]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/platform/efi/efi_64.c
d52aaa7dc08839de97674ab2ca7d7c7436d2de3e
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
11 *
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
16 *
17 */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37
38 #include <asm/setup.h>
39 #include <asm/page.h>
40 #include <asm/e820/api.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50
51 /*
52 * We allocate runtime services regions top-down, starting from -4G, i.e.
53 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54 */
55 static u64 efi_va = EFI_VA_START;
56
57 struct efi_scratch efi_scratch;
58
59 static void __init early_code_mapping_set_exec(int executable)
60 {
61 efi_memory_desc_t *md;
62
63 if (!(__supported_pte_mask & _PAGE_NX))
64 return;
65
66 /* Make EFI service code area executable */
67 for_each_efi_memory_desc(md) {
68 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
69 md->type == EFI_BOOT_SERVICES_CODE)
70 efi_set_executable(md, executable);
71 }
72 }
73
74 pgd_t * __init efi_call_phys_prolog(void)
75 {
76 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
77 pgd_t *save_pgd, *pgd_k, *pgd_efi;
78 p4d_t *p4d, *p4d_k, *p4d_efi;
79 pud_t *pud;
80
81 int pgd;
82 int n_pgds, i, j;
83
84 if (!efi_enabled(EFI_OLD_MEMMAP)) {
85 save_pgd = (pgd_t *)__read_cr3();
86 write_cr3((unsigned long)efi_scratch.efi_pgt);
87 goto out;
88 }
89
90 early_code_mapping_set_exec(1);
91
92 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94
95 /*
96 * Build 1:1 identity mapping for efi=old_map usage. Note that
97 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
98 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
99 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
100 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
101 * This means here we can only reuse the PMD tables of the direct mapping.
102 */
103 for (pgd = 0; pgd < n_pgds; pgd++) {
104 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
105 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
106 pgd_efi = pgd_offset_k(addr_pgd);
107 save_pgd[pgd] = *pgd_efi;
108
109 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
110 if (!p4d) {
111 pr_err("Failed to allocate p4d table!\n");
112 goto out;
113 }
114
115 for (i = 0; i < PTRS_PER_P4D; i++) {
116 addr_p4d = addr_pgd + i * P4D_SIZE;
117 p4d_efi = p4d + p4d_index(addr_p4d);
118
119 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
120 if (!pud) {
121 pr_err("Failed to allocate pud table!\n");
122 goto out;
123 }
124
125 for (j = 0; j < PTRS_PER_PUD; j++) {
126 addr_pud = addr_p4d + j * PUD_SIZE;
127
128 if (addr_pud > (max_pfn << PAGE_SHIFT))
129 break;
130
131 vaddr = (unsigned long)__va(addr_pud);
132
133 pgd_k = pgd_offset_k(vaddr);
134 p4d_k = p4d_offset(pgd_k, vaddr);
135 pud[j] = *pud_offset(p4d_k, vaddr);
136 }
137 }
138 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
139 }
140
141 out:
142 __flush_tlb_all();
143
144 return save_pgd;
145 }
146
147 void __init efi_call_phys_epilog(pgd_t *save_pgd)
148 {
149 /*
150 * After the lock is released, the original page table is restored.
151 */
152 int pgd_idx, i;
153 int nr_pgds;
154 pgd_t *pgd;
155 p4d_t *p4d;
156 pud_t *pud;
157
158 if (!efi_enabled(EFI_OLD_MEMMAP)) {
159 write_cr3((unsigned long)save_pgd);
160 __flush_tlb_all();
161 return;
162 }
163
164 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
165
166 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
167 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
168 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
169
170 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
171 continue;
172
173 for (i = 0; i < PTRS_PER_P4D; i++) {
174 p4d = p4d_offset(pgd,
175 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
176
177 if (!(p4d_val(*p4d) & _PAGE_PRESENT))
178 continue;
179
180 pud = (pud_t *)p4d_page_vaddr(*p4d);
181 pud_free(&init_mm, pud);
182 }
183
184 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
185 p4d_free(&init_mm, p4d);
186 }
187
188 kfree(save_pgd);
189
190 __flush_tlb_all();
191 early_code_mapping_set_exec(0);
192 }
193
194 pgd_t *efi_pgd;
195 EXPORT_SYMBOL_GPL(efi_pgd);
196
197 /*
198 * We need our own copy of the higher levels of the page tables
199 * because we want to avoid inserting EFI region mappings (EFI_VA_END
200 * to EFI_VA_START) into the standard kernel page tables. Everything
201 * else can be shared, see efi_sync_low_kernel_mappings().
