raw_spin_unlock_irqrestore(&list_lock, flags);
127
128 data->chip->irq_unmask(data);
129 }
130
131 static void vmd_irq_disable(struct irq_data *data)
132 {
133 struct vmd_irq *vmdirq = data->chip_data;
134 unsigned long flags;
135
136 data->chip->irq_mask(data);
137
138 raw_spin_lock_irqsave(&list_lock, flags);
139 list_del_rcu(&vmdirq->node);
140 INIT_LIST_HEAD_RCU(&vmdirq->node);
141 raw_spin_unlock_irqrestore(&list_lock, flags);
142 }
143
144 /*
145 * XXX: Stubbed until we develop acceptable way to not create conflicts with
146 * other devices sharing the same vector.
147 */
148 static int vmd_irq_set_affinity(struct irq_data *data,
149 const struct cpumask *dest, bool force)
150 {
151 return -EINVAL;
152 }
153
154 static struct irq_chip vmd_msi_controller = {
155 .name = "VMD-MSI",
156 .irq_enable = vmd_irq_enable,
157 .irq_disable = vmd_irq_disable,
158 .irq_compose_msi_msg = vmd_compose_msi_msg,
159 .irq_set_affinity = vmd_irq_set_affinity,
160 };
161
162 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
163 msi_alloc_info_t *arg)
164 {
165 return 0;
166 }
167
168 /*
169 * XXX: We can be even smarter selecting the best IRQ once we solve the
170 * affinity problem.
171 */
172 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
173 {
174 int i, best = 1;
175 unsigned long flags;
176
177 if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
178 return &vmd->irqs[0];
179
180 raw_spin_lock_irqsave(&list_lock, flags);
181 for (i = 1; i < vmd->msix_count; i++)
182 if (vmd->irqs[i].count < vmd->irqs[best].count)
183 best = i;
184 vmd->irqs[best].count++;
185 raw_spin_unlock_irqrestore(&list_lock, flags);
186
187 return &vmd->irqs[best];
188 }
189
190 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
191 unsigned int virq, irq_hw_number_t hwirq,
192 msi_alloc_info_t *arg)
193 {
194 struct msi_desc *desc = arg->desc;
195 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
196 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
197
198 if (!vmdirq)
199 return -ENOMEM;
200
201 INIT_LIST_HEAD(&vmdirq->node);
202 vmdirq->irq = vmd_next_irq(vmd, desc);
203 vmdirq->virq = virq;
204
205 irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip,
206 vmdirq, handle_untracked_irq, vmd, NULL);
207 return 0;
208 }
209
210 static void vmd_msi_free(struct irq_domain *domain,
211 struct msi_domain_info *info, unsigned int virq)
212 {
213 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
214 unsigned long flags;
215
216 /* XXX: Potential optimization to rebalance */
217 raw_spin_lock_irqsave(&list_lock, flags);
218 vmdirq->irq->count--;
219 raw_spin_unlock_irqrestore(&list_lock, flags);
220
221 kfree_rcu(vmdirq, rcu);
222 }
223
224 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
225 int nvec, msi_alloc_info_t *arg)
226 {
227 struct pci_dev *pdev = to_pci_dev(dev);
228 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
229
230 if (nvec > vmd->msix_count)
231 return vmd->msix_count;
232
233 memset(arg, 0, sizeof(*arg));
234 return 0;
235 }
236
237 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
238 {
239 arg->desc = desc;
240 }
241
242 static struct msi_domain_ops vmd_msi_domain_ops = {
243 .get_hwirq = vmd_get_hwirq,
244 .msi_init = vmd_msi_init,
245 .msi_free = vmd_msi_free,
246 .msi_prepare = vmd_msi_prepare,
247 .set_desc = vmd_set_desc,
248 };
249
250 static struct msi_domain_info vmd_msi_domain_info = {
251 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
252 MSI_FLAG_PCI_MSIX,
253 .ops = &vmd_msi_domain_ops,
254 .chip = &vmd_msi_controller,
255 };
256
257 #ifdef CONFIG_X86_DEV_DMA_OPS
258 /*
259 * VMD replaces the requester ID with its own. DMA mappings for devices in a
260 * VMD domain need to be mapped for the VMD, not the device requiring
261 * the mapping.
