]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/platform/efi/efi.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / platform / efi / efi.c
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 *
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
18 *
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
22 *
23 * Implemented EFI runtime services and virtual mode calls. --davidm
24 *
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53
54 #define EFI_DEBUG 1
55
56 #define EFI_MIN_RESERVE 5120
57
58 #define EFI_DUMMY_GUID \
59 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62
63 struct efi_memory_map memmap;
64
65 static struct efi efi_phys __initdata;
66 static efi_system_table_t efi_systab __initdata;
67
68 unsigned long x86_efi_facility;
69
70 static __initdata efi_config_table_type_t arch_tables[] = {
71 #ifdef CONFIG_X86_UV
72 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
73 #endif
74 {NULL_GUID, NULL, NULL},
75 };
76
77 /*
78 * Returns 1 if 'facility' is enabled, 0 otherwise.
79 */
80 int efi_enabled(int facility)
81 {
82 return test_bit(facility, &x86_efi_facility) != 0;
83 }
84 EXPORT_SYMBOL(efi_enabled);
85
86 static bool __initdata disable_runtime = false;
87 static int __init setup_noefi(char *arg)
88 {
89 disable_runtime = true;
90 return 0;
91 }
92 early_param("noefi", setup_noefi);
93
94 int add_efi_memmap;
95 EXPORT_SYMBOL(add_efi_memmap);
96
97 static int __init setup_add_efi_memmap(char *arg)
98 {
99 add_efi_memmap = 1;
100 return 0;
101 }
102 early_param("add_efi_memmap", setup_add_efi_memmap);
103
104 static bool efi_no_storage_paranoia;
105
106 static int __init setup_storage_paranoia(char *arg)
107 {
108 efi_no_storage_paranoia = true;
109 return 0;
110 }
111 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
112
113
114 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
115 {
116 unsigned long flags;
117 efi_status_t status;
118
119 spin_lock_irqsave(&rtc_lock, flags);
120 status = efi_call_virt2(get_time, tm, tc);
121 spin_unlock_irqrestore(&rtc_lock, flags);
122 return status;
123 }
124
125 static efi_status_t virt_efi_set_time(efi_time_t *tm)
126 {
127 unsigned long flags;
128 efi_status_t status;
129
130 spin_lock_irqsave(&rtc_lock, flags);
131 status = efi_call_virt1(set_time, tm);
132 spin_unlock_irqrestore(&rtc_lock, flags);
133 return status;
134 }
135
136 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
137 efi_bool_t *pending,
138 efi_time_t *tm)
139 {
140 unsigned long flags;
141 efi_status_t status;
142
143 spin_lock_irqsave(&rtc_lock, flags);
144 status = efi_call_virt3(get_wakeup_time,
145 enabled, pending, tm);
146 spin_unlock_irqrestore(&rtc_lock, flags);
147 return status;
148 }
149
150 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
151 {
152 unsigned long flags;
153 efi_status_t status;
154
155 spin_lock_irqsave(&rtc_lock, flags);
156 status = efi_call_virt2(set_wakeup_time,
157 enabled, tm);
158 spin_unlock_irqrestore(&rtc_lock, flags);
159 return status;
160 }
161
162 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
163 efi_guid_t *vendor,
164 u32 *attr,
165 unsigned long *data_size,
166 void *data)
167 {
168 return efi_call_virt5(get_variable,
169 name, vendor, attr,
170 data_size, data);
171 }
172
173 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
174 efi_char16_t *name,
175 efi_guid_t *vendor)
176 {
177 return efi_call_virt3(get_next_variable,
178 name_size, name, vendor);
179 }
180
181 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
182 efi_guid_t *vendor,
183 u32 attr,
184 unsigned long data_size,
185 void *data)
186 {
187 return efi_call_virt5(set_variable,
