]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/platform/efi/efi.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / platform / efi / efi.c
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
17 *
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
20 *
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
24 *
25 * Implemented EFI runtime services and virtual mode calls. --davidm
26 *
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
63 #endif
64 {NULL_GUID, NULL, NULL},
65 };
66
67 u64 efi_setup; /* efi setup_data physical address */
68
69 static int add_efi_memmap __initdata;
70 static int __init setup_add_efi_memmap(char *arg)
71 {
72 add_efi_memmap = 1;
73 return 0;
74 }
75 early_param("add_efi_memmap", setup_add_efi_memmap);
76
77 static efi_status_t __init phys_efi_set_virtual_address_map(
78 unsigned long memory_map_size,
79 unsigned long descriptor_size,
80 u32 descriptor_version,
81 efi_memory_desc_t *virtual_map)
82 {
83 efi_status_t status;
84 unsigned long flags;
85 pgd_t *save_pgd;
86
87 save_pgd = efi_call_phys_prolog();
88
89 /* Disable interrupts around EFI calls: */
90 local_irq_save(flags);
91 status = efi_call_phys(efi_phys.set_virtual_address_map,
92 memory_map_size, descriptor_size,
93 descriptor_version, virtual_map);
94 local_irq_restore(flags);
95
96 efi_call_phys_epilog(save_pgd);
97
98 return status;
99 }
100
101 void __init efi_find_mirror(void)
102 {
103 efi_memory_desc_t *md;
104 u64 mirror_size = 0, total_size = 0;
105
106 for_each_efi_memory_desc(md) {
107 unsigned long long start = md->phys_addr;
108 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
109
110 total_size += size;
111 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
112 memblock_mark_mirror(start, size);
113 mirror_size += size;
114 }
115 }
116 if (mirror_size)
117 pr_info("Memory: %lldM/%lldM mirrored memory\n",
118 mirror_size>>20, total_size>>20);
119 }
120
121 /*
122 * Tell the kernel about the EFI memory map. This might include
123 * more than the max 128 entries that can fit in the e820 legacy
124 * (zeropage) memory map.
125 */
126
127 static void __init do_add_efi_memmap(void)
128 {
129 efi_memory_desc_t *md;
130
131 for_each_efi_memory_desc(md) {
132 unsigned long long start = md->phys_addr;
133 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
134 int e820_type;
135
136 switch (md->type) {
137 case EFI_LOADER_CODE:
138 case EFI_LOADER_DATA:
139 case EFI_BOOT_SERVICES_CODE:
140 case EFI_BOOT_SERVICES_DATA:
141 case EFI_CONVENTIONAL_MEMORY:
142 if (md->attribute & EFI_MEMORY_WB)
143 e820_type = E820_TYPE_RAM;
144 else
145 e820_type = E820_TYPE_RESERVED;
146 break;
147 case EFI_ACPI_RECLAIM_MEMORY:
148 e820_type = E820_TYPE_ACPI;
149 break;
150 case EFI_ACPI_MEMORY_NVS:
151 e820_type = E820_TYPE_NVS;
152 break;
153 case EFI_UNUSABLE_MEMORY:
154 e820_type = E820_TYPE_UNUSABLE;
155 break;
156 case EFI_PERSISTENT_MEMORY:
157 e820_type = E820_TYPE_PMEM;
158 break;
159 default:
160 /*
161 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
162 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
163 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164 */
165 e820_type = E820_TYPE_RESERVED;
166 break;
167 }
168 e820__range_add(start, size, e820_type);
169 }
170 e820__update_table(e820_table);
171 }
172
173 int __init efi_memblock_x86_reserve_range(void)
174 {
175 struct efi_info *e = &boot_params.efi_info;
176 struct efi_memory_map_data data;
177 phys_addr_t pmap;
178 int rv;
179
180 if (efi_enabled(EFI_PARAVIRT))
181 return 0;
182
183 #ifdef CONFIG_X86_32
184 /* Can't handle data above 4GB at this time */
185 if (e->efi_memmap_hi) {
186 pr_err("Memory map is above 4GB, disabling EFI.\n");
187 return -EINVAL;
188 }
189 pmap = e->efi_memmap;
190 #else
191 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
192 #endif
193 data.phys_map = pmap;
194 data.size = e->efi_memmap_size;
195 data.desc_size = e->efi_memdesc_size;
