]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/platform/efi/efi.c
Merge remote-tracking branches 'spi/topic/s3c64xx', 'spi/topic/sc18is602', 'spi/topic...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / platform / efi / efi.c
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
17 *
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
20 *
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
24 *
25 * Implemented EFI runtime services and virtual mode calls. --davidm
26 *
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 #define EFI_MIN_RESERVE 5120
60
61 #define EFI_DUMMY_GUID \
62 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
63
64 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
65
66 struct efi_memory_map memmap;
67
68 static struct efi efi_phys __initdata;
69 static efi_system_table_t efi_systab __initdata;
70
71 unsigned long x86_efi_facility;
72
73 static __initdata efi_config_table_type_t arch_tables[] = {
74 #ifdef CONFIG_X86_UV
75 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
76 #endif
77 {NULL_GUID, NULL, NULL},
78 };
79
80 u64 efi_setup; /* efi setup_data physical address */
81
82 /*
83 * Returns 1 if 'facility' is enabled, 0 otherwise.
84 */
85 int efi_enabled(int facility)
86 {
87 return test_bit(facility, &x86_efi_facility) != 0;
88 }
89 EXPORT_SYMBOL(efi_enabled);
90
91 static bool __initdata disable_runtime = false;
92 static int __init setup_noefi(char *arg)
93 {
94 disable_runtime = true;
95 return 0;
96 }
97 early_param("noefi", setup_noefi);
98
99 int add_efi_memmap;
100 EXPORT_SYMBOL(add_efi_memmap);
101
102 static int __init setup_add_efi_memmap(char *arg)
103 {
104 add_efi_memmap = 1;
105 return 0;
106 }
107 early_param("add_efi_memmap", setup_add_efi_memmap);
108
109 static bool efi_no_storage_paranoia;
110
111 static int __init setup_storage_paranoia(char *arg)
112 {
113 efi_no_storage_paranoia = true;
114 return 0;
115 }
116 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
117
118 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
119 {
120 unsigned long flags;
121 efi_status_t status;
122
123 spin_lock_irqsave(&rtc_lock, flags);
124 status = efi_call_virt2(get_time, tm, tc);
125 spin_unlock_irqrestore(&rtc_lock, flags);
126 return status;
127 }
128
129 static efi_status_t virt_efi_set_time(efi_time_t *tm)
130 {
131 unsigned long flags;
132 efi_status_t status;
133
134 spin_lock_irqsave(&rtc_lock, flags);
135 status = efi_call_virt1(set_time, tm);
136 spin_unlock_irqrestore(&rtc_lock, flags);
137 return status;
138 }
139
140 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
141 efi_bool_t *pending,
142 efi_time_t *tm)
143 {
144 unsigned long flags;
145 efi_status_t status;
146
147 spin_lock_irqsave(&rtc_lock, flags);
148 status = efi_call_virt3(get_wakeup_time,
149 enabled, pending, tm);
150 spin_unlock_irqrestore(&rtc_lock, flags);
151 return status;
152 }
153
154 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
155 {
156 unsigned long flags;
157 efi_status_t status;
158
159 spin_lock_irqsave(&rtc_lock, flags);
160 status = efi_call_virt2(set_wakeup_time,
161 enabled, tm);
162 spin_unlock_irqrestore(&rtc_lock, flags);
163 return status;
164 }
165
166 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
167 efi_guid_t *vendor,
168 u32 *attr,
169 unsigned long *data_size,
170 void *data)
171 {
172 return efi_call_virt5(get_variable,
173 name, vendor, attr,
174 data_size, data);
175 }
176
177 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
178 efi_char16_t *name,
179 efi_guid_t *vendor)
180 {
181 return efi_call_virt3(get_next_variable,
182 name_size, name, vendor);
183 }
184
185 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
186 efi_guid_t *vendor,
187 u32 attr,
