]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/power/cpu.c
Merge tag 'loadpin-v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / power / cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/suspend.h>
22 #include <asm/fpu/internal.h>
23 #include <asm/debugreg.h>
24 #include <asm/cpu.h>
25 #include <asm/mmu_context.h>
26 #include <linux/dmi.h>
27
28 #ifdef CONFIG_X86_32
29 __visible unsigned long saved_context_ebx;
30 __visible unsigned long saved_context_esp, saved_context_ebp;
31 __visible unsigned long saved_context_esi, saved_context_edi;
32 __visible unsigned long saved_context_eflags;
33 #endif
34 struct saved_context saved_context;
35
36 static void msr_save_context(struct saved_context *ctxt)
37 {
38 struct saved_msr *msr = ctxt->saved_msrs.array;
39 struct saved_msr *end = msr + ctxt->saved_msrs.num;
40
41 while (msr < end) {
42 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
43 msr++;
44 }
45 }
46
47 static void msr_restore_context(struct saved_context *ctxt)
48 {
49 struct saved_msr *msr = ctxt->saved_msrs.array;
50 struct saved_msr *end = msr + ctxt->saved_msrs.num;
51
52 while (msr < end) {
53 if (msr->valid)
54 wrmsrl(msr->info.msr_no, msr->info.reg.q);
55 msr++;
56 }
57 }
58
59 /**
60 * __save_processor_state - save CPU registers before creating a
61 * hibernation image and before restoring the memory state from it
62 * @ctxt - structure to store the registers contents in
63 *
64 * NOTE: If there is a CPU register the modification of which by the
65 * boot kernel (ie. the kernel used for loading the hibernation image)
66 * might affect the operations of the restored target kernel (ie. the one
67 * saved in the hibernation image), then its contents must be saved by this
68 * function. In other words, if kernel A is hibernated and different
69 * kernel B is used for loading the hibernation image into memory, the
70 * kernel A's __save_processor_state() function must save all registers
71 * needed by kernel A, so that it can operate correctly after the resume
72 * regardless of what kernel B does in the meantime.
73 */
74 static void __save_processor_state(struct saved_context *ctxt)
75 {
76 #ifdef CONFIG_X86_32
77 mtrr_save_fixed_ranges(NULL);
78 #endif
79 kernel_fpu_begin();
80
81 /*
82 * descriptor tables
83 */
84 store_idt(&ctxt->idt);
85
86 /*
87 * We save it here, but restore it only in the hibernate case.
88 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
89 * mode in "secondary_startup_64". In 32-bit mode it is done via
90 * 'pmode_gdt' in wakeup_start.
91 */
92 ctxt->gdt_desc.size = GDT_SIZE - 1;
93 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
94
95 store_tr(ctxt->tr);
96
97 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
98 /*
99 * segment registers
100 */
101 #ifdef CONFIG_X86_32_LAZY_GS
102 savesegment(gs, ctxt->gs);
103 #endif
104 #ifdef CONFIG_X86_64
105 savesegment(gs, ctxt->gs);
106 savesegment(fs, ctxt->fs);
107 savesegment(ds, ctxt->ds);
108 savesegment(es, ctxt->es);
109
110 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
111 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
112 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
113 mtrr_save_fixed_ranges(NULL);
114
115 rdmsrl(MSR_EFER, ctxt->efer);
116 #endif
117
118 /*
119 * control registers
120 */
121 ctxt->cr0 = read_cr0();
122 ctxt->cr2 = read_cr2();
123 ctxt->cr3 = __read_cr3();
124 ctxt->cr4 = __read_cr4();
125 #ifdef CONFIG_X86_64
126 ctxt->cr8 = read_cr8();
127 #endif
128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
129 &ctxt->misc_enable);
130 msr_save_context(ctxt);
131 }
132
133 /* Needed by apm.c */
134 void save_processor_state(void)
135 {
136 __save_processor_state(&saved_context);
137 x86_platform.save_sched_clock_state();
138 }
139 #ifdef CONFIG_X86_32
140 EXPORT_SYMBOL(save_processor_state);
141 #endif
142
143 static void do_fpu_end(void)
144 {
145 /*
146 * Restore FPU regs if necessary.
147 */
148 kernel_fpu_end();
149 }
150
151 static void fix_processor_context(void)
152 {
153 int cpu = smp_processor_id();
154 #ifdef CONFIG_X86_64
155 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
156 tss_desc tss;
157 #endif
158
159 /*
160 * We need to reload TR, which requires that we change the
161 * GDT entry to indicate "available" first.
162 *
163 * XXX: This could probably all be replaced by a call to
164 * force_reload_TR().
