]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/platform/mrst/mrst.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / platform / mrst / mrst.c
1 /*
2 * mrst.c: Intel Moorestown platform specific setup code
3 *
4 * (C) Copyright 2008 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) "mrst: " fmt
14
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/scatterlist.h>
19 #include <linux/sfi.h>
20 #include <linux/intel_pmic_gpio.h>
21 #include <linux/spi/spi.h>
22 #include <linux/i2c.h>
23 #include <linux/i2c/pca953x.h>
24 #include <linux/gpio_keys.h>
25 #include <linux/input.h>
26 #include <linux/platform_device.h>
27 #include <linux/irq.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/mfd/intel_msic.h>
31
32 #include <asm/setup.h>
33 #include <asm/mpspec_def.h>
34 #include <asm/hw_irq.h>
35 #include <asm/apic.h>
36 #include <asm/io_apic.h>
37 #include <asm/mrst.h>
38 #include <asm/mrst-vrtc.h>
39 #include <asm/io.h>
40 #include <asm/i8259.h>
41 #include <asm/intel_scu_ipc.h>
42 #include <asm/apb_timer.h>
43 #include <asm/reboot.h>
44
45 /*
46 * the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock,
47 * cmdline option x86_mrst_timer can be used to override the configuration
48 * to prefer one or the other.
49 * at runtime, there are basically three timer configurations:
50 * 1. per cpu apbt clock only
51 * 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only
52 * 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast.
53 *
54 * by default (without cmdline option), platform code first detects cpu type
55 * to see if we are on lincroft or penwell, then set up both lapic or apbt
56 * clocks accordingly.
57 * i.e. by default, medfield uses configuration #2, moorestown uses #1.
58 * config #3 is supported but not recommended on medfield.
59 *
60 * rating and feature summary:
61 * lapic (with C3STOP) --------- 100
62 * apbt (always-on) ------------ 110
63 * lapic (always-on,ARAT) ------ 150
64 */
65
66 __cpuinitdata enum mrst_timer_options mrst_timer_options;
67
68 static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM];
69 static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM];
70 enum mrst_cpu_type __mrst_cpu_chip;
71 EXPORT_SYMBOL_GPL(__mrst_cpu_chip);
72
73 int sfi_mtimer_num;
74
75 struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX];
76 EXPORT_SYMBOL_GPL(sfi_mrtc_array);
77 int sfi_mrtc_num;
78
79 /* parse all the mtimer info to a static mtimer array */
80 static int __init sfi_parse_mtmr(struct sfi_table_header *table)
81 {
82 struct sfi_table_simple *sb;
83 struct sfi_timer_table_entry *pentry;
84 struct mpc_intsrc mp_irq;
85 int totallen;
86
87 sb = (struct sfi_table_simple *)table;
88 if (!sfi_mtimer_num) {
89 sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb,
90 struct sfi_timer_table_entry);
91 pentry = (struct sfi_timer_table_entry *) sb->pentry;
92 totallen = sfi_mtimer_num * sizeof(*pentry);
93 memcpy(sfi_mtimer_array, pentry, totallen);
94 }
95
96 pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
97 pentry = sfi_mtimer_array;
98 for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
99 pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz,"
100 " irq = %d\n", totallen, (u32)pentry->phys_addr,
101 pentry->freq_hz, pentry->irq);
102 if (!pentry->irq)
103 continue;
104 mp_irq.type = MP_INTSRC;
105 mp_irq.irqtype = mp_INT;
106 /* triggering mode edge bit 2-3, active high polarity bit 0-1 */
107 mp_irq.irqflag = 5;
108 mp_irq.srcbus = MP_BUS_ISA;
109 mp_irq.srcbusirq = pentry->irq; /* IRQ */
110 mp_irq.dstapic = MP_APIC_ALL;