188 unsigned long data_size,
189 void *data)
190 {
191 return efi_call_virt5(set_variable,
192 name, vendor, attr,
193 data_size, data);
194 }
195
196 static efi_status_t virt_efi_query_variable_info(u32 attr,
197 u64 *storage_space,
198 u64 *remaining_space,
199 u64 *max_variable_size)
200 {
201 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
202 return EFI_UNSUPPORTED;
203
204 return efi_call_virt4(query_variable_info, attr, storage_space,
205 remaining_space, max_variable_size);
206 }
207
208 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
209 {
210 return efi_call_virt1(get_next_high_mono_count, count);
211 }
212
213 static void virt_efi_reset_system(int reset_type,
214 efi_status_t status,
215 unsigned long data_size,
216 efi_char16_t *data)
217 {
218 efi_call_virt4(reset_system, reset_type, status,
219 data_size, data);
220 }
221
222 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
223 unsigned long count,
224 unsigned long sg_list)
225 {
226 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
227 return EFI_UNSUPPORTED;
228
229 return efi_call_virt3(update_capsule, capsules, count, sg_list);
230 }
231
232 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
233 unsigned long count,
234 u64 *max_size,
235 int *reset_type)
236 {
237 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
238 return EFI_UNSUPPORTED;
239
240 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
241 reset_type);
242 }
243
244 static efi_status_t __init phys_efi_set_virtual_address_map(
245 unsigned long memory_map_size,
246 unsigned long descriptor_size,
247 u32 descriptor_version,
248 efi_memory_desc_t *virtual_map)
249 {
250 efi_status_t status;
251
252 efi_call_phys_prelog();
253 status = efi_call_phys4(efi_phys.set_virtual_address_map,
254 memory_map_size, descriptor_size,
255 descriptor_version, virtual_map);
256 efi_call_phys_epilog();
257 return status;
258 }
259
260 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
261 efi_time_cap_t *tc)
262 {
263 unsigned long flags;
264 efi_status_t status;
265
266 spin_lock_irqsave(&rtc_lock, flags);
267 efi_call_phys_prelog();
268 status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
269 virt_to_phys(tc));
270 efi_call_phys_epilog();
271 spin_unlock_irqrestore(&rtc_lock, flags);
272 return status;
273 }
274
275 int efi_set_rtc_mmss(const struct timespec *now)
276 {
277 unsigned long nowtime = now->tv_sec;
278 efi_status_t status;
279 efi_time_t eft;
280 efi_time_cap_t cap;
281 struct rtc_time tm;
282
283 status = efi.get_time(&eft, &cap);
284 if (status != EFI_SUCCESS) {
285 pr_err("Oops: efitime: can't read time!\n");
286 return -1;
287 }
288
289 rtc_time_to_tm(nowtime, &tm);
290 if (!rtc_valid_tm(&tm)) {
291 eft.year = tm.tm_year + 1900;
292 eft.month = tm.tm_mon + 1;
293 eft.day = tm.tm_mday;
294 eft.minute = tm.tm_min;
295 eft.second = tm.tm_sec;
296 eft.nanosecond = 0;
297 } else {
298 printk(KERN_ERR
299 "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
300 __FUNCTION__, nowtime);
301 return -1;
302 }
303
304 status = efi.set_time(&eft);
305 if (status != EFI_SUCCESS) {
306 pr_err("Oops: efitime: can't write time!\n");
307 return -1;
308 }
309 return 0;
310 }
311
312 void efi_get_time(struct timespec *now)
313 {
314 efi_status_t status;
315 efi_time_t eft;
316 efi_time_cap_t cap;
317
318 status = efi.get_time(&eft, &cap);
319 if (status != EFI_SUCCESS)
320 pr_err("Oops: efitime: can't read time!\n");
321
322 now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
323 eft.minute, eft.second);
324 now->tv_nsec = 0;
325 }
326
327 /*
328 * Tell the kernel about the EFI memory map. This might include
329 * more than the max 128 entries that can fit in the e820 legacy
330 * (zeropage) memory map.