188 name, vendor, attr,
189 data_size, data);
190 }
191
192 static efi_status_t virt_efi_query_variable_info(u32 attr,
193 u64 *storage_space,
194 u64 *remaining_space,
195 u64 *max_variable_size)
196 {
197 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
198 return EFI_UNSUPPORTED;
199
200 return efi_call_virt4(query_variable_info, attr, storage_space,
201 remaining_space, max_variable_size);
202 }
203
204 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
205 {
206 return efi_call_virt1(get_next_high_mono_count, count);
207 }
208
209 static void virt_efi_reset_system(int reset_type,
210 efi_status_t status,
211 unsigned long data_size,
212 efi_char16_t *data)
213 {
214 efi_call_virt4(reset_system, reset_type, status,
215 data_size, data);
216 }
217
218 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
219 unsigned long count,
220 unsigned long sg_list)
221 {
222 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
223 return EFI_UNSUPPORTED;
224
225 return efi_call_virt3(update_capsule, capsules, count, sg_list);
226 }
227
228 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
229 unsigned long count,
230 u64 *max_size,
231 int *reset_type)
232 {
233 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
234 return EFI_UNSUPPORTED;
235
236 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
237 reset_type);
238 }
239
240 static efi_status_t __init phys_efi_set_virtual_address_map(
241 unsigned long memory_map_size,
242 unsigned long descriptor_size,
243 u32 descriptor_version,
244 efi_memory_desc_t *virtual_map)
245 {
246 efi_status_t status;
247
248 efi_call_phys_prelog();
249 status = efi_call_phys4(efi_phys.set_virtual_address_map,
250 memory_map_size, descriptor_size,
251 descriptor_version, virtual_map);
252 efi_call_phys_epilog();
253 return status;
254 }
255
256 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
257 efi_time_cap_t *tc)
258 {
259 unsigned long flags;
260 efi_status_t status;
261
262 spin_lock_irqsave(&rtc_lock, flags);
263 efi_call_phys_prelog();
264 status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
265 virt_to_phys(tc));
266 efi_call_phys_epilog();
267 spin_unlock_irqrestore(&rtc_lock, flags);
268 return status;
269 }
270
271 int efi_set_rtc_mmss(const struct timespec *now)
272 {
273 unsigned long nowtime = now->tv_sec;
274 efi_status_t status;
275 efi_time_t eft;
276 efi_time_cap_t cap;
277 struct rtc_time tm;
278
279 status = efi.get_time(&eft, &cap);
280 if (status != EFI_SUCCESS) {
281 pr_err("Oops: efitime: can't read time!\n");
282 return -1;
283 }
284
285 rtc_time_to_tm(nowtime, &tm);
286 if (!rtc_valid_tm(&tm)) {
287 eft.year = tm.tm_year + 1900;
288 eft.month = tm.tm_mon + 1;
289 eft.day = tm.tm_mday;
290 eft.minute = tm.tm_min;
291 eft.second = tm.tm_sec;
292 eft.nanosecond = 0;
293 } else {
294 printk(KERN_ERR
295 "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
296 __FUNCTION__, nowtime);
297 return -1;
298 }
299
300 status = efi.set_time(&eft);
301 if (status != EFI_SUCCESS) {
302 pr_err("Oops: efitime: can't write time!\n");
303 return -1;
304 }
305 return 0;
306 }
307
308 void efi_get_time(struct timespec *now)
309 {
310 efi_status_t status;
311 efi_time_t eft;
312 efi_time_cap_t cap;
313
314 status = efi.get_time(&eft, &cap);
315 if (status != EFI_SUCCESS)
316 pr_err("Oops: efitime: can't read time!\n");
317
318 now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
319 eft.minute, eft.second);
320 now->tv_nsec = 0;
321 }
322
323 /*
324 * Tell the kernel about the EFI memory map. This might include
325 * more than the max 128 entries that can fit in the e820 legacy
326 * (zeropage) memory map.
