]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/platform/efi/quirks.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / x86 / platform / efi / quirks.c
1 #define pr_fmt(fmt) "efi: " fmt
2
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14
15 #include <asm/e820/api.h>
16 #include <asm/efi.h>
17 #include <asm/uv/uv.h>
18
19 #define EFI_MIN_RESERVE 5120
20
21 #define EFI_DUMMY_GUID \
22 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
23
24 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
25
26 static bool efi_no_storage_paranoia;
27
28 /*
29 * Some firmware implementations refuse to boot if there's insufficient
30 * space in the variable store. The implementation of garbage collection
31 * in some FW versions causes stale (deleted) variables to take up space
32 * longer than intended and space is only freed once the store becomes
33 * almost completely full.
34 *
35 * Enabling this option disables the space checks in
36 * efi_query_variable_store() and forces garbage collection.
37 *
38 * Only enable this option if deleting EFI variables does not free up
39 * space in your variable store, e.g. if despite deleting variables
40 * you're unable to create new ones.
41 */
42 static int __init setup_storage_paranoia(char *arg)
43 {
44 efi_no_storage_paranoia = true;
45 return 0;
46 }
47 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
48
49 /*
50 * Deleting the dummy variable which kicks off garbage collection
51 */
52 void efi_delete_dummy_variable(void)
53 {
54 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
55 EFI_VARIABLE_NON_VOLATILE |
56 EFI_VARIABLE_BOOTSERVICE_ACCESS |
57 EFI_VARIABLE_RUNTIME_ACCESS,
58 0, NULL);
59 }
60
61 /*
62 * In the nonblocking case we do not attempt to perform garbage
63 * collection if we do not have enough free space. Rather, we do the
64 * bare minimum check and give up immediately if the available space
65 * is below EFI_MIN_RESERVE.
66 *
67 * This function is intended to be small and simple because it is
68 * invoked from crash handler paths.
69 */
70 static efi_status_t
71 query_variable_store_nonblocking(u32 attributes, unsigned long size)
72 {
73 efi_status_t status;
74 u64 storage_size, remaining_size, max_size;
75
76 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
77 &remaining_size,
78 &max_size);
79 if (status != EFI_SUCCESS)
80 return status;
81
82 if (remaining_size - size < EFI_MIN_RESERVE)
83 return EFI_OUT_OF_RESOURCES;
84
85 return EFI_SUCCESS;
86 }
87
88 /*
89 * Some firmware implementations refuse to boot if there's insufficient space
90 * in the variable store. Ensure that we never use more than a safe limit.
91 *
92 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
93 * store.
94 */
95 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
96 bool nonblocking)
97 {
98 efi_status_t status;
99 u64 storage_size, remaining_size, max_size;
100
101 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
102 return 0;
103
104 if (nonblocking)
105 return query_variable_store_nonblocking(attributes, size);
106
107 status = efi.query_variable_info(attributes, &storage_size,
108 &remaining_size, &max_size);
109 if (status != EFI_SUCCESS)
110 return status;
111
112 /*
113 * We account for that by refusing the write if permitting it would
114 * reduce the available space to under 5KB. This figure was provided by
115 * Samsung, so should be safe.
116 */
117 if ((remaining_size - size < EFI_MIN_RESERVE) &&
118 !efi_no_storage_paranoia) {
119
120 /*
121 * Triggering garbage collection may require that the firmware
122 * generate a real EFI_OUT_OF_RESOURCES error. We can force
123 * that by attempting to use more space than is available.
124 */
125 unsigned long dummy_size = remaining_size + 1024;
126 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
127
128 if (!dummy)
129 return EFI_OUT_OF_RESOURCES;
130
131 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
132 EFI_VARIABLE_NON_VOLATILE |
133 EFI_VARIABLE_BOOTSERVICE_ACCESS |
134 EFI_VARIABLE_RUNTIME_ACCESS,
135 dummy_size, dummy);
136
137 if (status == EFI_SUCCESS) {
138 /*
139 * This should have failed, so if it didn't make sure
140 * that we delete it...
141 */
142 efi_delete_dummy_variable();
143 }
144
145 kfree(dummy);
146
147 /*
148 * The runtime code may now have triggered a garbage collection
149 * run, so check the variable info again
150 */
151 status = efi.query_variable_info(attributes, &storage_size,
152 &remaining_size, &max_size);
153
154 if (status != EFI_SUCCESS)
155 return status;
156
157 /*
158 * There still isn't enough room, so return an error
159 */
160 if (remaining_size - size < EFI_MIN_RESERVE)
161 return EFI_OUT_OF_RESOURCES;
162 }
163
164 return EFI_SUCCESS;
165 }
166 EXPORT_SYMBOL_GPL(efi_query_variable_store);
167
168 /*
169 * The UEFI specification makes it clear that the operating system is
170 * free to do whatever it wants with boot services code after
171 * ExitBootServices() has been called. Ignoring this recommendation a
172 * significant bunch of EFI implementations continue calling into boot
173 * services code (SetVirtualAddressMap). In order to work around such
174 * buggy implementations we reserve boot services region during EFI
175 * init and make sure it stays executable. Then, after
176 * SetVirtualAddressMap(), it is discarded.