331 */
332
333 static void __init do_add_efi_memmap(void)
334 {
335 void *p;
336
337 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
338 efi_memory_desc_t *md = p;
339 unsigned long long start = md->phys_addr;
340 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
341 int e820_type;
342
343 switch (md->type) {
344 case EFI_LOADER_CODE:
345 case EFI_LOADER_DATA:
346 case EFI_BOOT_SERVICES_CODE:
347 case EFI_BOOT_SERVICES_DATA:
348 case EFI_CONVENTIONAL_MEMORY:
349 if (md->attribute & EFI_MEMORY_WB)
350 e820_type = E820_RAM;
351 else
352 e820_type = E820_RESERVED;
353 break;
354 case EFI_ACPI_RECLAIM_MEMORY:
355 e820_type = E820_ACPI;
356 break;
357 case EFI_ACPI_MEMORY_NVS:
358 e820_type = E820_NVS;
359 break;
360 case EFI_UNUSABLE_MEMORY:
361 e820_type = E820_UNUSABLE;
362 break;
363 default:
364 /*
365 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
366 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
367 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368 */
369 e820_type = E820_RESERVED;
370 break;
371 }
372 e820_add_region(start, size, e820_type);
373 }
374 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
375 }
376
377 int __init efi_memblock_x86_reserve_range(void)
378 {
379 struct efi_info *e = &boot_params.efi_info;
380 unsigned long pmap;
381
382 #ifdef CONFIG_X86_32
383 /* Can't handle data above 4GB at this time */
384 if (e->efi_memmap_hi) {
385 pr_err("Memory map is above 4GB, disabling EFI.\n");
386 return -EINVAL;
387 }
388 pmap = e->efi_memmap;
389 #else
390 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
391 #endif
392 memmap.phys_map = (void *)pmap;
393 memmap.nr_map = e->efi_memmap_size /
394 e->efi_memdesc_size;
395 memmap.desc_size = e->efi_memdesc_size;
396 memmap.desc_version = e->efi_memdesc_version;
397
398 memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
399
400 efi.memmap = &memmap;
401
402 return 0;
403 }
404
405 static void __init print_efi_memmap(void)
406 {
407 #ifdef EFI_DEBUG
408 efi_memory_desc_t *md;
409 void *p;
410 int i;
411
412 for (p = memmap.map, i = 0;
413 p < memmap.map_end;
414 p += memmap.desc_size, i++) {
415 md = p;
416 pr_info("mem%02u: type=%u, attr=0x%llx, "
417 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
418 i, md->type, md->attribute, md->phys_addr,
419 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
420 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
421 }
422 #endif /* EFI_DEBUG */
423 }
424
425 void __init efi_reserve_boot_services(void)
426 {
427 void *p;
428
429 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
430 efi_memory_desc_t *md = p;
431 u64 start = md->phys_addr;
432 u64 size = md->num_pages << EFI_PAGE_SHIFT;
433
434 if (md->type != EFI_BOOT_SERVICES_CODE &&
435 md->type != EFI_BOOT_SERVICES_DATA)
436 continue;
437 /* Only reserve where possible:
438 * - Not within any already allocated areas
439 * - Not over any memory area (really needed, if above?)
440 * - Not within any part of the kernel
441 * - Not the bios reserved area
442 */
443 if ((start + size > __pa_symbol(_text)
444 && start <= __pa_symbol(_end)) ||
445 !e820_all_mapped(start, start+size, E820_RAM) ||
446 memblock_is_region_reserved(start, size)) {
447 /* Could not reserve, skip it */
448 md->num_pages = 0;
449 memblock_dbg("Could not reserve boot range "
450 "[0x%010llx-0x%010llx]\n",
451 start, start+size-1);
452 } else
453 memblock_reserve(start, size);
454 }
455 }
456
457 void __init efi_unmap_memmap(void)
458 {
459 clear_bit(EFI_MEMMAP, &x86_efi_facility);
460 if (memmap.map) {
461 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
462 memmap.map = NULL;
463 }
464 }
465
466 void __init efi_free_boot_services(void)
467 {
468 void *p;
469
470 if (!efi_is_native())
471 return;
472
473 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
474 efi_memory_desc_t *md = p;
475 unsigned long long start = md->phys_addr;
476 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
477
478 if (md->type != EFI_BOOT_SERVICES_CODE &&
479 md->type != EFI_BOOT_SERVICES_DATA)
480 continue;
481
482 /* Could not reserve boot area */
483 if (!size)
484 continue;
485
486 free_bootmem_late(start, size);
487 }
488
489 efi_unmap_memmap();
490 }
491
492 static int __init efi_systab_init(void *phys)
493 {
494 if (efi_enabled(EFI_64BIT)) {
495 efi_system_table_64_t *systab64;
496 struct efi_setup_data *data = NULL;
497 u64 tmp = 0;
498
499 if (efi_setup) {
500 data = early_memremap(efi_setup, sizeof(*data));
501 if (!data)
502 return -ENOMEM;
503 }
504 systab64 = early_ioremap((unsigned long)phys,
505 sizeof(*systab64));
506 if (systab64 == NULL) {
507 pr_err("Couldn't map the system table!\n");
508 if (data)
509 early_iounmap(data, sizeof(*data));
510 return -ENOMEM;
511 }
512
513 efi_systab.hdr = systab64->hdr;
514 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
515 systab64->fw_vendor;
516 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
517 efi_systab.fw_revision = systab64->fw_revision;
518 efi_systab.con_in_handle = systab64->con_in_handle;
519 tmp |= systab64->con_in_handle;
520 efi_systab.con_in = systab64->con_in;
521 tmp |= systab64->con_in;
522 efi_systab.con_out_handle = systab64->con_out_handle;
523 tmp |= systab64->con_out_handle;
524 efi_systab.con_out = systab64->con_out;
525 tmp |= systab64->con_out;
526 efi_systab.stderr_handle = systab64->stderr_handle;
527 tmp |= systab64->stderr_handle;
528 efi_systab.stderr = systab64->stderr;
529 tmp |= systab64->stderr;
530 efi_systab.runtime = data ?