327 */
328
329 static void __init do_add_efi_memmap(void)
330 {
331 void *p;
332
333 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
334 efi_memory_desc_t *md = p;
335 unsigned long long start = md->phys_addr;
336 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
337 int e820_type;
338
339 switch (md->type) {
340 case EFI_LOADER_CODE:
341 case EFI_LOADER_DATA:
342 case EFI_BOOT_SERVICES_CODE:
343 case EFI_BOOT_SERVICES_DATA:
344 case EFI_CONVENTIONAL_MEMORY:
345 if (md->attribute & EFI_MEMORY_WB)
346 e820_type = E820_RAM;
347 else
348 e820_type = E820_RESERVED;
349 break;
350 case EFI_ACPI_RECLAIM_MEMORY:
351 e820_type = E820_ACPI;
352 break;
353 case EFI_ACPI_MEMORY_NVS:
354 e820_type = E820_NVS;
355 break;
356 case EFI_UNUSABLE_MEMORY:
357 e820_type = E820_UNUSABLE;
358 break;
359 default:
360 /*
361 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
362 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
363 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
364 */
365 e820_type = E820_RESERVED;
366 break;
367 }
368 e820_add_region(start, size, e820_type);
369 }
370 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
371 }
372
373 int __init efi_memblock_x86_reserve_range(void)
374 {
375 struct efi_info *e = &boot_params.efi_info;
376 unsigned long pmap;
377
378 #ifdef CONFIG_X86_32
379 /* Can't handle data above 4GB at this time */
380 if (e->efi_memmap_hi) {
381 pr_err("Memory map is above 4GB, disabling EFI.\n");
382 return -EINVAL;
383 }
384 pmap = e->efi_memmap;
385 #else
386 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
387 #endif
388 memmap.phys_map = (void *)pmap;
389 memmap.nr_map = e->efi_memmap_size /
390 e->efi_memdesc_size;
391 memmap.desc_size = e->efi_memdesc_size;
392 memmap.desc_version = e->efi_memdesc_version;
393
394 memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
395
396 efi.memmap = &memmap;
397
398 return 0;
399 }
400
401 #if EFI_DEBUG
402 static void __init print_efi_memmap(void)
403 {
404 efi_memory_desc_t *md;
405 void *p;
406 int i;
407
408 for (p = memmap.map, i = 0;
409 p < memmap.map_end;
410 p += memmap.desc_size, i++) {
411 md = p;
412 pr_info("mem%02u: type=%u, attr=0x%llx, "
413 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
414 i, md->type, md->attribute, md->phys_addr,
415 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
416 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
417 }
418 }
419 #endif /* EFI_DEBUG */
420
421 void __init efi_reserve_boot_services(void)
422 {
423 void *p;
424
425 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
426 efi_memory_desc_t *md = p;
427 u64 start = md->phys_addr;
428 u64 size = md->num_pages << EFI_PAGE_SHIFT;
429
430 if (md->type != EFI_BOOT_SERVICES_CODE &&
431 md->type != EFI_BOOT_SERVICES_DATA)
432 continue;
433 /* Only reserve where possible:
434 * - Not within any already allocated areas
435 * - Not over any memory area (really needed, if above?)
436 * - Not within any part of the kernel
437 * - Not the bios reserved area
438 */
439 if ((start+size >= __pa_symbol(_text)
440 && start <= __pa_symbol(_end)) ||
441 !e820_all_mapped(start, start+size, E820_RAM) ||
442 memblock_is_region_reserved(start, size)) {
443 /* Could not reserve, skip it */
444 md->num_pages = 0;
445 memblock_dbg("Could not reserve boot range "
446 "[0x%010llx-0x%010llx]\n",
447 start, start+size-1);
448 } else
449 memblock_reserve(start, size);
450 }
451 }
452
453 void __init efi_unmap_memmap(void)
454 {
455 clear_bit(EFI_MEMMAP, &x86_efi_facility);
456 if (memmap.map) {
457 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
458 memmap.map = NULL;
459 }
460 }
461
462 void __init efi_free_boot_services(void)
463 {
464 void *p;
465
466 if (!efi_is_native())
467 return;
468
469 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
470 efi_memory_desc_t *md = p;
471 unsigned long long start = md->phys_addr;