111 mp_irq.dstirq = pentry->irq;
112 mp_save_irq(&mp_irq);
113 }
114
115 return 0;
116 }
117
118 struct sfi_timer_table_entry *sfi_get_mtmr(int hint)
119 {
120 int i;
121 if (hint < sfi_mtimer_num) {
122 if (!sfi_mtimer_usage[hint]) {
123 pr_debug("hint taken for timer %d irq %d\n",\
124 hint, sfi_mtimer_array[hint].irq);
125 sfi_mtimer_usage[hint] = 1;
126 return &sfi_mtimer_array[hint];
127 }
128 }
129 /* take the first timer available */
130 for (i = 0; i < sfi_mtimer_num;) {
131 if (!sfi_mtimer_usage[i]) {
132 sfi_mtimer_usage[i] = 1;
133 return &sfi_mtimer_array[i];
134 }
135 i++;
136 }
137 return NULL;
138 }
139
140 void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr)
141 {
142 int i;
143 for (i = 0; i < sfi_mtimer_num;) {
144 if (mtmr->irq == sfi_mtimer_array[i].irq) {
145 sfi_mtimer_usage[i] = 0;
146 return;
147 }
148 i++;
149 }
150 }
151
152 /* parse all the mrtc info to a global mrtc array */
153 int __init sfi_parse_mrtc(struct sfi_table_header *table)
154 {
155 struct sfi_table_simple *sb;
156 struct sfi_rtc_table_entry *pentry;
157 struct mpc_intsrc mp_irq;
158
159 int totallen;
160
161 sb = (struct sfi_table_simple *)table;
162 if (!sfi_mrtc_num) {
163 sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb,
164 struct sfi_rtc_table_entry);
165 pentry = (struct sfi_rtc_table_entry *)sb->pentry;
166 totallen = sfi_mrtc_num * sizeof(*pentry);
167 memcpy(sfi_mrtc_array, pentry, totallen);
168 }
169
170 pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
171 pentry = sfi_mrtc_array;
172 for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
173 pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
174 totallen, (u32)pentry->phys_addr, pentry->irq);
175 mp_irq.type = MP_INTSRC;
176 mp_irq.irqtype = mp_INT;
177 mp_irq.irqflag = 0xf; /* level trigger and active low */
178 mp_irq.srcbus = MP_BUS_ISA;
179 mp_irq.srcbusirq = pentry->irq; /* IRQ */
180 mp_irq.dstapic = MP_APIC_ALL;
181 mp_irq.dstirq = pentry->irq;
182 mp_save_irq(&mp_irq);
183 }
184 return 0;
185 }
186
187 static unsigned long __init mrst_calibrate_tsc(void)
188 {
189 unsigned long flags, fast_calibrate;
190
191 local_irq_save(flags);
192 fast_calibrate = apbt_quick_calibrate();
193 local_irq_restore(flags);
194
195 if (fast_calibrate)
196 return fast_calibrate;
197
198 return 0;
199 }
200
201 static void __init mrst_time_init(void)
202 {
203 sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
204 switch (mrst_timer_options) {
205 case MRST_TIMER_APBT_ONLY:
206 break;
207 case MRST_TIMER_LAPIC_APBT:
208 x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
209 x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
210 break;
211 default:
212 if (!boot_cpu_has(X86_FEATURE_ARAT))
213 break;
214 x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
215 x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
216 return;
217 }
218 /* we need at least one APB timer */
219 pre_init_apic_IRQ0();
220 apbt_time_init();
221 }
222
223 static void __cpuinit mrst_arch_setup(void)
224 {
225 if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27)
226 __mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
227 else if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x26)
228 __mrst_cpu_chip = MRST_CPU_CHIP_LINCROFT;
229 else {
230 pr_err("Unknown Moorestown CPU (%d:%d), default to Lincroft\n",
231 boot_cpu_data.x86, boot_cpu_data.x86_model);
232 __mrst_cpu_chip = MRST_CPU_CHIP_LINCROFT;
233 }
234 pr_debug("Moorestown CPU %s identified\n",
235 (__mrst_cpu_chip == MRST_CPU_CHIP_LINCROFT) ?