202 *
203 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
204 * allocation.
205 */
206 int __init efi_alloc_page_tables(void)
207 {
208 pgd_t *pgd;
209 p4d_t *p4d;
210 pud_t *pud;
211 gfp_t gfp_mask;
212
213 if (efi_enabled(EFI_OLD_MEMMAP))
214 return 0;
215
216 gfp_mask = GFP_KERNEL | __GFP_ZERO;
217 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
218 if (!efi_pgd)
219 return -ENOMEM;
220
221 pgd = efi_pgd + pgd_index(EFI_VA_END);
222 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
223 if (!p4d) {
224 free_page((unsigned long)efi_pgd);
225 return -ENOMEM;
226 }
227
228 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
229 if (!pud) {
230 if (CONFIG_PGTABLE_LEVELS > 4)
231 free_page((unsigned long) pgd_page_vaddr(*pgd));
232 free_page((unsigned long)efi_pgd);
233 return -ENOMEM;
234 }
235
236 return 0;
237 }
238
239 /*
240 * Add low kernel mappings for passing arguments to EFI functions.
241 */
242 void efi_sync_low_kernel_mappings(void)
243 {
244 unsigned num_entries;
245 pgd_t *pgd_k, *pgd_efi;
246 p4d_t *p4d_k, *p4d_efi;
247 pud_t *pud_k, *pud_efi;
248
249 if (efi_enabled(EFI_OLD_MEMMAP))
250 return;
251
252 /*
253 * We can share all PGD entries apart from the one entry that
254 * covers the EFI runtime mapping space.
255 *
256 * Make sure the EFI runtime region mappings are guaranteed to
257 * only span a single PGD entry and that the entry also maps
258 * other important kernel regions.
259 */
260 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
261 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
262 (EFI_VA_END & PGDIR_MASK));
263
264 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
265 pgd_k = pgd_offset_k(PAGE_OFFSET);
266
267 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
268 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
269
270 /*
271 * As with PGDs, we share all P4D entries apart from the one entry
272 * that covers the EFI runtime mapping space.
273 */
274 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
275 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
276
277 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
278 pgd_k = pgd_offset_k(EFI_VA_END);
279 p4d_efi = p4d_offset(pgd_efi, 0);
280 p4d_k = p4d_offset(pgd_k, 0);
281
282 num_entries = p4d_index(EFI_VA_END);
283 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
284
285 /*
286 * We share all the PUD entries apart from those that map the
287 * EFI regions. Copy around them.
288 */
289 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
290 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
291
292 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
293 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
294 pud_efi = pud_offset(p4d_efi, 0);
295 pud_k = pud_offset(p4d_k, 0);
296
297 num_entries = pud_index(EFI_VA_END);
298 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
299
300 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
301 pud_k = pud_offset(p4d_k, EFI_VA_START);
302
303 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
304 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
305 }
306
307 /*
308 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
309 */
310 static inline phys_addr_t
311 virt_to_phys_or_null_size(void *va, unsigned long size)
312 {
313 bool bad_size;
314
315 if (!va)
316 return 0;
317
318 if (virt_addr_valid(va))
319 return virt_to_phys(va);
320
321 /*
322 * A fully aligned variable on the stack is guaranteed not to
323 * cross a page bounary. Try to catch strings on the stack by
324 * checking that 'size' is a power of two.
325 */
326 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
327
328 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
329
330 return slow_virt_to_phys(va);
331 }
332
333 #define virt_to_phys_or_null(addr) \
334 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
335
336 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
337 {
338 unsigned long pfn, text, pf;
339 struct page *page;
340 unsigned npages;
341 pgd_t *pgd;
342
343 if (efi_enabled(EFI_OLD_MEMMAP))
344 return 0;
345
346 /*
347 * Since the PGD is encrypted, set the encryption mask so that when
348 * this value is loaded into cr3 the PGD will be decrypted during
349 * the pagetable walk.