196 data.desc_version = e->efi_memdesc_version;
197
198 rv = efi_memmap_init_early(&data);
199 if (rv)
200 return rv;
201
202 if (add_efi_memmap)
203 do_add_efi_memmap();
204
205 WARN(efi.memmap.desc_version != 1,
206 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
207 efi.memmap.desc_version);
208
209 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
210
211 return 0;
212 }
213
214 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
215 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
216 #define U64_HIGH_BIT (~(U64_MAX >> 1))
217
218 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
219 {
220 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
221 u64 end_hi = 0;
222 char buf[64];
223
224 if (md->num_pages == 0) {
225 end = 0;
226 } else if (md->num_pages > EFI_PAGES_MAX ||
227 EFI_PAGES_MAX - md->num_pages <
228 (md->phys_addr >> EFI_PAGE_SHIFT)) {
229 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
230 >> OVERFLOW_ADDR_SHIFT;
231
232 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
233 end_hi += 1;
234 } else {
235 return true;
236 }
237
238 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
239
240 if (end_hi) {
241 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
242 i, efi_md_typeattr_format(buf, sizeof(buf), md),
243 md->phys_addr, end_hi, end);
244 } else {
245 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
246 i, efi_md_typeattr_format(buf, sizeof(buf), md),
247 md->phys_addr, end);
248 }
249 return false;
250 }
251
252 static void __init efi_clean_memmap(void)
253 {
254 efi_memory_desc_t *out = efi.memmap.map;
255 const efi_memory_desc_t *in = out;
256 const efi_memory_desc_t *end = efi.memmap.map_end;
257 int i, n_removal;
258
259 for (i = n_removal = 0; in < end; i++) {
260 if (efi_memmap_entry_valid(in, i)) {
261 if (out != in)
262 memcpy(out, in, efi.memmap.desc_size);
263 out = (void *)out + efi.memmap.desc_size;
264 } else {
265 n_removal++;
266 }
267 in = (void *)in + efi.memmap.desc_size;
268 }
269
270 if (n_removal > 0) {
271 u64 size = efi.memmap.nr_map - n_removal;
272
273 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
274 efi_memmap_install(efi.memmap.phys_map, size);
275 }
276 }
277
278 void __init efi_print_memmap(void)
279 {
280 efi_memory_desc_t *md;
281 int i = 0;
282
283 for_each_efi_memory_desc(md) {
284 char buf[64];
285
286 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
287 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
288 md->phys_addr,
289 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
290 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
291 }
292 }
293
294 static int __init efi_systab_init(void *phys)
295 {
296 if (efi_enabled(EFI_64BIT)) {
297 efi_system_table_64_t *systab64;
298 struct efi_setup_data *data = NULL;
299 u64 tmp = 0;
300
301 if (efi_setup) {
302 data = early_memremap(efi_setup, sizeof(*data));
303 if (!data)
304 return -ENOMEM;
305 }
306 systab64 = early_memremap((unsigned long)phys,
307 sizeof(*systab64));
308 if (systab64 == NULL) {
309 pr_err("Couldn't map the system table!\n");
310 if (data)
311 early_memunmap(data, sizeof(*data));
312 return -ENOMEM;
313 }
314
315 efi_systab.hdr = systab64->hdr;
316 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
317 systab64->fw_vendor;
318 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
319 efi_systab.fw_revision = systab64->fw_revision;
320 efi_systab.con_in_handle = systab64->con_in_handle;
321 tmp |= systab64->con_in_handle;
322 efi_systab.con_in = systab64->con_in;
323 tmp |= systab64->con_in;
324 efi_systab.con_out_handle = systab64->con_out_handle;
325 tmp |= systab64->con_out_handle;
326 efi_systab.con_out = systab64->con_out;
327 tmp |= systab64->con_out;
328 efi_systab.stderr_handle = systab64->stderr_handle;
329 tmp |= systab64->stderr_handle;
330 efi_systab.stderr = systab64->stderr;
331 tmp |= systab64->stderr;
332 efi_systab.runtime = data ?