236 "Lincroft" : "Penwell");
237 }
238
239 /* MID systems don't have i8042 controller */
240 static int mrst_i8042_detect(void)
241 {
242 return 0;
243 }
244
245 /* Reboot and power off are handled by the SCU on a MID device */
246 static void mrst_power_off(void)
247 {
248 intel_scu_ipc_simple_command(0xf1, 1);
249 }
250
251 static void mrst_reboot(void)
252 {
253 intel_scu_ipc_simple_command(0xf1, 0);
254 }
255
256 /*
257 * Moorestown specific x86_init function overrides and early setup
258 * calls.
259 */
260 void __init x86_mrst_early_setup(void)
261 {
262 x86_init.resources.probe_roms = x86_init_noop;
263 x86_init.resources.reserve_resources = x86_init_noop;
264
265 x86_init.timers.timer_init = mrst_time_init;
266 x86_init.timers.setup_percpu_clockev = x86_init_noop;
267
268 x86_init.irqs.pre_vector_init = x86_init_noop;
269
270 x86_init.oem.arch_setup = mrst_arch_setup;
271
272 x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock;
273
274 x86_platform.calibrate_tsc = mrst_calibrate_tsc;
275 x86_platform.i8042_detect = mrst_i8042_detect;
276 x86_init.timers.wallclock_init = mrst_rtc_init;
277 x86_init.pci.init = pci_mrst_init;
278 x86_init.pci.fixup_irqs = x86_init_noop;
279
280 legacy_pic = &null_legacy_pic;
281
282 /* Moorestown specific power_off/restart method */
283 pm_power_off = mrst_power_off;
284 machine_ops.emergency_restart = mrst_reboot;
285
286 /* Avoid searching for BIOS MP tables */
287 x86_init.mpparse.find_smp_config = x86_init_noop;
288 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
289 set_bit(MP_BUS_ISA, mp_bus_not_pci);
290 }
291
292 /*
293 * if user does not want to use per CPU apb timer, just give it a lower rating
294 * than local apic timer and skip the late per cpu timer init.
295 */
296 static inline int __init setup_x86_mrst_timer(char *arg)
297 {
298 if (!arg)
299 return -EINVAL;
300
301 if (strcmp("apbt_only", arg) == 0)
302 mrst_timer_options = MRST_TIMER_APBT_ONLY;
303 else if (strcmp("lapic_and_apbt", arg) == 0)
304 mrst_timer_options = MRST_TIMER_LAPIC_APBT;
305 else {
306 pr_warning("X86 MRST timer option %s not recognised"
307 " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
308 arg);
309 return -EINVAL;
310 }
311 return 0;
312 }
313 __setup("x86_mrst_timer=", setup_x86_mrst_timer);
314
315 /*
316 * Parsing GPIO table first, since the DEVS table will need this table
317 * to map the pin name to the actual pin.
318 */
319 static struct sfi_gpio_table_entry *gpio_table;
320 static int gpio_num_entry;
321
322 static int __init sfi_parse_gpio(struct sfi_table_header *table)
323 {
324 struct sfi_table_simple *sb;
325 struct sfi_gpio_table_entry *pentry;
326 int num, i;
327
328 if (gpio_table)
329 return 0;
330 sb = (struct sfi_table_simple *)table;
331 num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
332 pentry = (struct sfi_gpio_table_entry *)sb->pentry;
333
334 gpio_table = (struct sfi_gpio_table_entry *)
335 kmalloc(num * sizeof(*pentry), GFP_KERNEL);
336 if (!gpio_table)
337 return -1;
338 memcpy(gpio_table, pentry, num * sizeof(*pentry));
339 gpio_num_entry = num;
340
341 pr_debug("GPIO pin info:\n");
342 for (i = 0; i < num; i++, pentry++)
343 pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
344 " pin = %d\n", i,
345 pentry->controller_name,
346 pentry->pin_name,
347 pentry->pin_no);
348 return 0;
349 }
350
351 static int get_gpio_by_name(const char *name)
352 {
353 struct sfi_gpio_table_entry *pentry = gpio_table;
354 int i;
355
356 if (!pentry)
357 return -1;
358 for (i = 0; i < gpio_num_entry; i++, pentry++) {
359 if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
360 return pentry->pin_no;
361 }
362 return -1;
363 }
364
365 /*
366 * Here defines the array of devices platform data that IAFW would export
367 * through SFI "DEVS" table, we use name and type to match the device and
368 * its platform data.
