]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/power/cpu.c
3822666fb73d521a6b96c78b99d59f7fe72b4147
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / power / cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
41
42 while (msr < end) {
43 if (msr->valid)
44 rdmsrl(msr->info.msr_no, msr->info.reg.q);
45 msr++;
46 }
47 }
48
49 static void msr_restore_context(struct saved_context *ctxt)
50 {
51 struct saved_msr *msr = ctxt->saved_msrs.array;
52 struct saved_msr *end = msr + ctxt->saved_msrs.num;
53
54 while (msr < end) {
55 if (msr->valid)
56 wrmsrl(msr->info.msr_no, msr->info.reg.q);
57 msr++;
58 }
59 }
60
61 /**
62 * __save_processor_state() - Save CPU registers before creating a
63 * hibernation image and before restoring
64 * the memory state from it
65 * @ctxt: Structure to store the registers contents in.
66 *
67 * NOTE: If there is a CPU register the modification of which by the
68 * boot kernel (ie. the kernel used for loading the hibernation image)
69 * might affect the operations of the restored target kernel (ie. the one
70 * saved in the hibernation image), then its contents must be saved by this
71 * function. In other words, if kernel A is hibernated and different
72 * kernel B is used for loading the hibernation image into memory, the
73 * kernel A's __save_processor_state() function must save all registers
74 * needed by kernel A, so that it can operate correctly after the resume
75 * regardless of what kernel B does in the meantime.
76 */
77 static void __save_processor_state(struct saved_context *ctxt)
78 {
79 #ifdef CONFIG_X86_32
80 mtrr_save_fixed_ranges(NULL);
81 #endif
82 kernel_fpu_begin();
83
84 /*
85 * descriptor tables
86 */
87 store_idt(&ctxt->idt);
88
89 /*
90 * We save it here, but restore it only in the hibernate case.
91 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
92 * mode in "secondary_startup_64". In 32-bit mode it is done via
93 * 'pmode_gdt' in wakeup_start.
94 */
95 ctxt->gdt_desc.size = GDT_SIZE - 1;
96 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
97
98 store_tr(ctxt->tr);
99
100 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
101 /*
102 * segment registers
103 */
104 savesegment(gs, ctxt->gs);
105 #ifdef CONFIG_X86_64
106 savesegment(fs, ctxt->fs);
107 savesegment(ds, ctxt->ds);
108 savesegment(es, ctxt->es);
109
110 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
111 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
112 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
113 mtrr_save_fixed_ranges(NULL);
114
115 rdmsrl(MSR_EFER, ctxt->efer);
116 #endif
117
118 /*
119 * control registers
120 */
121 ctxt->cr0 = read_cr0();
122 ctxt->cr2 = read_cr2();
123 ctxt->cr3 = __read_cr3();
124 ctxt->cr4 = __read_cr4();
125 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
126 &ctxt->misc_enable);
127 msr_save_context(ctxt);
128 }
129
130 /* Needed by apm.c */
131 void save_processor_state(void)
132 {
133 __save_processor_state(&saved_context);
134 x86_platform.save_sched_clock_state();
135 }
136 #ifdef CONFIG_X86_32
137 EXPORT_SYMBOL(save_processor_state);
138 #endif
139
140 static void do_fpu_end(void)
141 {
142 /*
143 * Restore FPU regs if necessary.
144 */
145 kernel_fpu_end();
146 }
147
148 static void fix_processor_context(void)
149 {
150 int cpu = smp_processor_id();
151 #ifdef CONFIG_X86_64
152 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
153 tss_desc tss;
154 #endif
155
156 /*
157 * We need to reload TR, which requires that we change the
158 * GDT entry to indicate "available" first.
159 *
160 * XXX: This could probably all be replaced by a call to
161 * force_reload_TR().
162 */
163 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
164
165 #ifdef CONFIG_X86_64
166 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
167 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
168 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
169
170 syscall_init(); /* This sets MSR_*STAR and related */
171 #else
172 if (boot_cpu_has(X86_FEATURE_SEP))
173 enable_sep_cpu();
174 #endif
175 load_TR_desc(); /* This does ltr */
176 load_mm_ldt(current->active_mm); /* This does lldt */
177 initialize_tlbstate_and_flush();
178
179 fpu__resume_cpu();
180
181 /* The processor is back on the direct GDT, load back the fixmap */
182 load_fixmap_gdt(cpu);
183 }
184
185 /**
186 * __restore_processor_state() - Restore the contents of CPU registers saved
187 * by __save_processor_state()
188 * @ctxt: Structure to load the registers contents from.