165 */
166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
167
168 #ifdef CONFIG_X86_64
169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
172
173 syscall_init(); /* This sets MSR_*STAR and related */
174 #else
175 if (boot_cpu_has(X86_FEATURE_SEP))
176 enable_sep_cpu();
177 #endif
178 load_TR_desc(); /* This does ltr */
179 load_mm_ldt(current->active_mm); /* This does lldt */
180 initialize_tlbstate_and_flush();
181
182 fpu__resume_cpu();
183
184 /* The processor is back on the direct GDT, load back the fixmap */
185 load_fixmap_gdt(cpu);
186 }
187
188 /**
189 * __restore_processor_state - restore the contents of CPU registers saved
190 * by __save_processor_state()
191 * @ctxt - structure to load the registers contents from
192 *
193 * The asm code that gets us here will have restored a usable GDT, although
194 * it will be pointing to the wrong alias.
195 */
196 static void notrace __restore_processor_state(struct saved_context *ctxt)
197 {
198 if (ctxt->misc_enable_saved)
199 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
200 /*
201 * control registers
202 */
203 /* cr4 was introduced in the Pentium CPU */
204 #ifdef CONFIG_X86_32
205 if (ctxt->cr4)
206 __write_cr4(ctxt->cr4);
207 #else
208 /* CONFIG X86_64 */
209 wrmsrl(MSR_EFER, ctxt->efer);
210 write_cr8(ctxt->cr8);
211 __write_cr4(ctxt->cr4);
212 #endif
213 write_cr3(ctxt->cr3);
214 write_cr2(ctxt->cr2);
215 write_cr0(ctxt->cr0);
216
217 /* Restore the IDT. */
218 load_idt(&ctxt->idt);
219
220 /*
221 * Just in case the asm code got us here with the SS, DS, or ES
222 * out of sync with the GDT, update them.
223 */
224 loadsegment(ss, __KERNEL_DS);
225 loadsegment(ds, __USER_DS);
226 loadsegment(es, __USER_DS);
227
228 /*
229 * Restore percpu access. Percpu access can happen in exception
230 * handlers or in complicated helpers like load_gs_index().
231 */
232 #ifdef CONFIG_X86_64
233 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234 #else
235 loadsegment(fs, __KERNEL_PERCPU);
236 loadsegment(gs, __KERNEL_STACK_CANARY);
237 #endif
238
239 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
240 fix_processor_context();
241
242 /*
243 * Now that we have descriptor tables fully restored and working
244 * exception handling, restore the usermode segments.
245 */
246 #ifdef CONFIG_X86_64
247 loadsegment(ds, ctxt->es);
248 loadsegment(es, ctxt->es);
249 loadsegment(fs, ctxt->fs);
250 load_gs_index(ctxt->gs);
251
252 /*
253 * Restore FSBASE and GSBASE after restoring the selectors, since
254 * restoring the selectors clobbers the bases. Keep in mind
255 * that MSR_KERNEL_GS_BASE is horribly misnamed.
256 */
257 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
258 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
259 #elif defined(CONFIG_X86_32_LAZY_GS)
260 loadsegment(gs, ctxt->gs);
261 #endif
262
263 do_fpu_end();
264 tsc_verify_tsc_adjust(true);
265 x86_platform.restore_sched_clock_state();
266 mtrr_bp_restore();
267 perf_restore_debug_store();
268 msr_restore_context(ctxt);
269 }
270
271 /* Needed by apm.c */
272 void notrace restore_processor_state(void)
273 {
274 __restore_processor_state(&saved_context);
275 }
276 #ifdef CONFIG_X86_32
277 EXPORT_SYMBOL(restore_processor_state);
278 #endif
279
280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
281 static void resume_play_dead(void)
282 {
283 play_dead_common();
284 tboot_shutdown(TB_SHUTDOWN_WFS);
285 hlt_play_dead();
286 }
287
288 int hibernate_resume_nonboot_cpu_disable(void)
289 {
290 void (*play_dead)(void) = smp_ops.play_dead;
291 int ret;
292
293 /*
294 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
295 * during hibernate image restoration, because it is likely that the
296 * monitored address will be actually written to at that time and then
297 * the "dead" CPU will attempt to execute instructions again, but the
298 * address in its instruction pointer may not be possible to resolve
299 * any more at that point (the page tables used by it previously may
300 * have been overwritten by hibernate image data).
301 *
302 * First, make sure that we wake up all the potentially disabled SMT
303 * threads which have been initially brought up and then put into
304 * mwait/cpuidle sleep.
