]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/power/cpu.c
selftests: cgroup: Test open-time credential usage for migration checks
[mirror_ubuntu-focal-kernel.git] / arch / x86 / power / cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
41
42 while (msr < end) {
43 if (msr->valid)
44 rdmsrl(msr->info.msr_no, msr->info.reg.q);
45 msr++;
46 }
47 }
48
49 static void msr_restore_context(struct saved_context *ctxt)
50 {
51 struct saved_msr *msr = ctxt->saved_msrs.array;
52 struct saved_msr *end = msr + ctxt->saved_msrs.num;
53
54 while (msr < end) {
55 if (msr->valid)
56 wrmsrl(msr->info.msr_no, msr->info.reg.q);
57 msr++;
58 }
59 }
60
61 /**
62 * __save_processor_state - save CPU registers before creating a
63 * hibernation image and before restoring the memory state from it
64 * @ctxt - structure to store the registers contents in
65 *
66 * NOTE: If there is a CPU register the modification of which by the
67 * boot kernel (ie. the kernel used for loading the hibernation image)
68 * might affect the operations of the restored target kernel (ie. the one
69 * saved in the hibernation image), then its contents must be saved by this
70 * function. In other words, if kernel A is hibernated and different
71 * kernel B is used for loading the hibernation image into memory, the
72 * kernel A's __save_processor_state() function must save all registers
73 * needed by kernel A, so that it can operate correctly after the resume
74 * regardless of what kernel B does in the meantime.
75 */
76 static void __save_processor_state(struct saved_context *ctxt)
77 {
78 #ifdef CONFIG_X86_32
79 mtrr_save_fixed_ranges(NULL);
80 #endif
81 kernel_fpu_begin();
82
83 /*
84 * descriptor tables
85 */
86 store_idt(&ctxt->idt);
87
88 /*
89 * We save it here, but restore it only in the hibernate case.
90 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
91 * mode in "secondary_startup_64". In 32-bit mode it is done via
92 * 'pmode_gdt' in wakeup_start.
93 */
94 ctxt->gdt_desc.size = GDT_SIZE - 1;
95 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
96
97 store_tr(ctxt->tr);
98
99 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
100 /*
101 * segment registers
102 */
103 #ifdef CONFIG_X86_32_LAZY_GS
104 savesegment(gs, ctxt->gs);
105 #endif
106 #ifdef CONFIG_X86_64
107 savesegment(gs, ctxt->gs);
108 savesegment(fs, ctxt->fs);
109 savesegment(ds, ctxt->ds);
110 savesegment(es, ctxt->es);
111
112 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
114 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115 mtrr_save_fixed_ranges(NULL);
116
117 rdmsrl(MSR_EFER, ctxt->efer);
118 #endif
119
120 /*
121 * control registers
122 */
123 ctxt->cr0 = read_cr0();
124 ctxt->cr2 = read_cr2();
125 ctxt->cr3 = __read_cr3();
126 ctxt->cr4 = __read_cr4();
127 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
128 &ctxt->misc_enable);
129 msr_save_context(ctxt);
130 }
131
132 /* Needed by apm.c */
133 void save_processor_state(void)
134 {
135 __save_processor_state(&saved_context);
136 x86_platform.save_sched_clock_state();
137 }
138 #ifdef CONFIG_X86_32
139 EXPORT_SYMBOL(save_processor_state);
140 #endif
141
142 static void do_fpu_end(void)
143 {
144 /*
145 * Restore FPU regs if necessary.
146 */
147 kernel_fpu_end();
148 }
149
150 static void fix_processor_context(void)
151 {
152 int cpu = smp_processor_id();
153 #ifdef CONFIG_X86_64
154 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
155 tss_desc tss;
156 #endif
157
158 /*
159 * We need to reload TR, which requires that we change the
160 * GDT entry to indicate "available" first.
161 *
162 * XXX: This could probably all be replaced by a call to
163 * force_reload_TR().
164 */
165 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
166
167 #ifdef CONFIG_X86_64
168 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171
172 syscall_init(); /* This sets MSR_*STAR and related */
173 #else
174 if (boot_cpu_has(X86_FEATURE_SEP))
175 enable_sep_cpu();
176 #endif
177 load_TR_desc(); /* This does ltr */
178 load_mm_ldt(current->active_mm); /* This does lldt */
179 initialize_tlbstate_and_flush();
180
181 fpu__resume_cpu();
182
183 /* The processor is back on the direct GDT, load back the fixmap */
184 load_fixmap_gdt(cpu);
185 }
186
187 /**
188 * __restore_processor_state - restore the contents of CPU registers saved
189 * by __save_processor_state()
190 * @ctxt - structure to load the registers contents from
191 *
192 * The asm code that gets us here will have restored a usable GDT, although
193 * it will be pointing to the wrong alias.