472 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
473
474 if (md->type != EFI_BOOT_SERVICES_CODE &&
475 md->type != EFI_BOOT_SERVICES_DATA)
476 continue;
477
478 /* Could not reserve boot area */
479 if (!size)
480 continue;
481
482 free_bootmem_late(start, size);
483 }
484
485 efi_unmap_memmap();
486 }
487
488 static int __init efi_systab_init(void *phys)
489 {
490 if (efi_enabled(EFI_64BIT)) {
491 efi_system_table_64_t *systab64;
492 u64 tmp = 0;
493
494 systab64 = early_ioremap((unsigned long)phys,
495 sizeof(*systab64));
496 if (systab64 == NULL) {
497 pr_err("Couldn't map the system table!\n");
498 return -ENOMEM;
499 }
500
501 efi_systab.hdr = systab64->hdr;
502 efi_systab.fw_vendor = systab64->fw_vendor;
503 tmp |= systab64->fw_vendor;
504 efi_systab.fw_revision = systab64->fw_revision;
505 efi_systab.con_in_handle = systab64->con_in_handle;
506 tmp |= systab64->con_in_handle;
507 efi_systab.con_in = systab64->con_in;
508 tmp |= systab64->con_in;
509 efi_systab.con_out_handle = systab64->con_out_handle;
510 tmp |= systab64->con_out_handle;
511 efi_systab.con_out = systab64->con_out;
512 tmp |= systab64->con_out;
513 efi_systab.stderr_handle = systab64->stderr_handle;
514 tmp |= systab64->stderr_handle;
515 efi_systab.stderr = systab64->stderr;
516 tmp |= systab64->stderr;
517 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
518 tmp |= systab64->runtime;
519 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
520 tmp |= systab64->boottime;
521 efi_systab.nr_tables = systab64->nr_tables;
522 efi_systab.tables = systab64->tables;
523 tmp |= systab64->tables;
524
525 early_iounmap(systab64, sizeof(*systab64));
526 #ifdef CONFIG_X86_32
527 if (tmp >> 32) {
528 pr_err("EFI data located above 4GB, disabling EFI.\n");
529 return -EINVAL;
530 }
531 #endif
532 } else {
533 efi_system_table_32_t *systab32;
534
535 systab32 = early_ioremap((unsigned long)phys,
536 sizeof(*systab32));
537 if (systab32 == NULL) {
538 pr_err("Couldn't map the system table!\n");
539 return -ENOMEM;
540 }
541
542 efi_systab.hdr = systab32->hdr;
543 efi_systab.fw_vendor = systab32->fw_vendor;
544 efi_systab.fw_revision = systab32->fw_revision;
545 efi_systab.con_in_handle = systab32->con_in_handle;
546 efi_systab.con_in = systab32->con_in;
547 efi_systab.con_out_handle = systab32->con_out_handle;
548 efi_systab.con_out = systab32->con_out;
549 efi_systab.stderr_handle = systab32->stderr_handle;
550 efi_systab.stderr = systab32->stderr;
551 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
552 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
553 efi_systab.nr_tables = systab32->nr_tables;
554 efi_systab.tables = systab32->tables;
555
556 early_iounmap(systab32, sizeof(*systab32));
557 }
558
559 efi.systab = &efi_systab;
560
561 /*
562 * Verify the EFI Table
563 */
564 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
565 pr_err("System table signature incorrect!\n");
566 return -EINVAL;
567 }
568 if ((efi.systab->hdr.revision >> 16) == 0)
569 pr_err("Warning: System table version "
570 "%d.%02d, expected 1.00 or greater!\n",
571 efi.systab->hdr.revision >> 16,
572 efi.systab->hdr.revision & 0xffff);
573
574 return 0;
575 }
576
577 static int __init efi_runtime_init(void)
578 {
579 efi_runtime_services_t *runtime;
580
581 /*
582 * Check out the runtime services table. We need to map
583 * the runtime services table so that we can grab the physical
584 * address of several of the EFI runtime functions, needed to
585 * set the firmware into virtual mode.
586 */
587 runtime = early_ioremap((unsigned long)efi.systab->runtime,
588 sizeof(efi_runtime_services_t));
589 if (!runtime) {
590 pr_err("Could not map the runtime service table!\n");
591 return -ENOMEM;
592 }
593 /*
594 * We will only need *early* access to the following
595 * two EFI runtime services before set_virtual_address_map
596 * is invoked.