531 (void *)(unsigned long)data->runtime :
532 (void *)(unsigned long)systab64->runtime;
533 tmp |= data ? data->runtime : systab64->runtime;
534 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
535 tmp |= systab64->boottime;
536 efi_systab.nr_tables = systab64->nr_tables;
537 efi_systab.tables = data ? (unsigned long)data->tables :
538 systab64->tables;
539 tmp |= data ? data->tables : systab64->tables;
540
541 early_iounmap(systab64, sizeof(*systab64));
542 if (data)
543 early_iounmap(data, sizeof(*data));
544 #ifdef CONFIG_X86_32
545 if (tmp >> 32) {
546 pr_err("EFI data located above 4GB, disabling EFI.\n");
547 return -EINVAL;
548 }
549 #endif
550 } else {
551 efi_system_table_32_t *systab32;
552
553 systab32 = early_ioremap((unsigned long)phys,
554 sizeof(*systab32));
555 if (systab32 == NULL) {
556 pr_err("Couldn't map the system table!\n");
557 return -ENOMEM;
558 }
559
560 efi_systab.hdr = systab32->hdr;
561 efi_systab.fw_vendor = systab32->fw_vendor;
562 efi_systab.fw_revision = systab32->fw_revision;
563 efi_systab.con_in_handle = systab32->con_in_handle;
564 efi_systab.con_in = systab32->con_in;
565 efi_systab.con_out_handle = systab32->con_out_handle;
566 efi_systab.con_out = systab32->con_out;
567 efi_systab.stderr_handle = systab32->stderr_handle;
568 efi_systab.stderr = systab32->stderr;
569 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
570 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
571 efi_systab.nr_tables = systab32->nr_tables;
572 efi_systab.tables = systab32->tables;
573
574 early_iounmap(systab32, sizeof(*systab32));
575 }
576
577 efi.systab = &efi_systab;
578
579 /*
580 * Verify the EFI Table
581 */
582 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
583 pr_err("System table signature incorrect!\n");
584 return -EINVAL;
585 }
586 if ((efi.systab->hdr.revision >> 16) == 0)
587 pr_err("Warning: System table version "
588 "%d.%02d, expected 1.00 or greater!\n",
589 efi.systab->hdr.revision >> 16,
590 efi.systab->hdr.revision & 0xffff);
591
592 return 0;
593 }
594
595 static int __init efi_runtime_init(void)
596 {
597 efi_runtime_services_t *runtime;
598
599 /*
600 * Check out the runtime services table. We need to map
601 * the runtime services table so that we can grab the physical
602 * address of several of the EFI runtime functions, needed to
603 * set the firmware into virtual mode.
604 */
605 runtime = early_ioremap((unsigned long)efi.systab->runtime,
606 sizeof(efi_runtime_services_t));
607 if (!runtime) {
608 pr_err("Could not map the runtime service table!\n");
609 return -ENOMEM;
610 }
611 /*
612 * We will only need *early* access to the following
613 * two EFI runtime services before set_virtual_address_map
614 * is invoked.
615 */
616 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
617 efi_phys.set_virtual_address_map =
618 (efi_set_virtual_address_map_t *)
619 runtime->set_virtual_address_map;
620 /*
621 * Make efi_get_time can be called before entering
622 * virtual mode.