177 *
178 * However, some boot services regions contain data that is required
179 * by drivers, so we need to track which memory ranges can never be
180 * freed. This is done by tagging those regions with the
181 * EFI_MEMORY_RUNTIME attribute.
182 *
183 * Any driver that wants to mark a region as reserved must use
184 * efi_mem_reserve() which will insert a new EFI memory descriptor
185 * into efi.memmap (splitting existing regions if necessary) and tag
186 * it with EFI_MEMORY_RUNTIME.
187 */
188 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
189 {
190 phys_addr_t new_phys, new_size;
191 struct efi_mem_range mr;
192 efi_memory_desc_t md;
193 int num_entries;
194 void *new;
195
196 if (efi_mem_desc_lookup(addr, &md)) {
197 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
198 return;
199 }
200
201 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
202 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
203 return;
204 }
205
206 /* No need to reserve regions that will never be freed. */
207 if (md.attribute & EFI_MEMORY_RUNTIME)
208 return;
209
210 size += addr % EFI_PAGE_SIZE;
211 size = round_up(size, EFI_PAGE_SIZE);
212 addr = round_down(addr, EFI_PAGE_SIZE);
213
214 mr.range.start = addr;
215 mr.range.end = addr + size - 1;
216 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
217
218 num_entries = efi_memmap_split_count(&md, &mr.range);
219 num_entries += efi.memmap.nr_map;
220
221 new_size = efi.memmap.desc_size * num_entries;
222
223 new_phys = efi_memmap_alloc(num_entries);
224 if (!new_phys) {
225 pr_err("Could not allocate boot services memmap\n");
226 return;
227 }
228
229 new = early_memremap(new_phys, new_size);
230 if (!new) {
231 pr_err("Failed to map new boot services memmap\n");
232 return;
233 }
234
235 efi_memmap_insert(&efi.memmap, new, &mr);
236 early_memunmap(new, new_size);
237
238 efi_memmap_install(new_phys, num_entries);
239 }
240
241 /*
242 * Helper function for efi_reserve_boot_services() to figure out if we
243 * can free regions in efi_free_boot_services().
244 *
245 * Use this function to ensure we do not free regions owned by somebody
246 * else. We must only reserve (and then free) regions:
247 *
248 * - Not within any part of the kernel
249 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
250 */
251 static bool can_free_region(u64 start, u64 size)
252 {
253 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
254 return false;
255
256 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
257 return false;
258
259 return true;
260 }
261
262 void __init efi_reserve_boot_services(void)
263 {
264 efi_memory_desc_t *md;
265
266 for_each_efi_memory_desc(md) {
267 u64 start = md->phys_addr;
268 u64 size = md->num_pages << EFI_PAGE_SHIFT;
269 bool already_reserved;
270
271 if (md->type != EFI_BOOT_SERVICES_CODE &&
272 md->type != EFI_BOOT_SERVICES_DATA)
273 continue;
274
275 already_reserved = memblock_is_region_reserved(start, size);
276
277 /*
278 * Because the following memblock_reserve() is paired
279 * with free_bootmem_late() for this region in
280 * efi_free_boot_services(), we must be extremely
281 * careful not to reserve, and subsequently free,
282 * critical regions of memory (like the kernel image) or
283 * those regions that somebody else has already
284 * reserved.
285 *
286 * A good example of a critical region that must not be
287 * freed is page zero (first 4Kb of memory), which may
288 * contain boot services code/data but is marked
289 * E820_TYPE_RESERVED by trim_bios_range().
290 */
291 if (!already_reserved) {
292 memblock_reserve(start, size);
293
294 /*
295 * If we are the first to reserve the region, no
296 * one else cares about it. We own it and can
297 * free it later.
298 */
299 if (can_free_region(start, size))
300 continue;
301 }
302
303 /*
304 * We don't own the region. We must not free it.
305 *
306 * Setting this bit for a boot services region really
307 * doesn't make sense as far as the firmware is
308 * concerned, but it does provide us with a way to tag
309 * those regions that must not be paired with
310 * free_bootmem_late().
311 */
312 md->attribute |= EFI_MEMORY_RUNTIME;
313 }
314 }
315
316 void __init efi_free_boot_services(void)
317 {
318 phys_addr_t new_phys, new_size;
319 efi_memory_desc_t *md;
320 int num_entries = 0;
321 void *new, *new_md;
322
323 for_each_efi_memory_desc(md) {
324 unsigned long long start = md->phys_addr;
325 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
326 size_t rm_size;
327
328 if (md->type != EFI_BOOT_SERVICES_CODE &&
329 md->type != EFI_BOOT_SERVICES_DATA) {
330 num_entries++;
331 continue;
332 }
333
334 /* Do not free, someone else owns it: */
335 if (md->attribute & EFI_MEMORY_RUNTIME) {
336 num_entries++;
337 continue;
338 }
339
340 /*
341 * Nasty quirk: if all sub-1MB memory is used for boot
342 * services, we can get here without having allocated the
343 * real mode trampoline. It's too late to hand boot services
344 * memory back to the memblock allocator, so instead
345 * try to manually allocate the trampoline if needed.