194 */
195 static void notrace __restore_processor_state(struct saved_context *ctxt)
196 {
197 if (ctxt->misc_enable_saved)
198 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
199 /*
200 * control registers
201 */
202 /* cr4 was introduced in the Pentium CPU */
203 #ifdef CONFIG_X86_32
204 if (ctxt->cr4)
205 __write_cr4(ctxt->cr4);
206 #else
207 /* CONFIG X86_64 */
208 wrmsrl(MSR_EFER, ctxt->efer);
209 __write_cr4(ctxt->cr4);
210 #endif
211 write_cr3(ctxt->cr3);
212 write_cr2(ctxt->cr2);
213 write_cr0(ctxt->cr0);
214
215 /* Restore the IDT. */
216 load_idt(&ctxt->idt);
217
218 /*
219 * Just in case the asm code got us here with the SS, DS, or ES
220 * out of sync with the GDT, update them.
221 */
222 loadsegment(ss, __KERNEL_DS);
223 loadsegment(ds, __USER_DS);
224 loadsegment(es, __USER_DS);
225
226 /*
227 * Restore percpu access. Percpu access can happen in exception
228 * handlers or in complicated helpers like load_gs_index().
229 */
230 #ifdef CONFIG_X86_64
231 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
232 #else
233 loadsegment(fs, __KERNEL_PERCPU);
234 loadsegment(gs, __KERNEL_STACK_CANARY);
235 #endif
236
237 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
238 fix_processor_context();
239
240 /*
241 * Now that we have descriptor tables fully restored and working
242 * exception handling, restore the usermode segments.
243 */
244 #ifdef CONFIG_X86_64
245 loadsegment(ds, ctxt->es);
246 loadsegment(es, ctxt->es);
247 loadsegment(fs, ctxt->fs);
248 load_gs_index(ctxt->gs);
249
250 /*
251 * Restore FSBASE and GSBASE after restoring the selectors, since
252 * restoring the selectors clobbers the bases. Keep in mind
253 * that MSR_KERNEL_GS_BASE is horribly misnamed.
254 */
255 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
256 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
257 #elif defined(CONFIG_X86_32_LAZY_GS)
258 loadsegment(gs, ctxt->gs);
259 #endif
260
261 do_fpu_end();
262 tsc_verify_tsc_adjust(true);
263 x86_platform.restore_sched_clock_state();
264 mtrr_bp_restore();
265 perf_restore_debug_store();
266 msr_restore_context(ctxt);
267 }
268
269 /* Needed by apm.c */
270 void notrace restore_processor_state(void)
271 {
272 __restore_processor_state(&saved_context);
273 }
274 #ifdef CONFIG_X86_32
275 EXPORT_SYMBOL(restore_processor_state);
276 #endif
277
278 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
279 static void resume_play_dead(void)
280 {
281 play_dead_common();
282 tboot_shutdown(TB_SHUTDOWN_WFS);
283 hlt_play_dead();
284 }
285
286 int hibernate_resume_nonboot_cpu_disable(void)
287 {
288 void (*play_dead)(void) = smp_ops.play_dead;
289 int ret;
290
291 /*
292 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
293 * during hibernate image restoration, because it is likely that the
294 * monitored address will be actually written to at that time and then
295 * the "dead" CPU will attempt to execute instructions again, but the
296 * address in its instruction pointer may not be possible to resolve
297 * any more at that point (the page tables used by it previously may
298 * have been overwritten by hibernate image data).
299 *
300 * First, make sure that we wake up all the potentially disabled SMT
301 * threads which have been initially brought up and then put into
302 * mwait/cpuidle sleep.
303 * Those will be put to proper (not interfering with hibernation
304 * resume) sleep afterwards, and the resumed kernel will decide itself
305 * what to do with them.
306 */
307 ret = cpuhp_smt_enable();
308 if (ret)
309 return ret;
310 smp_ops.play_dead = resume_play_dead;
311 ret = disable_nonboot_cpus();
312 smp_ops.play_dead = play_dead;
313 return ret;
314 }
315 #endif
316
317 /*
318 * When bsp_check() is called in hibernate and suspend, cpu hotplug
319 * is disabled already. So it's unnessary to handle race condition between
320 * cpumask query and cpu hotplug.
321 */
322 static int bsp_check(void)
323 {
324 if (cpumask_first(cpu_online_mask) != 0) {
325 pr_warn("CPU0 is offline.\n");
326 return -ENODEV;
327 }
328
329 return 0;
330 }
331
332 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
333 void *ptr)
334 {
335 int ret = 0;
336
337 switch (action) {
338 case PM_SUSPEND_PREPARE:
339 case PM_HIBERNATION_PREPARE:
340 ret = bsp_check();
341 break;
342 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
343 case PM_RESTORE_PREPARE:
344 /*
345 * When system resumes from hibernation, online CPU0 because
346 * 1. it's required for resume and
347 * 2. the CPU was online before hibernation
348 */
349 if (!cpu_online(0))
350 _debug_hotplug_cpu(0, 1);
351 break;
352 case PM_POST_RESTORE:
353 /*
354 * When a resume really happens, this code won't be called.
355 *
356 * This code is called only when user space hibernation software
357 * prepares for snapshot device during boot time. So we just
358 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
359 * preparing the snapshot device.