350 */
351 efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
352 pgd = efi_pgd;
353
354 /*
355 * It can happen that the physical address of new_memmap lands in memory
356 * which is not mapped in the EFI page table. Therefore we need to go
357 * and ident-map those pages containing the map before calling
358 * phys_efi_set_virtual_address_map().
359 */
360 pfn = pa_memmap >> PAGE_SHIFT;
361 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
362 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
363 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
364 return 1;
365 }
366
367 efi_scratch.use_pgd = true;
368
369 /*
370 * Certain firmware versions are way too sentimential and still believe
371 * they are exclusive and unquestionable owners of the first physical page,
372 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
373 * (but then write-access it later during SetVirtualAddressMap()).
374 *
375 * Create a 1:1 mapping for this page, to avoid triple faults during early
376 * boot with such firmware. We are free to hand this page to the BIOS,
377 * as trim_bios_range() will reserve the first page and isolate it away
378 * from memory allocators anyway.
379 */
380 pf = _PAGE_RW;
381 if (sev_active())
382 pf |= _PAGE_ENC;
383
384 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
385 pr_err("Failed to create 1:1 mapping for the first page!\n");
386 return 1;
387 }
388
389 /*
390 * When making calls to the firmware everything needs to be 1:1
391 * mapped and addressable with 32-bit pointers. Map the kernel
392 * text and allocate a new stack because we can't rely on the
393 * stack pointer being < 4GB.
394 */
395 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
396 return 0;
397
398 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
399 if (!page)
400 panic("Unable to allocate EFI runtime stack < 4GB\n");
401
402 efi_scratch.phys_stack = virt_to_phys(page_address(page));
403 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
404
405 npages = (_etext - _text) >> PAGE_SHIFT;
406 text = __pa(_text);
407 pfn = text >> PAGE_SHIFT;
408
409 pf = _PAGE_RW | _PAGE_ENC;
410 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
411 pr_err("Failed to map kernel text 1:1\n");
412 return 1;
413 }
414
415 return 0;
416 }
417
418 static void __init __map_region(efi_memory_desc_t *md, u64 va)
419 {
420 unsigned long flags = _PAGE_RW;
421 unsigned long pfn;
422 pgd_t *pgd = efi_pgd;
423
424 if (!(md->attribute & EFI_MEMORY_WB))
425 flags |= _PAGE_PCD;
426
427 if (sev_active())
428 flags |= _PAGE_ENC;
429
430 pfn = md->phys_addr >> PAGE_SHIFT;
431 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
432 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
433 md->phys_addr, va);
434 }
435
436 void __init efi_map_region(efi_memory_desc_t *md)
437 {
438 unsigned long size = md->num_pages << PAGE_SHIFT;
439 u64 pa = md->phys_addr;
440
441 if (efi_enabled(EFI_OLD_MEMMAP))
442 return old_map_region(md);
443
444 /*
445 * Make sure the 1:1 mappings are present as a catch-all for b0rked
446 * firmware which doesn't update all internal pointers after switching
447 * to virtual mode and would otherwise crap on us.
448 */
449 __map_region(md, md->phys_addr);
450
451 /*
452 * Enforce the 1:1 mapping as the default virtual address when
453 * booting in EFI mixed mode, because even though we may be
454 * running a 64-bit kernel, the firmware may only be 32-bit.
455 */
456 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
457 md->virt_addr = md->phys_addr;
458 return;
459 }
460
461 efi_va -= size;
462
463 /* Is PA 2M-aligned? */
464 if (!(pa & (PMD_SIZE - 1))) {
465 efi_va &= PMD_MASK;
466 } else {
467 u64 pa_offset = pa & (PMD_SIZE - 1);
468 u64 prev_va = efi_va;
469
470 /* get us the same offset within this 2M page */
471 efi_va = (efi_va & PMD_MASK) + pa_offset;
472
473 if (efi_va > prev_va)
474 efi_va -= PMD_SIZE;
475 }
476
477 if (efi_va < EFI_VA_END) {
478 pr_warn(FW_WARN "VA address range overflow!\n");
479 return;
480 }
481
482 /* Do the VA map */
483 __map_region(md, efi_va);
484 md->virt_addr = efi_va;
485 }
486
487 /*
488 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
489 * md->virt_addr is the original virtual address which had been mapped in kexec
490 * 1st kernel.