597 */
598 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
599 efi_phys.set_virtual_address_map =
600 (efi_set_virtual_address_map_t *)
601 runtime->set_virtual_address_map;
602 /*
603 * Make efi_get_time can be called before entering
604 * virtual mode.
605 */
606 efi.get_time = phys_efi_get_time;
607 early_iounmap(runtime, sizeof(efi_runtime_services_t));
608
609 return 0;
610 }
611
612 static int __init efi_memmap_init(void)
613 {
614 /* Map the EFI memory map */
615 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
616 memmap.nr_map * memmap.desc_size);
617 if (memmap.map == NULL) {
618 pr_err("Could not map the memory map!\n");
619 return -ENOMEM;
620 }
621 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
622
623 if (add_efi_memmap)
624 do_add_efi_memmap();
625
626 return 0;
627 }
628
629 void __init efi_init(void)
630 {
631 efi_char16_t *c16;
632 char vendor[100] = "unknown";
633 int i = 0;
634 void *tmp;
635
636 #ifdef CONFIG_X86_32
637 if (boot_params.efi_info.efi_systab_hi ||
638 boot_params.efi_info.efi_memmap_hi) {
639 pr_info("Table located above 4GB, disabling EFI.\n");
640 return;
641 }
642 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
643 #else
644 efi_phys.systab = (efi_system_table_t *)
645 (boot_params.efi_info.efi_systab |
646 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
647 #endif
648
649 if (efi_systab_init(efi_phys.systab))
650 return;
651
652 set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
653
654 /*
655 * Show what we know for posterity
656 */
657 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
658 if (c16) {
659 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
660 vendor[i] = *c16++;
661 vendor[i] = '\0';
662 } else
663 pr_err("Could not map the firmware vendor!\n");
664 early_iounmap(tmp, 2);
665
666 pr_info("EFI v%u.%.02u by %s\n",
667 efi.systab->hdr.revision >> 16,
668 efi.systab->hdr.revision & 0xffff, vendor);
669
670 if (efi_config_init(arch_tables))
671 return;
672
673 set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
674
675 /*
676 * Note: We currently don't support runtime services on an EFI
677 * that doesn't match the kernel 32/64-bit mode.
678 */
679
680 if (!efi_is_native())
681 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
682 else {
683 if (disable_runtime || efi_runtime_init())
684 return;
685 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
686 }
687
688 if (efi_memmap_init())
689 return;
690
691 set_bit(EFI_MEMMAP, &x86_efi_facility);
692
693 #if EFI_DEBUG
694 print_efi_memmap();
695 #endif
696 }
697
698 void __init efi_late_init(void)
699 {
700 efi_bgrt_init();
701 }
702
703 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
704 {
705 u64 addr, npages;
706
707 addr = md->virt_addr;
708 npages = md->num_pages;
709
710 memrange_efi_to_native(&addr, &npages);
711
712 if (executable)
713 set_memory_x(addr, npages);
714 else
715 set_memory_nx(addr, npages);
716 }
717
718 static void __init runtime_code_page_mkexec(void)
719 {
720 efi_memory_desc_t *md;
721 void *p;
722
723 /* Make EFI runtime service code area executable */
724 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
725 md = p;
726
727 if (md->type != EFI_RUNTIME_SERVICES_CODE)
728 continue;
729
730 efi_set_executable(md, true);
731 }
732 }
733
734 void efi_memory_uc(u64 addr, unsigned long size)
735 {
736 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
737 u64 npages;
738
739 npages = round_up(size, page_shift) / page_shift;
740 memrange_efi_to_native(&addr, &npages);
741 set_memory_uc(addr, npages);
742 }
743
744 /*
745 * This function will switch the EFI runtime services to virtual mode.
746 * Essentially, look through the EFI memmap and map every region that
747 * has the runtime attribute bit set in its memory descriptor and update
748 * that memory descriptor with the virtual address obtained from ioremap().
749 * This enables the runtime services to be called without having to
750 * thunk back into physical mode for every invocation.