369 */
370 struct devs_id {
371 char name[SFI_NAME_LEN + 1];
372 u8 type;
373 u8 delay;
374 void *(*get_platform_data)(void *info);
375 };
376
377 /* the offset for the mapping of global gpio pin to irq */
378 #define MRST_IRQ_OFFSET 0x100
379
380 static void __init *pmic_gpio_platform_data(void *info)
381 {
382 static struct intel_pmic_gpio_platform_data pmic_gpio_pdata;
383 int gpio_base = get_gpio_by_name("pmic_gpio_base");
384
385 if (gpio_base == -1)
386 gpio_base = 64;
387 pmic_gpio_pdata.gpio_base = gpio_base;
388 pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET;
389 pmic_gpio_pdata.gpiointr = 0xffffeff8;
390
391 return &pmic_gpio_pdata;
392 }
393
394 static void __init *max3111_platform_data(void *info)
395 {
396 struct spi_board_info *spi_info = info;
397 int intr = get_gpio_by_name("max3111_int");
398
399 spi_info->mode = SPI_MODE_0;
400 if (intr == -1)
401 return NULL;
402 spi_info->irq = intr + MRST_IRQ_OFFSET;
403 return NULL;
404 }
405
406 /* we have multiple max7315 on the board ... */
407 #define MAX7315_NUM 2
408 static void __init *max7315_platform_data(void *info)
409 {
410 static struct pca953x_platform_data max7315_pdata[MAX7315_NUM];
411 static int nr;
412 struct pca953x_platform_data *max7315 = &max7315_pdata[nr];
413 struct i2c_board_info *i2c_info = info;
414 int gpio_base, intr;
415 char base_pin_name[SFI_NAME_LEN + 1];
416 char intr_pin_name[SFI_NAME_LEN + 1];
417
418 if (nr == MAX7315_NUM) {
419 pr_err("too many max7315s, we only support %d\n",
420 MAX7315_NUM);
421 return NULL;
422 }
423 /* we have several max7315 on the board, we only need load several
424 * instances of the same pca953x driver to cover them
425 */
426 strcpy(i2c_info->type, "max7315");
427 if (nr++) {
428 sprintf(base_pin_name, "max7315_%d_base", nr);
429 sprintf(intr_pin_name, "max7315_%d_int", nr);
430 } else {
431 strcpy(base_pin_name, "max7315_base");
432 strcpy(intr_pin_name, "max7315_int");
433 }
434
435 gpio_base = get_gpio_by_name(base_pin_name);
436 intr = get_gpio_by_name(intr_pin_name);
437
438 if (gpio_base == -1)
439 return NULL;
440 max7315->gpio_base = gpio_base;
441 if (intr != -1) {
442 i2c_info->irq = intr + MRST_IRQ_OFFSET;
443 max7315->irq_base = gpio_base + MRST_IRQ_OFFSET;
444 } else {
445 i2c_info->irq = -1;
446 max7315->irq_base = -1;
447 }
448 return max7315;
449 }
450
451 static void __init *emc1403_platform_data(void *info)
452 {
453 static short intr2nd_pdata;
454 struct i2c_board_info *i2c_info = info;
455 int intr = get_gpio_by_name("thermal_int");
456 int intr2nd = get_gpio_by_name("thermal_alert");
457
458 if (intr == -1 || intr2nd == -1)
459 return NULL;
460
461 i2c_info->irq = intr + MRST_IRQ_OFFSET;
462 intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
463
464 return &intr2nd_pdata;
465 }
466
467 static void __init *lis331dl_platform_data(void *info)
468 {
469 static short intr2nd_pdata;
470 struct i2c_board_info *i2c_info = info;
471 int intr = get_gpio_by_name("accel_int");
472 int intr2nd = get_gpio_by_name("accel_2");
473
474 if (intr == -1 || intr2nd == -1)
475 return NULL;
476
477 i2c_info->irq = intr + MRST_IRQ_OFFSET;
478 intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
479
480 return &intr2nd_pdata;
481 }
482
483 static void __init *no_platform_data(void *info)
484 {
485 return NULL;
486 }
487
488 static struct resource msic_resources[] = {
489 {
490 .start = INTEL_MSIC_IRQ_PHYS_BASE,
491 .end = INTEL_MSIC_IRQ_PHYS_BASE + 64 - 1,
492 .flags = IORESOURCE_MEM,
493 },
494 };
495
496 static struct intel_msic_platform_data msic_pdata;
497
498 static struct platform_device msic_device = {
499 .name = "intel_msic",
500 .id = -1,