491 */
492 void __init efi_map_region_fixed(efi_memory_desc_t *md)
493 {
494 __map_region(md, md->phys_addr);
495 __map_region(md, md->virt_addr);
496 }
497
498 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
499 u32 type, u64 attribute)
500 {
501 unsigned long last_map_pfn;
502
503 if (type == EFI_MEMORY_MAPPED_IO)
504 return ioremap(phys_addr, size);
505
506 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
507 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
508 unsigned long top = last_map_pfn << PAGE_SHIFT;
509 efi_ioremap(top, size - (top - phys_addr), type, attribute);
510 }
511
512 if (!(attribute & EFI_MEMORY_WB))
513 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
514
515 return (void __iomem *)__va(phys_addr);
516 }
517
518 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
519 {
520 efi_setup = phys_addr + sizeof(struct setup_data);
521 }
522
523 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
524 {
525 unsigned long pfn;
526 pgd_t *pgd = efi_pgd;
527 int err1, err2;
528
529 /* Update the 1:1 mapping */
530 pfn = md->phys_addr >> PAGE_SHIFT;
531 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
532 if (err1) {
533 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
534 md->phys_addr, md->virt_addr);
535 }
536
537 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
538 if (err2) {
539 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
540 md->phys_addr, md->virt_addr);
541 }
542
543 return err1 || err2;
544 }
545
546 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
547 {
548 unsigned long pf = 0;
549
550 if (md->attribute & EFI_MEMORY_XP)
551 pf |= _PAGE_NX;
552
553 if (!(md->attribute & EFI_MEMORY_RO))
554 pf |= _PAGE_RW;
555
556 if (sev_active())
557 pf |= _PAGE_ENC;
558
559 return efi_update_mappings(md, pf);
560 }
561
562 void __init efi_runtime_update_mappings(void)
563 {
564 efi_memory_desc_t *md;
565
566 if (efi_enabled(EFI_OLD_MEMMAP)) {
567 if (__supported_pte_mask & _PAGE_NX)
568 runtime_code_page_mkexec();
569 return;
570 }
571
572 /*
573 * Use the EFI Memory Attribute Table for mapping permissions if it
574 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
575 */
576 if (efi_enabled(EFI_MEM_ATTR)) {
577 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
578 return;
579 }
580
581 /*
582 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
583 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
584 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
585 * published by the firmware. Even if we find a buggy implementation of
586 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
587 * EFI_PROPERTIES_TABLE, because of the same reason.
588 */
589
590 if (!efi_enabled(EFI_NX_PE_DATA))
591 return;
592
593 for_each_efi_memory_desc(md) {
594 unsigned long pf = 0;
595
596 if (!(md->attribute & EFI_MEMORY_RUNTIME))
597 continue;
598
599 if (!(md->attribute & EFI_MEMORY_WB))
600 pf |= _PAGE_PCD;
601
602 if ((md->attribute & EFI_MEMORY_XP) ||
603 (md->type == EFI_RUNTIME_SERVICES_DATA))
604 pf |= _PAGE_NX;
605
606 if (!(md->attribute & EFI_MEMORY_RO) &&
607 (md->type != EFI_RUNTIME_SERVICES_CODE))
608 pf |= _PAGE_RW;
609
610 if (sev_active())
611 pf |= _PAGE_ENC;
612
613 efi_update_mappings(md, pf);
614 }
615 }
616
617 void __init efi_dump_pagetable(void)
618 {
619 #ifdef CONFIG_EFI_PGT_DUMP
620 if (efi_enabled(EFI_OLD_MEMMAP))
621 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
622 else
623 ptdump_walk_pgd_level(NULL, efi_pgd);
624 #endif
625 }
626
627 #ifdef CONFIG_EFI_MIXED
628 extern efi_status_t efi64_thunk(u32, ...);
629
630 #define runtime_service32(func) \
631 ({ \
632 u32 table = (u32)(unsigned long)efi.systab; \
633 u32 *rt, *___f; \
634 \
635 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
636 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
637 *___f; \
638 })
639
640 /*
641 * Switch to the EFI page tables early so that we can access the 1:1
642 * runtime services mappings which are not mapped in any other page
643 * tables. This function must be called before runtime_service32().