333 (void *)(unsigned long)data->runtime :
334 (void *)(unsigned long)systab64->runtime;
335 tmp |= data ? data->runtime : systab64->runtime;
336 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
337 tmp |= systab64->boottime;
338 efi_systab.nr_tables = systab64->nr_tables;
339 efi_systab.tables = data ? (unsigned long)data->tables :
340 systab64->tables;
341 tmp |= data ? data->tables : systab64->tables;
342
343 early_memunmap(systab64, sizeof(*systab64));
344 if (data)
345 early_memunmap(data, sizeof(*data));
346 #ifdef CONFIG_X86_32
347 if (tmp >> 32) {
348 pr_err("EFI data located above 4GB, disabling EFI.\n");
349 return -EINVAL;
350 }
351 #endif
352 } else {
353 efi_system_table_32_t *systab32;
354
355 systab32 = early_memremap((unsigned long)phys,
356 sizeof(*systab32));
357 if (systab32 == NULL) {
358 pr_err("Couldn't map the system table!\n");
359 return -ENOMEM;
360 }
361
362 efi_systab.hdr = systab32->hdr;
363 efi_systab.fw_vendor = systab32->fw_vendor;
364 efi_systab.fw_revision = systab32->fw_revision;
365 efi_systab.con_in_handle = systab32->con_in_handle;
366 efi_systab.con_in = systab32->con_in;
367 efi_systab.con_out_handle = systab32->con_out_handle;
368 efi_systab.con_out = systab32->con_out;
369 efi_systab.stderr_handle = systab32->stderr_handle;
370 efi_systab.stderr = systab32->stderr;
371 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
372 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
373 efi_systab.nr_tables = systab32->nr_tables;
374 efi_systab.tables = systab32->tables;
375
376 early_memunmap(systab32, sizeof(*systab32));
377 }
378
379 efi.systab = &efi_systab;
380
381 /*
382 * Verify the EFI Table
383 */
384 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
385 pr_err("System table signature incorrect!\n");
386 return -EINVAL;
387 }
388 if ((efi.systab->hdr.revision >> 16) == 0)
389 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
390 efi.systab->hdr.revision >> 16,
391 efi.systab->hdr.revision & 0xffff);
392
393 return 0;
394 }
395
396 static int __init efi_runtime_init32(void)
397 {
398 efi_runtime_services_32_t *runtime;
399
400 runtime = early_memremap((unsigned long)efi.systab->runtime,
401 sizeof(efi_runtime_services_32_t));
402 if (!runtime) {
403 pr_err("Could not map the runtime service table!\n");
404 return -ENOMEM;
405 }
406
407 /*
408 * We will only need *early* access to the SetVirtualAddressMap
409 * EFI runtime service. All other runtime services will be called
410 * via the virtual mapping.
411 */
412 efi_phys.set_virtual_address_map =
413 (efi_set_virtual_address_map_t *)
414 (unsigned long)runtime->set_virtual_address_map;
415 early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
416
417 return 0;
418 }
419
420 static int __init efi_runtime_init64(void)
421 {
422 efi_runtime_services_64_t *runtime;
423
424 runtime = early_memremap((unsigned long)efi.systab->runtime,
425 sizeof(efi_runtime_services_64_t));
426 if (!runtime) {
427 pr_err("Could not map the runtime service table!\n");
428 return -ENOMEM;
429 }
430
431 /*
432 * We will only need *early* access to the SetVirtualAddressMap
433 * EFI runtime service. All other runtime services will be called
434 * via the virtual mapping.
435 */
436 efi_phys.set_virtual_address_map =
437 (efi_set_virtual_address_map_t *)
438 (unsigned long)runtime->set_virtual_address_map;
439 early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
440
441 return 0;
442 }
443
444 static int __init efi_runtime_init(void)
445 {
446 int rv;
447
448 /*
449 * Check out the runtime services table. We need to map
450 * the runtime services table so that we can grab the physical
451 * address of several of the EFI runtime functions, needed to
452 * set the firmware into virtual mode.
453 *
454 * When EFI_PARAVIRT is in force then we could not map runtime
455 * service memory region because we do not have direct access to it.
456 * However, runtime services are available through proxy functions
457 * (e.g. in case of Xen dom0 EFI implementation they call special
458 * hypercall which executes relevant EFI functions) and that is why
459 * they are always enabled.