501 .dev = {
502 .platform_data = &msic_pdata,
503 },
504 .num_resources = ARRAY_SIZE(msic_resources),
505 .resource = msic_resources,
506 };
507
508 static inline bool mrst_has_msic(void)
509 {
510 return mrst_identify_cpu() == MRST_CPU_CHIP_PENWELL;
511 }
512
513 static int msic_scu_status_change(struct notifier_block *nb,
514 unsigned long code, void *data)
515 {
516 if (code == SCU_DOWN) {
517 platform_device_unregister(&msic_device);
518 return 0;
519 }
520
521 return platform_device_register(&msic_device);
522 }
523
524 static int __init msic_init(void)
525 {
526 static struct notifier_block msic_scu_notifier = {
527 .notifier_call = msic_scu_status_change,
528 };
529
530 /*
531 * We need to be sure that the SCU IPC is ready before MSIC device
532 * can be registered.
533 */
534 if (mrst_has_msic())
535 intel_scu_notifier_add(&msic_scu_notifier);
536
537 return 0;
538 }
539 arch_initcall(msic_init);
540
541 /*
542 * msic_generic_platform_data - sets generic platform data for the block
543 * @info: pointer to the SFI device table entry for this block
544 * @block: MSIC block
545 *
546 * Function sets IRQ number from the SFI table entry for given device to
547 * the MSIC platform data.
548 */
549 static void *msic_generic_platform_data(void *info, enum intel_msic_block block)
550 {
551 struct sfi_device_table_entry *entry = info;
552
553 BUG_ON(block < 0 || block >= INTEL_MSIC_BLOCK_LAST);
554 msic_pdata.irq[block] = entry->irq;
555
556 return no_platform_data(info);
557 }
558
559 static void *msic_battery_platform_data(void *info)
560 {
561 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_BATTERY);
562 }
563
564 static void *msic_gpio_platform_data(void *info)
565 {
566 static struct intel_msic_gpio_pdata pdata;
567 int gpio = get_gpio_by_name("msic_gpio_base");
568
569 if (gpio < 0)
570 return NULL;
571
572 pdata.gpio_base = gpio;
573 msic_pdata.gpio = &pdata;
574
575 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_GPIO);
576 }
577
578 static void *msic_audio_platform_data(void *info)
579 {
580 struct platform_device *pdev;
581
582 pdev = platform_device_register_simple("sst-platform", -1, NULL, 0);
583 if (IS_ERR(pdev)) {
584 pr_err("failed to create audio platform device\n");
585 return NULL;
586 }
587
588 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_AUDIO);
589 }
590
591 static void *msic_power_btn_platform_data(void *info)
592 {
593 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_POWER_BTN);
594 }
595
596 static void *msic_ocd_platform_data(void *info)
597 {
598 static struct intel_msic_ocd_pdata pdata;
599 int gpio = get_gpio_by_name("ocd_gpio");
600
601 if (gpio < 0)
602 return NULL;
603
604 pdata.gpio = gpio;
605 msic_pdata.ocd = &pdata;
606
607 return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_OCD);
608 }
609
610 static const struct devs_id __initconst device_ids[] = {
611 {"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data},
612 {"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data},
613 {"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
614 {"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
615 {"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data},
616 {"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data},
617 {"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
618
619 /* MSIC subdevices */
620 {"msic_battery", SFI_DEV_TYPE_IPC, 1, &msic_battery_platform_data},
621 {"msic_gpio", SFI_DEV_TYPE_IPC, 1, &msic_gpio_platform_data},
622 {"msic_audio", SFI_DEV_TYPE_IPC, 1, &msic_audio_platform_data},
623 {"msic_power_btn", SFI_DEV_TYPE_IPC, 1, &msic_power_btn_platform_data},