751 */
752 void __init efi_enter_virtual_mode(void)
753 {
754 efi_memory_desc_t *md, *prev_md = NULL;
755 efi_status_t status;
756 unsigned long size;
757 u64 end, systab, start_pfn, end_pfn;
758 void *p, *va, *new_memmap = NULL;
759 int count = 0;
760
761 efi.systab = NULL;
762
763 /*
764 * We don't do virtual mode, since we don't do runtime services, on
765 * non-native EFI
766 */
767
768 if (!efi_is_native()) {
769 efi_unmap_memmap();
770 return;
771 }
772
773 /* Merge contiguous regions of the same type and attribute */
774 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
775 u64 prev_size;
776 md = p;
777
778 if (!prev_md) {
779 prev_md = md;
780 continue;
781 }
782
783 if (prev_md->type != md->type ||
784 prev_md->attribute != md->attribute) {
785 prev_md = md;
786 continue;
787 }
788
789 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
790
791 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
792 prev_md->num_pages += md->num_pages;
793 md->type = EFI_RESERVED_TYPE;
794 md->attribute = 0;
795 continue;
796 }
797 prev_md = md;
798 }
799
800 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
801 md = p;
802 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
803 #ifdef CONFIG_X86_64
804 if (md->type != EFI_BOOT_SERVICES_CODE &&
805 md->type != EFI_BOOT_SERVICES_DATA)
806 #endif
807 continue;
808 }
809
810 size = md->num_pages << EFI_PAGE_SHIFT;
811 end = md->phys_addr + size;
812
813 start_pfn = PFN_DOWN(md->phys_addr);
814 end_pfn = PFN_UP(end);
815 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
816 va = __va(md->phys_addr);
817
818 if (!(md->attribute & EFI_MEMORY_WB))
819 efi_memory_uc((u64)(unsigned long)va, size);
820 } else
821 va = efi_ioremap(md->phys_addr, size,
822 md->type, md->attribute);
823
824 md->virt_addr = (u64) (unsigned long) va;
825
826 if (!va) {
827 pr_err("ioremap of 0x%llX failed!\n",
828 (unsigned long long)md->phys_addr);
829 continue;
830 }
831
832 systab = (u64) (unsigned long) efi_phys.systab;
833 if (md->phys_addr <= systab && systab < end) {
834 systab += md->virt_addr - md->phys_addr;
835 efi.systab = (efi_system_table_t *) (unsigned long) systab;
836 }
837 new_memmap = krealloc(new_memmap,
838 (count + 1) * memmap.desc_size,
839 GFP_KERNEL);
840 memcpy(new_memmap + (count * memmap.desc_size), md,
841 memmap.desc_size);
842 count++;
843 }
844
845 BUG_ON(!efi.systab);
846
847 status = phys_efi_set_virtual_address_map(
848 memmap.desc_size * count,
849 memmap.desc_size,
850 memmap.desc_version,
851 (efi_memory_desc_t *)__pa(new_memmap));
852
853 if (status != EFI_SUCCESS) {
854 pr_alert("Unable to switch EFI into virtual mode "
855 "(status=%lx)!\n", status);
856 panic("EFI call to SetVirtualAddressMap() failed!");
857 }
858
859 /*
860 * Now that EFI is in virtual mode, update the function
861 * pointers in the runtime service table to the new virtual addresses.
862 *
863 * Call EFI services through wrapper functions.