346 *
347 * I've seen this on a Dell XPS 13 9350 with firmware
348 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
349 * grub2-efi on a hard disk. (And no, I don't know why
350 * this happened, but Linux should still try to boot rather
351 * panicing early.)
352 */
353 rm_size = real_mode_size_needed();
354 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
355 set_real_mode_mem(start, rm_size);
356 start += rm_size;
357 size -= rm_size;
358 }
359
360 free_bootmem_late(start, size);
361 }
362
363 new_size = efi.memmap.desc_size * num_entries;
364 new_phys = efi_memmap_alloc(num_entries);
365 if (!new_phys) {
366 pr_err("Failed to allocate new EFI memmap\n");
367 return;
368 }
369
370 new = memremap(new_phys, new_size, MEMREMAP_WB);
371 if (!new) {
372 pr_err("Failed to map new EFI memmap\n");
373 return;
374 }
375
376 /*
377 * Build a new EFI memmap that excludes any boot services
378 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
379 * regions have now been freed.
380 */
381 new_md = new;
382 for_each_efi_memory_desc(md) {
383 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
384 (md->type == EFI_BOOT_SERVICES_CODE ||
385 md->type == EFI_BOOT_SERVICES_DATA))
386 continue;
387
388 memcpy(new_md, md, efi.memmap.desc_size);
389 new_md += efi.memmap.desc_size;
390 }
391
392 memunmap(new);
393
394 if (efi_memmap_install(new_phys, num_entries)) {
395 pr_err("Could not install new EFI memmap\n");
396 return;
397 }
398 }
399
400 /*
401 * A number of config table entries get remapped to virtual addresses
402 * after entering EFI virtual mode. However, the kexec kernel requires
403 * their physical addresses therefore we pass them via setup_data and
404 * correct those entries to their respective physical addresses here.
405 *
406 * Currently only handles smbios which is necessary for some firmware
407 * implementation.
408 */
409 int __init efi_reuse_config(u64 tables, int nr_tables)
410 {
411 int i, sz, ret = 0;
412 void *p, *tablep;
413 struct efi_setup_data *data;
414
415 if (!efi_setup)
416 return 0;
417
418 if (!efi_enabled(EFI_64BIT))
419 return 0;
420
421 data = early_memremap(efi_setup, sizeof(*data));
422 if (!data) {
423 ret = -ENOMEM;
424 goto out;
425 }
426
427 if (!data->smbios)
428 goto out_memremap;
429
430 sz = sizeof(efi_config_table_64_t);
431
432 p = tablep = early_memremap(tables, nr_tables * sz);
433 if (!p) {
434 pr_err("Could not map Configuration table!\n");
435 ret = -ENOMEM;
436 goto out_memremap;
437 }
438
439 for (i = 0; i < efi.systab->nr_tables; i++) {
440 efi_guid_t guid;
441
442 guid = ((efi_config_table_64_t *)p)->guid;
443
444 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
445 ((efi_config_table_64_t *)p)->table = data->smbios;
446 p += sz;
447 }
448 early_memunmap(tablep, nr_tables * sz);
449
450 out_memremap:
451 early_memunmap(data, sizeof(*data));
452 out:
453 return ret;
454 }
455
456 static const struct dmi_system_id sgi_uv1_dmi[] = {
457 { NULL, "SGI UV1",
458 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
459 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
460 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
461 }
462 },
463 { } /* NULL entry stops DMI scanning */
464 };
465
466 void __init efi_apply_memmap_quirks(void)
467 {
468 /*
469 * Once setup is done earlier, unmap the EFI memory map on mismatched
470 * firmware/kernel architectures since there is no support for runtime
471 * services.
472 */
473 if (!efi_runtime_supported()) {
474 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
475 efi_memmap_unmap();
476 }
477
478 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
479 if (dmi_check_system(sgi_uv1_dmi))
480 set_bit(EFI_OLD_MEMMAP, &efi.flags);
481 }
482
483 /*
484 * For most modern platforms the preferred method of powering off is via
485 * ACPI. However, there are some that are known to require the use of
486 * EFI runtime services and for which ACPI does not work at all.
487 *
488 * Using EFI is a last resort, to be used only if no other option
489 * exists.
490 */
491 bool efi_reboot_required(void)
492 {
493 if (!acpi_gbl_reduced_hardware)
494 return false;
495
496 efi_reboot_quirk_mode = EFI_RESET_WARM;
497 return true;
498 }
499
500 bool efi_poweroff_required(void)
501 {
502 return acpi_gbl_reduced_hardware || acpi_no_s5;
503 }