624 {"msic_ocd", SFI_DEV_TYPE_IPC, 1, &msic_ocd_platform_data},
625
626 {},
627 };
628
629 #define MAX_IPCDEVS 24
630 static struct platform_device *ipc_devs[MAX_IPCDEVS];
631 static int ipc_next_dev;
632
633 #define MAX_SCU_SPI 24
634 static struct spi_board_info *spi_devs[MAX_SCU_SPI];
635 static int spi_next_dev;
636
637 #define MAX_SCU_I2C 24
638 static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
639 static int i2c_bus[MAX_SCU_I2C];
640 static int i2c_next_dev;
641
642 static void __init intel_scu_device_register(struct platform_device *pdev)
643 {
644 if(ipc_next_dev == MAX_IPCDEVS)
645 pr_err("too many SCU IPC devices");
646 else
647 ipc_devs[ipc_next_dev++] = pdev;
648 }
649
650 static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
651 {
652 struct spi_board_info *new_dev;
653
654 if (spi_next_dev == MAX_SCU_SPI) {
655 pr_err("too many SCU SPI devices");
656 return;
657 }
658
659 new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
660 if (!new_dev) {
661 pr_err("failed to alloc mem for delayed spi dev %s\n",
662 sdev->modalias);
663 return;
664 }
665 memcpy(new_dev, sdev, sizeof(*sdev));
666
667 spi_devs[spi_next_dev++] = new_dev;
668 }
669
670 static void __init intel_scu_i2c_device_register(int bus,
671 struct i2c_board_info *idev)
672 {
673 struct i2c_board_info *new_dev;
674
675 if (i2c_next_dev == MAX_SCU_I2C) {
676 pr_err("too many SCU I2C devices");
677 return;
678 }
679
680 new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
681 if (!new_dev) {
682 pr_err("failed to alloc mem for delayed i2c dev %s\n",
683 idev->type);
684 return;
685 }
686 memcpy(new_dev, idev, sizeof(*idev));
687
688 i2c_bus[i2c_next_dev] = bus;
689 i2c_devs[i2c_next_dev++] = new_dev;
690 }
691
692 BLOCKING_NOTIFIER_HEAD(intel_scu_notifier);
693 EXPORT_SYMBOL_GPL(intel_scu_notifier);
694
695 /* Called by IPC driver */
696 void intel_scu_devices_create(void)
697 {
698 int i;
699
700 for (i = 0; i < ipc_next_dev; i++)
701 platform_device_add(ipc_devs[i]);
702
703 for (i = 0; i < spi_next_dev; i++)
704 spi_register_board_info(spi_devs[i], 1);
705
706 for (i = 0; i < i2c_next_dev; i++) {
707 struct i2c_adapter *adapter;
708 struct i2c_client *client;
709
710 adapter = i2c_get_adapter(i2c_bus[i]);
711 if (adapter) {
712 client = i2c_new_device(adapter, i2c_devs[i]);
713 if (!client)
714 pr_err("can't create i2c device %s\n",
715 i2c_devs[i]->type);
716 } else
717 i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
718 }
719 intel_scu_notifier_post(SCU_AVAILABLE, 0L);
720 }
721 EXPORT_SYMBOL_GPL(intel_scu_devices_create);
722
723 /* Called by IPC driver */
724 void intel_scu_devices_destroy(void)
725 {
726 int i;
727
728 intel_scu_notifier_post(SCU_DOWN, 0L);
729
730 for (i = 0; i < ipc_next_dev; i++)
731 platform_device_del(ipc_devs[i]);
732 }
733 EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
734
735 static void __init install_irq_resource(struct platform_device *pdev, int irq)
736 {
737 /* Single threaded */
738 static struct resource __initdata res = {
739 .name = "IRQ",
740 .flags = IORESOURCE_IRQ,
741 };
742 res.start = irq;
743 platform_device_add_resources(pdev, &res, 1);
744 }
745
746 static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *entry)
747 {
748 const struct devs_id *dev = device_ids;
749 struct platform_device *pdev;
750 void *pdata = NULL;
751
752 while (dev->name[0]) {
753 if (dev->type == SFI_DEV_TYPE_IPC &&
754 !strncmp(dev->name, entry->name, SFI_NAME_LEN)) {
755 pdata = dev->get_platform_data(entry);
756 break;
757 }
758 dev++;
759 }
760
761 /*
762 * On Medfield the platform device creation is handled by the MSIC
763 * MFD driver so we don't need to do it here.