644 *
645 * Also, disable interrupts because the IDT points to 64-bit handlers,
646 * which aren't going to function correctly when we switch to 32-bit.
647 */
648 #define efi_thunk(f, ...) \
649 ({ \
650 efi_status_t __s; \
651 unsigned long __flags; \
652 u32 __func; \
653 \
654 local_irq_save(__flags); \
655 arch_efi_call_virt_setup(); \
656 \
657 __func = runtime_service32(f); \
658 __s = efi64_thunk(__func, __VA_ARGS__); \
659 \
660 arch_efi_call_virt_teardown(); \
661 local_irq_restore(__flags); \
662 \
663 __s; \
664 })
665
666 efi_status_t efi_thunk_set_virtual_address_map(
667 void *phys_set_virtual_address_map,
668 unsigned long memory_map_size,
669 unsigned long descriptor_size,
670 u32 descriptor_version,
671 efi_memory_desc_t *virtual_map)
672 {
673 efi_status_t status;
674 unsigned long flags;
675 u32 func;
676
677 efi_sync_low_kernel_mappings();
678 local_irq_save(flags);
679
680 efi_scratch.prev_cr3 = __read_cr3();
681 write_cr3((unsigned long)efi_scratch.efi_pgt);
682 __flush_tlb_all();
683
684 func = (u32)(unsigned long)phys_set_virtual_address_map;
685 status = efi64_thunk(func, memory_map_size, descriptor_size,
686 descriptor_version, virtual_map);
687
688 write_cr3(efi_scratch.prev_cr3);
689 __flush_tlb_all();
690 local_irq_restore(flags);
691
692 return status;
693 }
694
695 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
696 {
697 efi_status_t status;
698 u32 phys_tm, phys_tc;
699
700 spin_lock(&rtc_lock);
701
702 phys_tm = virt_to_phys_or_null(tm);
703 phys_tc = virt_to_phys_or_null(tc);
704
705 status = efi_thunk(get_time, phys_tm, phys_tc);
706
707 spin_unlock(&rtc_lock);
708
709 return status;
710 }
711
712 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
713 {
714 efi_status_t status;
715 u32 phys_tm;
716
717 spin_lock(&rtc_lock);
718
719 phys_tm = virt_to_phys_or_null(tm);
720
721 status = efi_thunk(set_time, phys_tm);
722
723 spin_unlock(&rtc_lock);
724
725 return status;
726 }
727
728 static efi_status_t
729 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
730 efi_time_t *tm)
731 {
732 efi_status_t status;
733 u32 phys_enabled, phys_pending, phys_tm;
734
735 spin_lock(&rtc_lock);
736
737 phys_enabled = virt_to_phys_or_null(enabled);
738 phys_pending = virt_to_phys_or_null(pending);
739 phys_tm = virt_to_phys_or_null(tm);
740
741 status = efi_thunk(get_wakeup_time, phys_enabled,
742 phys_pending, phys_tm);
743
744 spin_unlock(&rtc_lock);
745
746 return status;
747 }
748
749 static efi_status_t
750 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
751 {
752 efi_status_t status;
753 u32 phys_tm;
754
755 spin_lock(&rtc_lock);
756
757 phys_tm = virt_to_phys_or_null(tm);
758
759 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
760
761 spin_unlock(&rtc_lock);
762
763 return status;
764 }
765
766 static unsigned long efi_name_size(efi_char16_t *name)
767 {
768 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
769 }
770
771 static efi_status_t
772 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
773 u32 *attr, unsigned long *data_size, void *data)
774 {
775 efi_status_t status;
776 u32 phys_name, phys_vendor, phys_attr;
777 u32 phys_data_size, phys_data;
778
779 phys_data_size = virt_to_phys_or_null(data_size);
780 phys_vendor = virt_to_phys_or_null(vendor);
781 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
782 phys_attr = virt_to_phys_or_null(attr);
783 phys_data = virt_to_phys_or_null_size(data, *data_size);
784
785 status = efi_thunk(get_variable, phys_name, phys_vendor,
786 phys_attr, phys_data_size, phys_data);
787
788 return status;
789 }
790
791 static efi_status_t