864 */
865 efi.runtime_version = efi_systab.hdr.revision;
866 efi.get_time = virt_efi_get_time;
867 efi.set_time = virt_efi_set_time;
868 efi.get_wakeup_time = virt_efi_get_wakeup_time;
869 efi.set_wakeup_time = virt_efi_set_wakeup_time;
870 efi.get_variable = virt_efi_get_variable;
871 efi.get_next_variable = virt_efi_get_next_variable;
872 efi.set_variable = virt_efi_set_variable;
873 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
874 efi.reset_system = virt_efi_reset_system;
875 efi.set_virtual_address_map = NULL;
876 efi.query_variable_info = virt_efi_query_variable_info;
877 efi.update_capsule = virt_efi_update_capsule;
878 efi.query_capsule_caps = virt_efi_query_capsule_caps;
879 if (__supported_pte_mask & _PAGE_NX)
880 runtime_code_page_mkexec();
881
882 kfree(new_memmap);
883
884 /* clean DUMMY object */
885 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
886 EFI_VARIABLE_NON_VOLATILE |
887 EFI_VARIABLE_BOOTSERVICE_ACCESS |
888 EFI_VARIABLE_RUNTIME_ACCESS,
889 0, NULL);
890 }
891
892 /*
893 * Convenience functions to obtain memory types and attributes
894 */
895 u32 efi_mem_type(unsigned long phys_addr)
896 {
897 efi_memory_desc_t *md;
898 void *p;
899
900 if (!efi_enabled(EFI_MEMMAP))
901 return 0;
902
903 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
904 md = p;
905 if ((md->phys_addr <= phys_addr) &&
906 (phys_addr < (md->phys_addr +
907 (md->num_pages << EFI_PAGE_SHIFT))))
908 return md->type;
909 }
910 return 0;
911 }
912
913 u64 efi_mem_attributes(unsigned long phys_addr)
914 {
915 efi_memory_desc_t *md;
916 void *p;
917
918 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
919 md = p;
920 if ((md->phys_addr <= phys_addr) &&
921 (phys_addr < (md->phys_addr +
922 (md->num_pages << EFI_PAGE_SHIFT))))
923 return md->attribute;
924 }
925 return 0;
926 }
927
928 /*
929 * Some firmware has serious problems when using more than 50% of the EFI
930 * variable store, i.e. it triggers bugs that can brick machines. Ensure that
931 * we never use more than this safe limit.
932 *
933 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
934 * store.
935 */
936 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
937 {
938 efi_status_t status;
939 u64 storage_size, remaining_size, max_size;
940
941 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
942 return 0;
943
944 status = efi.query_variable_info(attributes, &storage_size,
945 &remaining_size, &max_size);
946 if (status != EFI_SUCCESS)
947 return status;
948
949 /*
950 * Some firmware implementations refuse to boot if there's insufficient
951 * space in the variable store. We account for that by refusing the
952 * write if permitting it would reduce the available space to under
953 * 5KB. This figure was provided by Samsung, so should be safe.
954 */
955 if ((remaining_size - size < EFI_MIN_RESERVE) &&
956 !efi_no_storage_paranoia) {
957
958 /*
959 * Triggering garbage collection may require that the firmware
960 * generate a real EFI_OUT_OF_RESOURCES error. We can force
961 * that by attempting to use more space than is available.
962 */
963 unsigned long dummy_size = remaining_size + 1024;
964 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
965
966 if (!dummy)
967 return EFI_OUT_OF_RESOURCES;
968
969 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
970 EFI_VARIABLE_NON_VOLATILE |
971 EFI_VARIABLE_BOOTSERVICE_ACCESS |
972 EFI_VARIABLE_RUNTIME_ACCESS,
973 dummy_size, dummy);
974
975 if (status == EFI_SUCCESS) {
976 /*
977 * This should have failed, so if it didn't make sure
978 * that we delete it...
979 */
980 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
981 EFI_VARIABLE_NON_VOLATILE |
982 EFI_VARIABLE_BOOTSERVICE_ACCESS |
983 EFI_VARIABLE_RUNTIME_ACCESS,
984 0, dummy);
985 }
986
987 kfree(dummy);
988
989 /*
990 * The runtime code may now have triggered a garbage collection
991 * run, so check the variable info again
992 */
993 status = efi.query_variable_info(attributes, &storage_size,
994 &remaining_size, &max_size);
995
996 if (status != EFI_SUCCESS)
997 return status;
998
999 /*
1000 * There still isn't enough room, so return an error
1001 */
1002 if (remaining_size - size < EFI_MIN_RESERVE)
1003 return EFI_OUT_OF_RESOURCES;
1004 }
1005
1006 return EFI_SUCCESS;
1007 }
1008 EXPORT_SYMBOL_GPL(efi_query_variable_store);