262 */
263 static struct device *to_vmd_dev(struct device *dev)
264 {
265 struct pci_dev *pdev = to_pci_dev(dev);
266 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
267
268 return &vmd->dev->dev;
269 }
270
271 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
272 {
273 return get_dma_ops(to_vmd_dev(dev));
274 }
275
276 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
277 gfp_t flag, unsigned long attrs)
278 {
279 return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
280 attrs);
281 }
282
283 static void vmd_free(struct device *dev, size_t size, void *vaddr,
284 dma_addr_t addr, unsigned long attrs)
285 {
286 return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
287 attrs);
288 }
289
290 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
291 void *cpu_addr, dma_addr_t addr, size_t size,
292 unsigned long attrs)
293 {
294 return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
295 size, attrs);
296 }
297
298 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
299 void *cpu_addr, dma_addr_t addr, size_t size,
300 unsigned long attrs)
301 {
302 return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
303 addr, size, attrs);
304 }
305
306 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
307 unsigned long offset, size_t size,
308 enum dma_data_direction dir,
309 unsigned long attrs)
310 {
311 return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
312 dir, attrs);
313 }
314
315 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
316 enum dma_data_direction dir, unsigned long attrs)
317 {
318 vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
319 }
320
321 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
322 enum dma_data_direction dir, unsigned long attrs)
323 {
324 return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
325 }
326
327 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir, unsigned long attrs)
329 {
330 vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
331 }
332
333 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
334 size_t size, enum dma_data_direction dir)
335 {
336 vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
337 }
338
339 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
340 size_t size, enum dma_data_direction dir)
341 {
342 vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
343 dir);
344 }
345
346 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
347 int nents, enum dma_data_direction dir)
348 {
349 vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
350 }
351
352 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
353 int nents, enum dma_data_direction dir)
354 {
355 vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
356 }
357
358 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
359 {
360 return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
361 }
362
363 static int vmd_dma_supported(struct device *dev, u64 mask)
364 {
365 return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
366 }
367
368 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
369 static u64 vmd_get_required_mask(struct device *dev)
370 {
371 return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
372 }
373 #endif
374
375 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
376 {
377 struct dma_domain *domain = &vmd->dma_domain;
378
379 if (get_dma_ops(&vmd->dev->dev))
380 del_dma_domain(domain);
381 }
382
383 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
384 do { \
385 if (source->fn) \
386 dest->fn = vmd_##fn; \
387 } while (0)
388
389 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
390 {
391 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
392 struct dma_map_ops *dest = &vmd->dma_ops;
393 struct dma_domain *domain = &vmd->dma_domain;
394
395 domain->domain_nr = vmd->sysdata.domain;
396 domain->dma_ops = dest;
397
398 if (!source)
399 return;
400 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
401 ASSIGN_VMD_DMA_OPS(source, dest, free);
402 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
403 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
404 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
405 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
406 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
407 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
408 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
409 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
410 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
411 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
412 ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
413 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
414 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
415 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
416 #endif
417 add_dma_domain(domain);
418 }
419 #undef ASSIGN_VMD_DMA_OPS
420 #else
421 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
422 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
423 #endif
424
425 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
426 unsigned int devfn, int reg, int len)
427 {
428 char __iomem *addr = vmd->cfgbar +
429 (bus->number << 20) + (devfn << 12) + reg;
430
431 if ((addr - vmd->cfgbar) + len >=
432 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
433 return NULL;
434
435 return addr;
436 }
437
438 /*
439 * CPU may deadlock if config space is not serialized on some versions of this
440 * hardware, so all config space access is done under a spinlock.
441 */
442 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
443 int len, u32 *value)
444 {
445 struct vmd_dev *vmd = vmd_from_bus(bus);
446 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
447 unsigned long flags;
448 int ret = 0;
449
450 if (!addr)
451 return -EFAULT;
452
453 spin_lock_irqsave(&vmd->cfg_lock, flags);
454 switch (len) {
455 case 1:
456 *value = readb(addr);
457 break;
458 case 2:
459 *value = readw(addr);
460 break;
461 case 4:
462 *value = readl(addr);
463 break;
464 default:
465 ret = -EINVAL;
466 break;
467 }
468 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
469 return ret;
470 }
471
472 /*
473 * VMD h/w converts non-posted config writes to posted memory writes. The
474 * read-back in this function forces the completion so it returns only after
475 * the config space was written, as expected.