460 */
461
462 if (!efi_enabled(EFI_PARAVIRT)) {
463 if (efi_enabled(EFI_64BIT))
464 rv = efi_runtime_init64();
465 else
466 rv = efi_runtime_init32();
467
468 if (rv)
469 return rv;
470 }
471
472 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
473
474 return 0;
475 }
476
477 void __init efi_init(void)
478 {
479 efi_char16_t *c16;
480 char vendor[100] = "unknown";
481 int i = 0;
482 void *tmp;
483
484 #ifdef CONFIG_X86_32
485 if (boot_params.efi_info.efi_systab_hi ||
486 boot_params.efi_info.efi_memmap_hi) {
487 pr_info("Table located above 4GB, disabling EFI.\n");
488 return;
489 }
490 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
491 #else
492 efi_phys.systab = (efi_system_table_t *)
493 (boot_params.efi_info.efi_systab |
494 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
495 #endif
496
497 if (efi_systab_init(efi_phys.systab))
498 return;
499
500 efi.config_table = (unsigned long)efi.systab->tables;
501 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
502 efi.runtime = (unsigned long)efi.systab->runtime;
503
504 /*
505 * Show what we know for posterity
506 */
507 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
508 if (c16) {
509 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
510 vendor[i] = *c16++;
511 vendor[i] = '\0';
512 } else
513 pr_err("Could not map the firmware vendor!\n");
514 early_memunmap(tmp, 2);
515
516 pr_info("EFI v%u.%.02u by %s\n",
517 efi.systab->hdr.revision >> 16,
518 efi.systab->hdr.revision & 0xffff, vendor);
519
520 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
521 return;
522
523 if (efi_config_init(arch_tables))
524 return;
525
526 /*
527 * Note: We currently don't support runtime services on an EFI
528 * that doesn't match the kernel 32/64-bit mode.
529 */
530
531 if (!efi_runtime_supported())
532 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
533 else {
534 if (efi_runtime_disabled() || efi_runtime_init()) {
535 efi_memmap_unmap();
536 return;
537 }
538 }
539
540 efi_clean_memmap();
541
542 if (efi_enabled(EFI_DBG))
543 efi_print_memmap();
544 }
545
546 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
547 {
548 u64 addr, npages;
549
550 addr = md->virt_addr;
551 npages = md->num_pages;
552
553 memrange_efi_to_native(&addr, &npages);
554
555 if (executable)
556 set_memory_x(addr, npages);
557 else
558 set_memory_nx(addr, npages);
559 }
560
561 void __init runtime_code_page_mkexec(void)
562 {
563 efi_memory_desc_t *md;
564
565 /* Make EFI runtime service code area executable */
566 for_each_efi_memory_desc(md) {
567 if (md->type != EFI_RUNTIME_SERVICES_CODE)
568 continue;
569
570 efi_set_executable(md, true);
571 }
572 }
573
574 void __init efi_memory_uc(u64 addr, unsigned long size)
575 {
576 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
577 u64 npages;
578
579 npages = round_up(size, page_shift) / page_shift;
580 memrange_efi_to_native(&addr, &npages);
581 set_memory_uc(addr, npages);
582 }
583
584 void __init old_map_region(efi_memory_desc_t *md)
585 {
586 u64 start_pfn, end_pfn, end;
587 unsigned long size;
588 void *va;
589
590 start_pfn = PFN_DOWN(md->phys_addr);
591 size = md->num_pages << PAGE_SHIFT;
592 end = md->phys_addr + size;
593 end_pfn = PFN_UP(end);
594
595 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
596 va = __va(md->phys_addr);
597
598 if (!(md->attribute & EFI_MEMORY_WB))
599 efi_memory_uc((u64)(unsigned long)va, size);
600 } else
601 va = efi_ioremap(md->phys_addr, size,
602 md->type, md->attribute);
603
604 md->virt_addr = (u64) (unsigned long) va;
605 if (!va)
606 pr_err("ioremap of 0x%llX failed!\n",
607 (unsigned long long)md->phys_addr);
608 }
609
610 /* Merge contiguous regions of the same type and attribute */
611 static void __init efi_merge_regions(void)
612 {
613 efi_memory_desc_t *md, *prev_md = NULL;
614
615 for_each_efi_memory_desc(md) {
616 u64 prev_size;
617
618 if (!prev_md) {
619 prev_md = md;
620 continue;
621 }
622
623 if (prev_md->type != md->type ||
624 prev_md->attribute != md->attribute) {
625 prev_md = md;
626 continue;
627 }
628
629 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
630
631 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
632 prev_md->num_pages += md->num_pages;
633 md->type = EFI_RESERVED_TYPE;
634 md->attribute = 0;
635 continue;
636 }
637 prev_md = md;
638 }
639 }
640
641 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
642 {
643 unsigned long size;
644 u64 end, systab;
645
646 size = md->num_pages << EFI_PAGE_SHIFT;
647 end = md->phys_addr + size;
648 systab = (u64)(unsigned long)efi_phys.systab;
649 if (md->phys_addr <= systab && systab < end) {
650 systab += md->virt_addr - md->phys_addr;
651 efi.systab = (efi_system_table_t *)(unsigned long)systab;
652 }
653 }
654
655 static void *realloc_pages(void *old_memmap, int old_shift)
656 {
657 void *ret;
658
659 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
660 if (!ret)
661 goto out;
662
663 /*
664 * A first-time allocation doesn't have anything to copy.