764 */
765 if (mrst_has_msic())
766 return;
767
768 /* ID as IRQ is a hack that will go away */
769 pdev = platform_device_alloc(entry->name, entry->irq);
770 if (pdev == NULL) {
771 pr_err("out of memory for SFI platform device '%s'.\n",
772 entry->name);
773 return;
774 }
775 install_irq_resource(pdev, entry->irq);
776
777 pdev->dev.platform_data = pdata;
778 intel_scu_device_register(pdev);
779 }
780
781 static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info)
782 {
783 const struct devs_id *dev = device_ids;
784 void *pdata = NULL;
785
786 while (dev->name[0]) {
787 if (dev->type == SFI_DEV_TYPE_SPI &&
788 !strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) {
789 pdata = dev->get_platform_data(spi_info);
790 break;
791 }
792 dev++;
793 }
794 spi_info->platform_data = pdata;
795 if (dev->delay)
796 intel_scu_spi_device_register(spi_info);
797 else
798 spi_register_board_info(spi_info, 1);
799 }
800
801 static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info)
802 {
803 const struct devs_id *dev = device_ids;
804 void *pdata = NULL;
805
806 while (dev->name[0]) {
807 if (dev->type == SFI_DEV_TYPE_I2C &&
808 !strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) {
809 pdata = dev->get_platform_data(i2c_info);
810 break;
811 }
812 dev++;
813 }
814 i2c_info->platform_data = pdata;
815
816 if (dev->delay)
817 intel_scu_i2c_device_register(bus, i2c_info);
818 else
819 i2c_register_board_info(bus, i2c_info, 1);
820 }
821
822
823 static int __init sfi_parse_devs(struct sfi_table_header *table)
824 {
825 struct sfi_table_simple *sb;
826 struct sfi_device_table_entry *pentry;
827 struct spi_board_info spi_info;
828 struct i2c_board_info i2c_info;
829 int num, i, bus;
830 int ioapic;
831 struct io_apic_irq_attr irq_attr;
832
833 sb = (struct sfi_table_simple *)table;
834 num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
835 pentry = (struct sfi_device_table_entry *)sb->pentry;
836
837 for (i = 0; i < num; i++, pentry++) {
838 int irq = pentry->irq;
839
840 if (irq != (u8)0xff) { /* native RTE case */
841 /* these SPI2 devices are not exposed to system as PCI
842 * devices, but they have separate RTE entry in IOAPIC
843 * so we have to enable them one by one here
844 */
845 ioapic = mp_find_ioapic(irq);
846 irq_attr.ioapic = ioapic;
847 irq_attr.ioapic_pin = irq;
848 irq_attr.trigger = 1;
849 irq_attr.polarity = 1;
850 io_apic_set_pci_routing(NULL, irq, &irq_attr);
851 } else
852 irq = 0; /* No irq */
853
854 switch (pentry->type) {
855 case SFI_DEV_TYPE_IPC:
856 pr_debug("info[%2d]: IPC bus, name = %16.16s, "
857 "irq = 0x%2x\n", i, pentry->name, pentry->irq);
858 sfi_handle_ipc_dev(pentry);
859 break;
860 case SFI_DEV_TYPE_SPI:
861 memset(&spi_info, 0, sizeof(spi_info));
862 strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
863 spi_info.irq = irq;
864 spi_info.bus_num = pentry->host_num;