476 */
477 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
478 int len, u32 value)
479 {
480 struct vmd_dev *vmd = vmd_from_bus(bus);
481 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
482 unsigned long flags;
483 int ret = 0;
484
485 if (!addr)
486 return -EFAULT;
487
488 spin_lock_irqsave(&vmd->cfg_lock, flags);
489 switch (len) {
490 case 1:
491 writeb(value, addr);
492 readb(addr);
493 break;
494 case 2:
495 writew(value, addr);
496 readw(addr);
497 break;
498 case 4:
499 writel(value, addr);
500 readl(addr);
501 break;
502 default:
503 ret = -EINVAL;
504 break;
505 }
506 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
507 return ret;
508 }
509
510 static struct pci_ops vmd_ops = {
511 .read = vmd_pci_read,
512 .write = vmd_pci_write,
513 };
514
515 static void vmd_attach_resources(struct vmd_dev *vmd)
516 {
517 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
518 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
519 }
520
521 static void vmd_detach_resources(struct vmd_dev *vmd)
522 {
523 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
524 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
525 }
526
527 /*
528 * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
529 */
530 static int vmd_find_free_domain(void)
531 {
532 int domain = 0xffff;
533 struct pci_bus *bus = NULL;
534
535 while ((bus = pci_find_next_bus(bus)) != NULL)
536 domain = max_t(int, domain, pci_domain_nr(bus));
537 return domain + 1;
538 }
539
540 static int vmd_enable_domain(struct vmd_dev *vmd)
541 {
542 struct pci_sysdata *sd = &vmd->sysdata;
543 struct resource *res;
544 u32 upper_bits;
545 unsigned long flags;
546 LIST_HEAD(resources);
547
548 res = &vmd->dev->resource[VMD_CFGBAR];
549 vmd->resources[0] = (struct resource) {
550 .name = "VMD CFGBAR",
551 .start = 0,
552 .end = (resource_size(res) >> 20) - 1,
553 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
554 };
555
556 /*
557 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
558 * put 32-bit resources in the window.
559 *
560 * There's no hardware reason why a 64-bit window *couldn't*
561 * contain a 32-bit resource, but pbus_size_mem() computes the
562 * bridge window size assuming a 64-bit window will contain no
563 * 32-bit resources. __pci_assign_resource() enforces that
564 * artificial restriction to make sure everything will fit.
565 *
566 * The only way we could use a 64-bit non-prefechable MEMBAR is
567 * if its address is <4GB so that we can convert it to a 32-bit
568 * resource. To be visible to the host OS, all VMD endpoints must
569 * be initially configured by platform BIOS, which includes setting
570 * up these resources. We can assume the device is configured
571 * according to the platform needs.
572 */
573 res = &vmd->dev->resource[VMD_MEMBAR1];
574 upper_bits = upper_32_bits(res->end);
575 flags = res->flags & ~IORESOURCE_SIZEALIGN;
576 if (!upper_bits)
577 flags &= ~IORESOURCE_MEM_64;
578 vmd->resources[1] = (struct resource) {
579 .name = "VMD MEMBAR1",
580 .start = res->start,
581 .end = res->end,
582 .flags = flags,
583 .parent = res,
584 };
585
586 res = &vmd->dev->resource[VMD_MEMBAR2];
587 upper_bits = upper_32_bits(res->end);
588 flags = res->flags & ~IORESOURCE_SIZEALIGN;
589 if (!upper_bits)
590 flags &= ~IORESOURCE_MEM_64;
591 vmd->resources[2] = (struct resource) {
592 .name = "VMD MEMBAR2",
593 .start = res->start + 0x2000,
594 .end = res->end,
595 .flags = flags,
596 .parent = res,
597 };
598
599 sd->domain = vmd_find_free_domain();
600 if (sd->domain < 0)
601 return sd->domain;
602
603 sd->node = pcibus_to_node(vmd->dev->bus);
604
605 vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
606 x86_vector_domain);
607 if (!vmd->irq_domain)
608 return -ENODEV;
609
610 pci_add_resource(&resources, &vmd->resources[0]);
611 pci_add_resource(&resources, &vmd->resources[1]);
612 pci_add_resource(&resources, &vmd->resources[2]);