665 */
666 if (!old_memmap)
667 return ret;
668
669 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
670
671 out:
672 free_pages((unsigned long)old_memmap, old_shift);
673 return ret;
674 }
675
676 /*
677 * Iterate the EFI memory map in reverse order because the regions
678 * will be mapped top-down. The end result is the same as if we had
679 * mapped things forward, but doesn't require us to change the
680 * existing implementation of efi_map_region().
681 */
682 static inline void *efi_map_next_entry_reverse(void *entry)
683 {
684 /* Initial call */
685 if (!entry)
686 return efi.memmap.map_end - efi.memmap.desc_size;
687
688 entry -= efi.memmap.desc_size;
689 if (entry < efi.memmap.map)
690 return NULL;
691
692 return entry;
693 }
694
695 /*
696 * efi_map_next_entry - Return the next EFI memory map descriptor
697 * @entry: Previous EFI memory map descriptor
698 *
699 * This is a helper function to iterate over the EFI memory map, which
700 * we do in different orders depending on the current configuration.
701 *
702 * To begin traversing the memory map @entry must be %NULL.
703 *
704 * Returns %NULL when we reach the end of the memory map.
705 */
706 static void *efi_map_next_entry(void *entry)
707 {
708 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
709 /*
710 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
711 * config table feature requires us to map all entries
712 * in the same order as they appear in the EFI memory
713 * map. That is to say, entry N must have a lower
714 * virtual address than entry N+1. This is because the
715 * firmware toolchain leaves relative references in
716 * the code/data sections, which are split and become
717 * separate EFI memory regions. Mapping things
718 * out-of-order leads to the firmware accessing
719 * unmapped addresses.
720 *
721 * Since we need to map things this way whether or not
722 * the kernel actually makes use of
723 * EFI_PROPERTIES_TABLE, let's just switch to this
724 * scheme by default for 64-bit.
725 */
726 return efi_map_next_entry_reverse(entry);
727 }
728
729 /* Initial call */
730 if (!entry)
731 return efi.memmap.map;
732
733 entry += efi.memmap.desc_size;
734 if (entry >= efi.memmap.map_end)
735 return NULL;
736
737 return entry;
738 }
739
740 static bool should_map_region(efi_memory_desc_t *md)
741 {
742 /*
743 * Runtime regions always require runtime mappings (obviously).
744 */
745 if (md->attribute & EFI_MEMORY_RUNTIME)
746 return true;
747
748 /*
749 * 32-bit EFI doesn't suffer from the bug that requires us to
750 * reserve boot services regions, and mixed mode support
751 * doesn't exist for 32-bit kernels.
752 */
753 if (IS_ENABLED(CONFIG_X86_32))
754 return false;
755
756 /*
757 * Map all of RAM so that we can access arguments in the 1:1
758 * mapping when making EFI runtime calls.
759 */
760 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
761 if (md->type == EFI_CONVENTIONAL_MEMORY ||
762 md->type == EFI_LOADER_DATA ||
763 md->type == EFI_LOADER_CODE)
764 return true;
765 }
766
767 /*
768 * Map boot services regions as a workaround for buggy
769 * firmware that accesses them even when they shouldn't.
770 *
771 * See efi_{reserve,free}_boot_services().