360 *
361 * This works for normal boot case in our CPU0 hotplug debug
362 * mode, i.e. CPU0 is offline and user mode hibernation
363 * software initializes during boot time.
364 *
365 * If CPU0 is online and user application accesses snapshot
366 * device after boot time, this will offline CPU0 and user may
367 * see different CPU0 state before and after accessing
368 * the snapshot device. But hopefully this is not a case when
369 * user debugging CPU0 hotplug. Even if users hit this case,
370 * they can easily online CPU0 back.
371 *
372 * To simplify this debug code, we only consider normal boot
373 * case. Otherwise we need to remember CPU0's state and restore
374 * to that state and resolve racy conditions etc.
375 */
376 _debug_hotplug_cpu(0, 0);
377 break;
378 #endif
379 default:
380 break;
381 }
382 return notifier_from_errno(ret);
383 }
384
385 static int __init bsp_pm_check_init(void)
386 {
387 /*
388 * Set this bsp_pm_callback as lower priority than
389 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
390 * earlier to disable cpu hotplug before bsp online check.
391 */
392 pm_notifier(bsp_pm_callback, -INT_MAX);
393 return 0;
394 }
395
396 core_initcall(bsp_pm_check_init);
397
398 static int msr_build_context(const u32 *msr_id, const int num)
399 {
400 struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
401 struct saved_msr *msr_array;
402 int total_num;
403 int i, j;
404
405 total_num = saved_msrs->num + num;
406
407 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
408 if (!msr_array) {
409 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
410 return -ENOMEM;
411 }
412
413 if (saved_msrs->array) {
414 /*
415 * Multiple callbacks can invoke this function, so copy any
416 * MSR save requests from previous invocations.
417 */
418 memcpy(msr_array, saved_msrs->array,
419 sizeof(struct saved_msr) * saved_msrs->num);
420
421 kfree(saved_msrs->array);
422 }
423
424 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
425 u64 dummy;
426
427 msr_array[i].info.msr_no = msr_id[j];
428 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy);
429 msr_array[i].info.reg.q = 0;
430 }
431 saved_msrs->num = total_num;
432 saved_msrs->array = msr_array;
433
434 return 0;
435 }
436
437 /*
438 * The following sections are a quirk framework for problematic BIOSen:
439 * Sometimes MSRs are modified by the BIOSen after suspended to
440 * RAM, this might cause unexpected behavior after wakeup.
441 * Thus we save/restore these specified MSRs across suspend/resume
442 * in order to work around it.
443 *
444 * For any further problematic BIOSen/platforms,
445 * please add your own function similar to msr_initialize_bdw.
446 */
447 static int msr_initialize_bdw(const struct dmi_system_id *d)
448 {
449 /* Add any extra MSR ids into this array. */
450 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
451
452 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
453 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
454 }
455
456 static const struct dmi_system_id msr_save_dmi_table[] = {
457 {
458 .callback = msr_initialize_bdw,
459 .ident = "BROADWELL BDX_EP",
460 .matches = {
461 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
462 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
463 },
464 },
465 {}
466 };
467
468 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
469 {
470 u32 cpuid_msr_id[] = {
471 MSR_AMD64_CPUID_FN_1,
472 };
473
474 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
475 c->family);
476
477 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
478 }
479
480 static const struct x86_cpu_id msr_save_cpu_table[] = {
481 {
482 .vendor = X86_VENDOR_AMD,
483 .family = 0x15,
484 .model = X86_MODEL_ANY,
485 .feature = X86_FEATURE_ANY,
486 .driver_data = (kernel_ulong_t)msr_save_cpuid_features,
487 },
488 {
489 .vendor = X86_VENDOR_AMD,
490 .family = 0x16,
491 .model = X86_MODEL_ANY,
492 .feature = X86_FEATURE_ANY,
493 .driver_data = (kernel_ulong_t)msr_save_cpuid_features,
494 },
495 {}
496 };
497
498 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
499 static int pm_cpu_check(const struct x86_cpu_id *c)
500 {
501 const struct x86_cpu_id *m;
502 int ret = 0;
503
504 m = x86_match_cpu(msr_save_cpu_table);
505 if (m) {
506 pm_cpu_match_t fn;
507
508 fn = (pm_cpu_match_t)m->driver_data;
509 ret = fn(m);
510 }
511
512 return ret;
513 }
514
515 static void pm_save_spec_msr(void)
516 {
517 u32 spec_msr_id[] = {
518 MSR_IA32_SPEC_CTRL,
519 MSR_IA32_TSX_CTRL,
520 MSR_TSX_FORCE_ABORT,
521 MSR_IA32_MCU_OPT_CTRL,
522 MSR_AMD64_LS_CFG,
523 };
524
525 msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id));
526 }
527
528 static int pm_check_save_msr(void)
529 {
530 dmi_check_system(msr_save_dmi_table);
531 pm_cpu_check(msr_save_cpu_table);
532 pm_save_spec_msr();
533
534 return 0;
535 }
536
537 device_initcall(pm_check_save_msr);