865 spi_info.chip_select = pentry->addr;
866 spi_info.max_speed_hz = pentry->max_freq;
867 pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, "
868 "irq = 0x%2x, max_freq = %d, cs = %d\n", i,
869 spi_info.bus_num,
870 spi_info.modalias,
871 spi_info.irq,
872 spi_info.max_speed_hz,
873 spi_info.chip_select);
874 sfi_handle_spi_dev(&spi_info);
875 break;
876 case SFI_DEV_TYPE_I2C:
877 memset(&i2c_info, 0, sizeof(i2c_info));
878 bus = pentry->host_num;
879 strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
880 i2c_info.irq = irq;
881 i2c_info.addr = pentry->addr;
882 pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, "
883 "irq = 0x%2x, addr = 0x%x\n", i, bus,
884 i2c_info.type,
885 i2c_info.irq,
886 i2c_info.addr);
887 sfi_handle_i2c_dev(bus, &i2c_info);
888 break;
889 case SFI_DEV_TYPE_UART:
890 case SFI_DEV_TYPE_HSI:
891 default:
892 ;
893 }
894 }
895 return 0;
896 }
897
898 static int __init mrst_platform_init(void)
899 {
900 sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
901 sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
902 return 0;
903 }
904 arch_initcall(mrst_platform_init);
905
906 /*
907 * we will search these buttons in SFI GPIO table (by name)
908 * and register them dynamically. Please add all possible
909 * buttons here, we will shrink them if no GPIO found.
910 */
911 static struct gpio_keys_button gpio_button[] = {
912 {KEY_POWER, -1, 1, "power_btn", EV_KEY, 0, 3000},
913 {KEY_PROG1, -1, 1, "prog_btn1", EV_KEY, 0, 20},
914 {KEY_PROG2, -1, 1, "prog_btn2", EV_KEY, 0, 20},
915 {SW_LID, -1, 1, "lid_switch", EV_SW, 0, 20},
916 {KEY_VOLUMEUP, -1, 1, "vol_up", EV_KEY, 0, 20},
917 {KEY_VOLUMEDOWN, -1, 1, "vol_down", EV_KEY, 0, 20},
918 {KEY_CAMERA, -1, 1, "camera_full", EV_KEY, 0, 20},
919 {KEY_CAMERA_FOCUS, -1, 1, "camera_half", EV_KEY, 0, 20},
920 {SW_KEYPAD_SLIDE, -1, 1, "MagSw1", EV_SW, 0, 20},
921 {SW_KEYPAD_SLIDE, -1, 1, "MagSw2", EV_SW, 0, 20},
922 };
923
924 static struct gpio_keys_platform_data mrst_gpio_keys = {
925 .buttons = gpio_button,
926 .rep = 1,
927 .nbuttons = -1, /* will fill it after search */
928 };
929
930 static struct platform_device pb_device = {
931 .name = "gpio-keys",
932 .id = -1,
933 .dev = {
934 .platform_data = &mrst_gpio_keys,
935 },
936 };
937
938 /*
939 * Shrink the non-existent buttons, register the gpio button
940 * device if there is some
941 */
942 static int __init pb_keys_init(void)
943 {
944 struct gpio_keys_button *gb = gpio_button;
945 int i, num, good = 0;
946
947 num = sizeof(gpio_button) / sizeof(struct gpio_keys_button);
948 for (i = 0; i < num; i++) {
949 gb[i].gpio = get_gpio_by_name(gb[i].desc);
950 if (gb[i].gpio == -1)
951 continue;
952
953 if (i != good)
954 gb[good] = gb[i];
955 good++;
956 }
957
958 if (good) {
959 mrst_gpio_keys.nbuttons = good;
960 return platform_device_register(&pb_device);
961 }
962 return 0;
963 }
964 late_initcall(pb_keys_init);