772 */
773 if (md->type == EFI_BOOT_SERVICES_CODE ||
774 md->type == EFI_BOOT_SERVICES_DATA)
775 return true;
776
777 return false;
778 }
779
780 /*
781 * Map the efi memory ranges of the runtime services and update new_mmap with
782 * virtual addresses.
783 */
784 static void * __init efi_map_regions(int *count, int *pg_shift)
785 {
786 void *p, *new_memmap = NULL;
787 unsigned long left = 0;
788 unsigned long desc_size;
789 efi_memory_desc_t *md;
790
791 desc_size = efi.memmap.desc_size;
792
793 p = NULL;
794 while ((p = efi_map_next_entry(p))) {
795 md = p;
796
797 if (!should_map_region(md))
798 continue;
799
800 efi_map_region(md);
801 get_systab_virt_addr(md);
802
803 if (left < desc_size) {
804 new_memmap = realloc_pages(new_memmap, *pg_shift);
805 if (!new_memmap)
806 return NULL;
807
808 left += PAGE_SIZE << *pg_shift;
809 (*pg_shift)++;
810 }
811
812 memcpy(new_memmap + (*count * desc_size), md, desc_size);
813
814 left -= desc_size;
815 (*count)++;
816 }
817
818 return new_memmap;
819 }
820
821 static void __init kexec_enter_virtual_mode(void)
822 {
823 #ifdef CONFIG_KEXEC_CORE
824 efi_memory_desc_t *md;
825 unsigned int num_pages;
826
827 efi.systab = NULL;
828
829 /*
830 * We don't do virtual mode, since we don't do runtime services, on
831 * non-native EFI. With efi=old_map, we don't do runtime services in
832 * kexec kernel because in the initial boot something else might
833 * have been mapped at these virtual addresses.
834 */
835 if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
836 efi_memmap_unmap();
837 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
838 return;
839 }
840
841 if (efi_alloc_page_tables()) {
842 pr_err("Failed to allocate EFI page tables\n");
843 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
844 return;
845 }
846
847 /*
848 * Map efi regions which were passed via setup_data. The virt_addr is a
849 * fixed addr which was used in first kernel of a kexec boot.
850 */
851 for_each_efi_memory_desc(md) {
852 efi_map_region_fixed(md); /* FIXME: add error handling */
853 get_systab_virt_addr(md);
854 }
855
856 /*
857 * Unregister the early EFI memmap from efi_init() and install
858 * the new EFI memory map.
859 */
860 efi_memmap_unmap();
861
862 if (efi_memmap_init_late(efi.memmap.phys_map,
863 efi.memmap.desc_size * efi.memmap.nr_map)) {
864 pr_err("Failed to remap late EFI memory map\n");
865 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
866 return;
867 }
868
869 BUG_ON(!efi.systab);
870
871 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
872 num_pages >>= PAGE_SHIFT;
873
874 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
875 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
876 return;
877 }
878
879 efi_sync_low_kernel_mappings();
880
881 /*
882 * Now that EFI is in virtual mode, update the function
883 * pointers in the runtime service table to the new virtual addresses.
884 *
885 * Call EFI services through wrapper functions.
886 */
887 efi.runtime_version = efi_systab.hdr.revision;
888
889 efi_native_runtime_setup();
890
891 efi.set_virtual_address_map = NULL;
892
893 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
894 runtime_code_page_mkexec();
895
896 /* clean DUMMY object */
897 efi_delete_dummy_variable();
898 #endif
899 }
900
901 /*
902 * This function will switch the EFI runtime services to virtual mode.
903 * Essentially, we look through the EFI memmap and map every region that
904 * has the runtime attribute bit set in its memory descriptor into the
905 * efi_pgd page table.
906 *
907 * The old method which used to update that memory descriptor with the
908 * virtual address obtained from ioremap() is still supported when the
909 * kernel is booted with efi=old_map on its command line. Same old
910 * method enabled the runtime services to be called without having to
911 * thunk back into physical mode for every invocation.
912 *
913 * The new method does a pagetable switch in a preemption-safe manner
914 * so that we're in a different address space when calling a runtime
915 * function. For function arguments passing we do copy the PUDs of the
916 * kernel page table into efi_pgd prior to each call.
917 *
918 * Specially for kexec boot, efi runtime maps in previous kernel should
919 * be passed in via setup_data. In that case runtime ranges will be mapped
920 * to the same virtual addresses as the first kernel, see
921 * kexec_enter_virtual_mode().