623 */
624 efi.get_time = phys_efi_get_time;
625 early_iounmap(runtime, sizeof(efi_runtime_services_t));
626
627 return 0;
628 }
629
630 static int __init efi_memmap_init(void)
631 {
632 /* Map the EFI memory map */
633 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
634 memmap.nr_map * memmap.desc_size);
635 if (memmap.map == NULL) {
636 pr_err("Could not map the memory map!\n");
637 return -ENOMEM;
638 }
639 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
640
641 if (add_efi_memmap)
642 do_add_efi_memmap();
643
644 return 0;
645 }
646
647 /*
648 * A number of config table entries get remapped to virtual addresses
649 * after entering EFI virtual mode. However, the kexec kernel requires
650 * their physical addresses therefore we pass them via setup_data and
651 * correct those entries to their respective physical addresses here.
652 *
653 * Currently only handles smbios which is necessary for some firmware
654 * implementation.
655 */
656 static int __init efi_reuse_config(u64 tables, int nr_tables)
657 {
658 int i, sz, ret = 0;
659 void *p, *tablep;
660 struct efi_setup_data *data;
661
662 if (!efi_setup)
663 return 0;
664
665 if (!efi_enabled(EFI_64BIT))
666 return 0;
667
668 data = early_memremap(efi_setup, sizeof(*data));
669 if (!data) {
670 ret = -ENOMEM;
671 goto out;
672 }
673
674 if (!data->smbios)
675 goto out_memremap;
676
677 sz = sizeof(efi_config_table_64_t);
678
679 p = tablep = early_memremap(tables, nr_tables * sz);
680 if (!p) {
681 pr_err("Could not map Configuration table!\n");
682 ret = -ENOMEM;
683 goto out_memremap;
684 }
685
686 for (i = 0; i < efi.systab->nr_tables; i++) {
687 efi_guid_t guid;
688
689 guid = ((efi_config_table_64_t *)p)->guid;
690
691 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
692 ((efi_config_table_64_t *)p)->table = data->smbios;
693 p += sz;
694 }
695 early_iounmap(tablep, nr_tables * sz);
696
697 out_memremap:
698 early_iounmap(data, sizeof(*data));
699 out:
700 return ret;
701 }
702
703 void __init efi_init(void)
704 {
705 efi_char16_t *c16;
706 char vendor[100] = "unknown";
707 int i = 0;
708 void *tmp;
709
710 #ifdef CONFIG_X86_32
711 if (boot_params.efi_info.efi_systab_hi ||
712 boot_params.efi_info.efi_memmap_hi) {
713 pr_info("Table located above 4GB, disabling EFI.\n");
714 return;
715 }
716 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
717 #else
718 efi_phys.systab = (efi_system_table_t *)
719 (boot_params.efi_info.efi_systab |
720 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
721 #endif
722
723 if (efi_systab_init(efi_phys.systab))
724 return;
725
726 set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
727
728 efi.config_table = (unsigned long)efi.systab->tables;
729 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
730 efi.runtime = (unsigned long)efi.systab->runtime;
731
732 /*
733 * Show what we know for posterity
734 */
735 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
736 if (c16) {
737 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
738 vendor[i] = *c16++;
739 vendor[i] = '\0';
740 } else
741 pr_err("Could not map the firmware vendor!\n");
742 early_iounmap(tmp, 2);
743
744 pr_info("EFI v%u.%.02u by %s\n",
745 efi.systab->hdr.revision >> 16,
746 efi.systab->hdr.revision & 0xffff, vendor);
747
748 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
749 return;
750
751 if (efi_config_init(arch_tables))
752 return;
753
754 set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
755
756 /*
757 * Note: We currently don't support runtime services on an EFI
758 * that doesn't match the kernel 32/64-bit mode.