613 vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
614 &resources);
615 if (!vmd->bus) {
616 pci_free_resource_list(&resources);
617 irq_domain_remove(vmd->irq_domain);
618 return -ENODEV;
619 }
620
621 vmd_attach_resources(vmd);
622 vmd_setup_dma_ops(vmd);
623 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
624 pci_rescan_bus(vmd->bus);
625
626 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
627 "domain"), "Can't create symlink to domain\n");
628 return 0;
629 }
630
631 static irqreturn_t vmd_irq(int irq, void *data)
632 {
633 struct vmd_irq_list *irqs = data;
634 struct vmd_irq *vmdirq;
635
636 rcu_read_lock();
637 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
638 generic_handle_irq(vmdirq->virq);
639 rcu_read_unlock();
640
641 return IRQ_HANDLED;
642 }
643
644 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
645 {
646 struct vmd_dev *vmd;
647 int i, err;
648
649 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
650 return -ENOMEM;
651
652 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
653 if (!vmd)
654 return -ENOMEM;
655
656 vmd->dev = dev;
657 err = pcim_enable_device(dev);
658 if (err < 0)
659 return err;
660
661 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
662 if (!vmd->cfgbar)
663 return -ENOMEM;
664
665 pci_set_master(dev);
666 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
667 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
668 return -ENODEV;
669
670 vmd->msix_count = pci_msix_vec_count(dev);
671 if (vmd->msix_count < 0)
672 return -ENODEV;
673
674 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
675 GFP_KERNEL);
676 if (!vmd->irqs)
677 return -ENOMEM;
678
679 vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count,
680 sizeof(*vmd->msix_entries),
681 GFP_KERNEL);
682 if (!vmd->msix_entries)
683 return -ENOMEM;
684 for (i = 0; i < vmd->msix_count; i++)
685 vmd->msix_entries[i].entry = i;
686
687 vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1,
688 vmd->msix_count);
689 if (vmd->msix_count < 0)
690 return vmd->msix_count;
691
692 for (i = 0; i < vmd->msix_count; i++) {
693 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
694 vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector;
695 vmd->irqs[i].index = i;
696
697 err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector,
698 vmd_irq, 0, "vmd", &vmd->irqs[i]);
699 if (err)
700 return err;
701 }
702
703 spin_lock_init(&vmd->cfg_lock);
704 pci_set_drvdata(dev, vmd);
705 err = vmd_enable_domain(vmd);
706 if (err)
707 return err;
708
709 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
710 vmd->sysdata.domain);
711 return 0;
712 }
713
714 static void vmd_remove(struct pci_dev *dev)
715 {
716 struct vmd_dev *vmd = pci_get_drvdata(dev);
717
718 vmd_detach_resources(vmd);
719 pci_set_drvdata(dev, NULL);
720 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
721 pci_stop_root_bus(vmd->bus);
722 pci_remove_root_bus(vmd->bus);
723 vmd_teardown_dma_ops(vmd);
724 irq_domain_remove(vmd->irq_domain);
725 }
726
727 #ifdef CONFIG_PM
728 static int vmd_suspend(struct device *dev)
729 {
730 struct pci_dev *pdev = to_pci_dev(dev);
731
732 pci_save_state(pdev);
733 return 0;
734 }
735
736 static int vmd_resume(struct device *dev)
737 {
738 struct pci_dev *pdev = to_pci_dev(dev);
739
740 pci_restore_state(pdev);
741 return 0;
742 }
743 #endif
744 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
745
746 static const struct pci_device_id vmd_ids[] = {
747 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
748 {0,}
749 };
750 MODULE_DEVICE_TABLE(pci, vmd_ids);
751
752 static struct pci_driver vmd_drv = {
753 .name = "vmd",
754 .id_table = vmd_ids,
755 .probe = vmd_probe,
756 .remove = vmd_remove,
757 .driver = {
758 .pm = &vmd_dev_pm_ops,
759 },
760 };
761 module_pci_driver(vmd_drv);
762
763 MODULE_AUTHOR("Intel Corporation");
764 MODULE_LICENSE("GPL v2");
765 MODULE_VERSION("0.6");