792 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
793 u32 attr, unsigned long data_size, void *data)
794 {
795 u32 phys_name, phys_vendor, phys_data;
796 efi_status_t status;
797
798 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
799 phys_vendor = virt_to_phys_or_null(vendor);
800 phys_data = virt_to_phys_or_null_size(data, data_size);
801
802 /* If data_size is > sizeof(u32) we've got problems */
803 status = efi_thunk(set_variable, phys_name, phys_vendor,
804 attr, data_size, phys_data);
805
806 return status;
807 }
808
809 static efi_status_t
810 efi_thunk_get_next_variable(unsigned long *name_size,
811 efi_char16_t *name,
812 efi_guid_t *vendor)
813 {
814 efi_status_t status;
815 u32 phys_name_size, phys_name, phys_vendor;
816
817 phys_name_size = virt_to_phys_or_null(name_size);
818 phys_vendor = virt_to_phys_or_null(vendor);
819 phys_name = virt_to_phys_or_null_size(name, *name_size);
820
821 status = efi_thunk(get_next_variable, phys_name_size,
822 phys_name, phys_vendor);
823
824 return status;
825 }
826
827 static efi_status_t
828 efi_thunk_get_next_high_mono_count(u32 *count)
829 {
830 efi_status_t status;
831 u32 phys_count;
832
833 phys_count = virt_to_phys_or_null(count);
834 status = efi_thunk(get_next_high_mono_count, phys_count);
835
836 return status;
837 }
838
839 static void
840 efi_thunk_reset_system(int reset_type, efi_status_t status,
841 unsigned long data_size, efi_char16_t *data)
842 {
843 u32 phys_data;
844
845 phys_data = virt_to_phys_or_null_size(data, data_size);
846
847 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
848 }
849
850 static efi_status_t
851 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
852 unsigned long count, unsigned long sg_list)
853 {
854 /*
855 * To properly support this function we would need to repackage
856 * 'capsules' because the firmware doesn't understand 64-bit
857 * pointers.
858 */
859 return EFI_UNSUPPORTED;
860 }
861
862 static efi_status_t
863 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
864 u64 *remaining_space,
865 u64 *max_variable_size)
866 {
867 efi_status_t status;
868 u32 phys_storage, phys_remaining, phys_max;
869
870 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
871 return EFI_UNSUPPORTED;
872
873 phys_storage = virt_to_phys_or_null(storage_space);
874 phys_remaining = virt_to_phys_or_null(remaining_space);
875 phys_max = virt_to_phys_or_null(max_variable_size);
876
877 status = efi_thunk(query_variable_info, attr, phys_storage,
878 phys_remaining, phys_max);
879
880 return status;
881 }
882
883 static efi_status_t
884 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
885 unsigned long count, u64 *max_size,
886 int *reset_type)
887 {
888 /*
889 * To properly support this function we would need to repackage
890 * 'capsules' because the firmware doesn't understand 64-bit
891 * pointers.
892 */
893 return EFI_UNSUPPORTED;
894 }
895
896 void efi_thunk_runtime_setup(void)
897 {
898 efi.get_time = efi_thunk_get_time;
899 efi.set_time = efi_thunk_set_time;
900 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
901 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
902 efi.get_variable = efi_thunk_get_variable;
903 efi.get_next_variable = efi_thunk_get_next_variable;
904 efi.set_variable = efi_thunk_set_variable;
905 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
906 efi.reset_system = efi_thunk_reset_system;
907 efi.query_variable_info = efi_thunk_query_variable_info;
908 efi.update_capsule = efi_thunk_update_capsule;
909 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
910 }
911 #endif /* CONFIG_EFI_MIXED */