759 */
760
761 if (!efi_is_native())
762 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
763 else {
764 if (disable_runtime || efi_runtime_init())
765 return;
766 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
767 }
768 if (efi_memmap_init())
769 return;
770
771 set_bit(EFI_MEMMAP, &x86_efi_facility);
772
773 print_efi_memmap();
774 }
775
776 void __init efi_late_init(void)
777 {
778 efi_bgrt_init();
779 }
780
781 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
782 {
783 u64 addr, npages;
784
785 addr = md->virt_addr;
786 npages = md->num_pages;
787
788 memrange_efi_to_native(&addr, &npages);
789
790 if (executable)
791 set_memory_x(addr, npages);
792 else
793 set_memory_nx(addr, npages);
794 }
795
796 void __init runtime_code_page_mkexec(void)
797 {
798 efi_memory_desc_t *md;
799 void *p;
800
801 /* Make EFI runtime service code area executable */
802 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
803 md = p;
804
805 if (md->type != EFI_RUNTIME_SERVICES_CODE)
806 continue;
807
808 efi_set_executable(md, true);
809 }
810 }
811
812 void efi_memory_uc(u64 addr, unsigned long size)
813 {
814 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
815 u64 npages;
816
817 npages = round_up(size, page_shift) / page_shift;
818 memrange_efi_to_native(&addr, &npages);
819 set_memory_uc(addr, npages);
820 }
821
822 void __init old_map_region(efi_memory_desc_t *md)
823 {
824 u64 start_pfn, end_pfn, end;
825 unsigned long size;
826 void *va;
827
828 start_pfn = PFN_DOWN(md->phys_addr);
829 size = md->num_pages << PAGE_SHIFT;
830 end = md->phys_addr + size;
831 end_pfn = PFN_UP(end);
832
833 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
834 va = __va(md->phys_addr);
835
836 if (!(md->attribute & EFI_MEMORY_WB))
837 efi_memory_uc((u64)(unsigned long)va, size);
838 } else
839 va = efi_ioremap(md->phys_addr, size,
840 md->type, md->attribute);
841
842 md->virt_addr = (u64) (unsigned long) va;
843 if (!va)
844 pr_err("ioremap of 0x%llX failed!\n",
845 (unsigned long long)md->phys_addr);
846 }
847
848 /* Merge contiguous regions of the same type and attribute */
849 static void __init efi_merge_regions(void)
850 {
851 void *p;
852 efi_memory_desc_t *md, *prev_md = NULL;
853
854 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
855 u64 prev_size;
856 md = p;
857
858 if (!prev_md) {
859 prev_md = md;
860 continue;
861 }
862
863 if (prev_md->type != md->type ||
864 prev_md->attribute != md->attribute) {
865 prev_md = md;
866 continue;
867 }
868
869 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
870
871 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
872 prev_md->num_pages += md->num_pages;
873 md->type = EFI_RESERVED_TYPE;
874 md->attribute = 0;
875 continue;
876 }
877 prev_md = md;
878 }
879 }
880
881 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
882 {
883 unsigned long size;
884 u64 end, systab;
885
886 size = md->num_pages << EFI_PAGE_SHIFT;
887 end = md->phys_addr + size;
888 systab = (u64)(unsigned long)efi_phys.systab;
889 if (md->phys_addr <= systab && systab < end) {
890 systab += md->virt_addr - md->phys_addr;
891 efi.systab = (efi_system_table_t *)(unsigned long)systab;
892 }
893 }
894
895 static int __init save_runtime_map(void)
896 {
897 efi_memory_desc_t *md;
898 void *tmp, *p, *q = NULL;
899 int count = 0;
900
901 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
902 md = p;
903
904 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
905 (md->type == EFI_BOOT_SERVICES_CODE) ||
906 (md->type == EFI_BOOT_SERVICES_DATA))
907 continue;
908 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
909 if (!tmp)
910 goto out;
911 q = tmp;
912
913 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
914 count++;
915 }
916
917 efi_runtime_map_setup(q, count, memmap.desc_size);
918
919 return 0;
920 out:
921 kfree(q);
922 return -ENOMEM;
923 }
924
925 /*
926 * Map efi regions which were passed via setup_data. The virt_addr is a fixed
927 * addr which was used in first kernel of a kexec boot.
928 */
929 static void __init efi_map_regions_fixed(void)
930 {
931 void *p;
932 efi_memory_desc_t *md;
933
934 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
935 md = p;
936 efi_map_region_fixed(md); /* FIXME: add error handling */
937 get_systab_virt_addr(md);
938 }
939
940 }
941
942 /*
943 * Map efi memory ranges for runtime serivce and update new_memmap with virtual
944 * addresses.