305 * Those will be put to proper (not interfering with hibernation
306 * resume) sleep afterwards, and the resumed kernel will decide itself
307 * what to do with them.
308 */
309 ret = cpuhp_smt_enable();
310 if (ret)
311 return ret;
312 smp_ops.play_dead = resume_play_dead;
313 ret = disable_nonboot_cpus();
314 smp_ops.play_dead = play_dead;
315 return ret;
316 }
317 #endif
318
319 /*
320 * When bsp_check() is called in hibernate and suspend, cpu hotplug
321 * is disabled already. So it's unnessary to handle race condition between
322 * cpumask query and cpu hotplug.
323 */
324 static int bsp_check(void)
325 {
326 if (cpumask_first(cpu_online_mask) != 0) {
327 pr_warn("CPU0 is offline.\n");
328 return -ENODEV;
329 }
330
331 return 0;
332 }
333
334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
335 void *ptr)
336 {
337 int ret = 0;
338
339 switch (action) {
340 case PM_SUSPEND_PREPARE:
341 case PM_HIBERNATION_PREPARE:
342 ret = bsp_check();
343 break;
344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
345 case PM_RESTORE_PREPARE:
346 /*
347 * When system resumes from hibernation, online CPU0 because
348 * 1. it's required for resume and
349 * 2. the CPU was online before hibernation
350 */
351 if (!cpu_online(0))
352 _debug_hotplug_cpu(0, 1);
353 break;
354 case PM_POST_RESTORE:
355 /*
356 * When a resume really happens, this code won't be called.
357 *
358 * This code is called only when user space hibernation software
359 * prepares for snapshot device during boot time. So we just
360 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
361 * preparing the snapshot device.
362 *
363 * This works for normal boot case in our CPU0 hotplug debug
364 * mode, i.e. CPU0 is offline and user mode hibernation
365 * software initializes during boot time.
366 *
367 * If CPU0 is online and user application accesses snapshot
368 * device after boot time, this will offline CPU0 and user may
369 * see different CPU0 state before and after accessing
370 * the snapshot device. But hopefully this is not a case when
371 * user debugging CPU0 hotplug. Even if users hit this case,
372 * they can easily online CPU0 back.
373 *
374 * To simplify this debug code, we only consider normal boot
375 * case. Otherwise we need to remember CPU0's state and restore
376 * to that state and resolve racy conditions etc.
377 */
378 _debug_hotplug_cpu(0, 0);
379 break;
380 #endif
381 default:
382 break;
383 }
384 return notifier_from_errno(ret);
385 }
386
387 static int __init bsp_pm_check_init(void)
388 {
389 /*
390 * Set this bsp_pm_callback as lower priority than
391 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
392 * earlier to disable cpu hotplug before bsp online check.
393 */
394 pm_notifier(bsp_pm_callback, -INT_MAX);
395 return 0;
396 }
397
398 core_initcall(bsp_pm_check_init);
399
400 static int msr_init_context(const u32 *msr_id, const int total_num)
401 {
402 int i = 0;
403 struct saved_msr *msr_array;
404
405 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
406 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
407 return -EINVAL;
408 }
409
410 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
411 if (!msr_array) {
412 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
413 return -ENOMEM;
414 }
415
416 for (i = 0; i < total_num; i++) {
417 msr_array[i].info.msr_no = msr_id[i];
418 msr_array[i].valid = false;
419 msr_array[i].info.reg.q = 0;
420 }
421 saved_context.saved_msrs.num = total_num;
422 saved_context.saved_msrs.array = msr_array;
423
424 return 0;
425 }
426
427 /*
428 * The following section is a quirk framework for problematic BIOSen:
429 * Sometimes MSRs are modified by the BIOSen after suspended to
430 * RAM, this might cause unexpected behavior after wakeup.
431 * Thus we save/restore these specified MSRs across suspend/resume
432 * in order to work around it.
433 *
434 * For any further problematic BIOSen/platforms,
435 * please add your own function similar to msr_initialize_bdw.
436 */
437 static int msr_initialize_bdw(const struct dmi_system_id *d)
438 {
439 /* Add any extra MSR ids into this array. */
440 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
441
442 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
443 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
444 }
445
446 static const struct dmi_system_id msr_save_dmi_table[] = {
447 {
448 .callback = msr_initialize_bdw,
449 .ident = "BROADWELL BDX_EP",
450 .matches = {
451 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
452 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
453 },
454 },
455 {}
456 };
457
458 static int pm_check_save_msr(void)
459 {
460 dmi_check_system(msr_save_dmi_table);
461 return 0;
462 }
463
464 device_initcall(pm_check_save_msr);