922 */
923 static void __init __efi_enter_virtual_mode(void)
924 {
925 int count = 0, pg_shift = 0;
926 void *new_memmap = NULL;
927 efi_status_t status;
928 unsigned long pa;
929
930 efi.systab = NULL;
931
932 if (efi_alloc_page_tables()) {
933 pr_err("Failed to allocate EFI page tables\n");
934 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
935 return;
936 }
937
938 efi_merge_regions();
939 new_memmap = efi_map_regions(&count, &pg_shift);
940 if (!new_memmap) {
941 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
942 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
943 return;
944 }
945
946 pa = __pa(new_memmap);
947
948 /*
949 * Unregister the early EFI memmap from efi_init() and install
950 * the new EFI memory map that we are about to pass to the
951 * firmware via SetVirtualAddressMap().
952 */
953 efi_memmap_unmap();
954
955 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
956 pr_err("Failed to remap late EFI memory map\n");
957 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
958 return;
959 }
960
961 if (efi_enabled(EFI_DBG)) {
962 pr_info("EFI runtime memory map:\n");
963 efi_print_memmap();
964 }
965
966 BUG_ON(!efi.systab);
967
968 if (efi_setup_page_tables(pa, 1 << pg_shift)) {
969 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
970 return;
971 }
972
973 efi_sync_low_kernel_mappings();
974
975 if (efi_is_native()) {
976 status = phys_efi_set_virtual_address_map(
977 efi.memmap.desc_size * count,
978 efi.memmap.desc_size,
979 efi.memmap.desc_version,
980 (efi_memory_desc_t *)pa);
981 } else {
982 status = efi_thunk_set_virtual_address_map(
983 efi_phys.set_virtual_address_map,
984 efi.memmap.desc_size * count,
985 efi.memmap.desc_size,
986 efi.memmap.desc_version,
987 (efi_memory_desc_t *)pa);
988 }
989
990 if (status != EFI_SUCCESS) {
991 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
992 status);
993 panic("EFI call to SetVirtualAddressMap() failed!");
994 }
995
996 /*
997 * Now that EFI is in virtual mode, update the function
998 * pointers in the runtime service table to the new virtual addresses.
999 *
1000 * Call EFI services through wrapper functions.
1001 */
1002 efi.runtime_version = efi_systab.hdr.revision;
1003
1004 if (efi_is_native())
1005 efi_native_runtime_setup();
1006 else
1007 efi_thunk_runtime_setup();
1008
1009 efi.set_virtual_address_map = NULL;
1010
1011 /*
1012 * Apply more restrictive page table mapping attributes now that
1013 * SVAM() has been called and the firmware has performed all
1014 * necessary relocation fixups for the new virtual addresses.
1015 */
1016 efi_runtime_update_mappings();
1017 efi_dump_pagetable();
1018
1019 /* clean DUMMY object */
1020 efi_delete_dummy_variable();
1021 }
1022
1023 void __init efi_enter_virtual_mode(void)
1024 {
1025 if (efi_enabled(EFI_PARAVIRT))
1026 return;
1027
1028 if (efi_setup)
1029 kexec_enter_virtual_mode();
1030 else
1031 __efi_enter_virtual_mode();
1032 }
1033
1034 /*
1035 * Convenience functions to obtain memory types and attributes
1036 */
1037 u32 efi_mem_type(unsigned long phys_addr)
1038 {
1039 efi_memory_desc_t *md;
1040
1041 if (!efi_enabled(EFI_MEMMAP))
1042 return 0;
1043
1044 for_each_efi_memory_desc(md) {
1045 if ((md->phys_addr <= phys_addr) &&
1046 (phys_addr < (md->phys_addr +
1047 (md->num_pages << EFI_PAGE_SHIFT))))
1048 return md->type;
1049 }
1050 return 0;
1051 }
1052
1053 static int __init arch_parse_efi_cmdline(char *str)
1054 {
1055 if (!str) {
1056 pr_warn("need at least one option\n");
1057 return -EINVAL;
1058 }
1059
1060 if (parse_option_str(str, "old_map"))
1061 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1062
1063 return 0;
1064 }
1065 early_param("efi", arch_parse_efi_cmdline);