945 */
946 static void * __init efi_map_regions(int *count)
947 {
948 efi_memory_desc_t *md;
949 void *p, *tmp, *new_memmap = NULL;
950
951 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
952 md = p;
953 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
954 #ifdef CONFIG_X86_64
955 if (md->type != EFI_BOOT_SERVICES_CODE &&
956 md->type != EFI_BOOT_SERVICES_DATA)
957 #endif
958 continue;
959 }
960
961 efi_map_region(md);
962 get_systab_virt_addr(md);
963
964 tmp = krealloc(new_memmap, (*count + 1) * memmap.desc_size,
965 GFP_KERNEL);
966 if (!tmp)
967 goto out;
968 new_memmap = tmp;
969 memcpy(new_memmap + (*count * memmap.desc_size), md,
970 memmap.desc_size);
971 (*count)++;
972 }
973
974 return new_memmap;
975 out:
976 kfree(new_memmap);
977 return NULL;
978 }
979
980 /*
981 * This function will switch the EFI runtime services to virtual mode.
982 * Essentially, we look through the EFI memmap and map every region that
983 * has the runtime attribute bit set in its memory descriptor into the
984 * ->trampoline_pgd page table using a top-down VA allocation scheme.
985 *
986 * The old method which used to update that memory descriptor with the
987 * virtual address obtained from ioremap() is still supported when the
988 * kernel is booted with efi=old_map on its command line. Same old
989 * method enabled the runtime services to be called without having to
990 * thunk back into physical mode for every invocation.
991 *
992 * The new method does a pagetable switch in a preemption-safe manner
993 * so that we're in a different address space when calling a runtime
994 * function. For function arguments passing we do copy the PGDs of the
995 * kernel page table into ->trampoline_pgd prior to each call.
996 *
997 * Specially for kexec boot, efi runtime maps in previous kernel should
998 * be passed in via setup_data. In that case runtime ranges will be mapped
999 * to the same virtual addresses as the first kernel.
1000 */
1001 void __init efi_enter_virtual_mode(void)
1002 {
1003 efi_status_t status;
1004 void *new_memmap = NULL;
1005 int err, count = 0;
1006
1007 efi.systab = NULL;
1008
1009 /*
1010 * We don't do virtual mode, since we don't do runtime services, on
1011 * non-native EFI
1012 */
1013 if (!efi_is_native()) {
1014 efi_unmap_memmap();
1015 return;
1016 }
1017
1018 if (efi_setup) {
1019 efi_map_regions_fixed();
1020 } else {
1021 efi_merge_regions();
1022 new_memmap = efi_map_regions(&count);
1023 if (!new_memmap) {
1024 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1025 return;
1026 }
1027 }
1028
1029 err = save_runtime_map();
1030 if (err)
1031 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
1032
1033 BUG_ON(!efi.systab);
1034
1035 efi_setup_page_tables();
1036 efi_sync_low_kernel_mappings();
1037
1038 if (!efi_setup) {
1039 status = phys_efi_set_virtual_address_map(
1040 memmap.desc_size * count,
1041 memmap.desc_size,
1042 memmap.desc_version,
1043 (efi_memory_desc_t *)__pa(new_memmap));
1044
1045 if (status != EFI_SUCCESS) {
1046 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1047 status);
1048 panic("EFI call to SetVirtualAddressMap() failed!");
1049 }
1050 }
1051
1052 /*
1053 * Now that EFI is in virtual mode, update the function
1054 * pointers in the runtime service table to the new virtual addresses.
1055 *
1056 * Call EFI services through wrapper functions.
1057 */
1058 efi.runtime_version = efi_systab.hdr.revision;
1059 efi.get_time = virt_efi_get_time;
1060 efi.set_time = virt_efi_set_time;
1061 efi.get_wakeup_time = virt_efi_get_wakeup_time;
1062 efi.set_wakeup_time = virt_efi_set_wakeup_time;
1063 efi.get_variable = virt_efi_get_variable;
1064 efi.get_next_variable = virt_efi_get_next_variable;
1065 efi.set_variable = virt_efi_set_variable;
1066 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
1067 efi.reset_system = virt_efi_reset_system;
1068 efi.set_virtual_address_map = NULL;
1069 efi.query_variable_info = virt_efi_query_variable_info;
1070 efi.update_capsule = virt_efi_update_capsule;
1071 efi.query_capsule_caps = virt_efi_query_capsule_caps;
1072
1073 efi_runtime_mkexec();
1074
1075 kfree(new_memmap);
1076
1077 /* clean DUMMY object */
1078 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1079 EFI_VARIABLE_NON_VOLATILE |
1080 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1081 EFI_VARIABLE_RUNTIME_ACCESS,
1082 0, NULL);
1083 }
1084
1085 /*
1086 * Convenience functions to obtain memory types and attributes
1087 */
1088 u32 efi_mem_type(unsigned long phys_addr)
1089 {
1090 efi_memory_desc_t *md;
1091 void *p;
1092
1093 if (!efi_enabled(EFI_MEMMAP))
1094 return 0;
1095
1096 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1097 md = p;
1098 if ((md->phys_addr <= phys_addr) &&
1099 (phys_addr < (md->phys_addr +
1100 (md->num_pages << EFI_PAGE_SHIFT))))
1101 return md->type;
1102 }
1103 return 0;
1104 }
1105
1106 u64 efi_mem_attributes(unsigned long phys_addr)
1107 {
1108 efi_memory_desc_t *md;
1109 void *p;
1110
1111 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1112 md = p;
1113 if ((md->phys_addr <= phys_addr) &&
1114 (phys_addr < (md->phys_addr +
1115 (md->num_pages << EFI_PAGE_SHIFT))))
1116 return md->attribute;
1117 }
1118 return 0;
1119 }
1120
1121 /*
1122 * Some firmware has serious problems when using more than 50% of the EFI
1123 * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1124 * we never use more than this safe limit.
1125 *
1126 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1127 * store.
1128 */
1129 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1130 {
1131 efi_status_t status;
1132 u64 storage_size, remaining_size, max_size;
1133
1134 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1135 return 0;
1136
1137 status = efi.query_variable_info(attributes, &storage_size,
1138 &remaining_size, &max_size);
1139 if (status != EFI_SUCCESS)
1140 return status;
1141
1142 /*
1143 * Some firmware implementations refuse to boot if there's insufficient
1144 * space in the variable store. We account for that by refusing the
1145 * write if permitting it would reduce the available space to under
1146 * 5KB. This figure was provided by Samsung, so should be safe.
1147 */
1148 if ((remaining_size - size < EFI_MIN_RESERVE) &&
1149 !efi_no_storage_paranoia) {
1150
1151 /*
1152 * Triggering garbage collection may require that the firmware
1153 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1154 * that by attempting to use more space than is available.
1155 */
1156 unsigned long dummy_size = remaining_size + 1024;
1157 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1158
1159 if (!dummy)
1160 return EFI_OUT_OF_RESOURCES;
1161
1162 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1163 EFI_VARIABLE_NON_VOLATILE |
1164 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1165 EFI_VARIABLE_RUNTIME_ACCESS,
1166 dummy_size, dummy);
1167
1168 if (status == EFI_SUCCESS) {
1169 /*
1170 * This should have failed, so if it didn't make sure
1171 * that we delete it...
1172 */
1173 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1174 EFI_VARIABLE_NON_VOLATILE |
1175 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1176 EFI_VARIABLE_RUNTIME_ACCESS,
1177 0, dummy);
1178 }
1179
1180 kfree(dummy);
1181
1182 /*
1183 * The runtime code may now have triggered a garbage collection
1184 * run, so check the variable info again
1185 */
1186 status = efi.query_variable_info(attributes, &storage_size,
1187 &remaining_size, &max_size);
1188
1189 if (status != EFI_SUCCESS)
1190 return status;
1191
1192 /*
1193 * There still isn't enough room, so return an error
1194 */
1195 if (remaining_size - size < EFI_MIN_RESERVE)
1196 return EFI_OUT_OF_RESOURCES;
1197 }
1198
1199 return EFI_SUCCESS;
1200 }
1201 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1202
1203 static int __init parse_efi_cmdline(char *str)
1204 {
1205 if (*str == '=')
1206 str++;
1207
1208 if (!strncmp(str, "old_map", 7))
1209 set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1210
1211 return 0;
1212 }
1213 early_param("efi", parse_efi_cmdline);
1214
1215 void __init efi_apply_memmap_quirks(void)
1216 {
1217 /*
1218 * Once setup is done earlier, unmap the EFI memory map on mismatched
1219 * firmware/kernel architectures since there is no support for runtime
1220 * services.
1221 */
1222 if (!efi_is_native()) {
1223 pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n");
1224 efi_unmap_memmap();
1225 }
1226
1227 /*
1228 * UV doesn't support the new EFI pagetable mapping yet.
1229 */
1230 if (is_uv_system())
1231 set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1232 }