189 *
190 * The asm code that gets us here will have restored a usable GDT, although
191 * it will be pointing to the wrong alias.
192 */
193 static void notrace __restore_processor_state(struct saved_context *ctxt)
194 {
195 struct cpuinfo_x86 *c;
196
197 if (ctxt->misc_enable_saved)
198 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
199 /*
200 * control registers
201 */
202 /* cr4 was introduced in the Pentium CPU */
203 #ifdef CONFIG_X86_32
204 if (ctxt->cr4)
205 __write_cr4(ctxt->cr4);
206 #else
207 /* CONFIG X86_64 */
208 wrmsrl(MSR_EFER, ctxt->efer);
209 __write_cr4(ctxt->cr4);
210 #endif
211 write_cr3(ctxt->cr3);
212 write_cr2(ctxt->cr2);
213 write_cr0(ctxt->cr0);
214
215 /* Restore the IDT. */
216 load_idt(&ctxt->idt);
217
218 /*
219 * Just in case the asm code got us here with the SS, DS, or ES
220 * out of sync with the GDT, update them.
221 */
222 loadsegment(ss, __KERNEL_DS);
223 loadsegment(ds, __USER_DS);
224 loadsegment(es, __USER_DS);
225
226 /*
227 * Restore percpu access. Percpu access can happen in exception
228 * handlers or in complicated helpers like load_gs_index().
229 */
230 #ifdef CONFIG_X86_64
231 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
232 #else
233 loadsegment(fs, __KERNEL_PERCPU);
234 #endif
235
236 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
237 fix_processor_context();
238
239 /*
240 * Now that we have descriptor tables fully restored and working
241 * exception handling, restore the usermode segments.
242 */
243 #ifdef CONFIG_X86_64
244 loadsegment(ds, ctxt->es);
245 loadsegment(es, ctxt->es);
246 loadsegment(fs, ctxt->fs);
247 load_gs_index(ctxt->gs);
248
249 /*
250 * Restore FSBASE and GSBASE after restoring the selectors, since
251 * restoring the selectors clobbers the bases. Keep in mind
252 * that MSR_KERNEL_GS_BASE is horribly misnamed.
253 */
254 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
255 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
256 #else
257 loadsegment(gs, ctxt->gs);
258 #endif
259
260 do_fpu_end();
261 tsc_verify_tsc_adjust(true);
262 x86_platform.restore_sched_clock_state();
263 mtrr_bp_restore();
264 perf_restore_debug_store();
265 msr_restore_context(ctxt);
266
267 c = &cpu_data(smp_processor_id());
268 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
269 init_ia32_feat_ctl(c);
270 }
271
272 /* Needed by apm.c */
273 void notrace restore_processor_state(void)
274 {
275 __restore_processor_state(&saved_context);
276 }
277 #ifdef CONFIG_X86_32
278 EXPORT_SYMBOL(restore_processor_state);
279 #endif
280
281 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
282 static void resume_play_dead(void)
283 {
284 play_dead_common();
285 tboot_shutdown(TB_SHUTDOWN_WFS);
286 hlt_play_dead();
287 }
288
289 int hibernate_resume_nonboot_cpu_disable(void)
290 {
291 void (*play_dead)(void) = smp_ops.play_dead;
292 int ret;
293
294 /*
295 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
296 * during hibernate image restoration, because it is likely that the
297 * monitored address will be actually written to at that time and then
298 * the "dead" CPU will attempt to execute instructions again, but the
299 * address in its instruction pointer may not be possible to resolve
300 * any more at that point (the page tables used by it previously may
301 * have been overwritten by hibernate image data).
302 *
303 * First, make sure that we wake up all the potentially disabled SMT
304 * threads which have been initially brought up and then put into
305 * mwait/cpuidle sleep.
306 * Those will be put to proper (not interfering with hibernation
307 * resume) sleep afterwards, and the resumed kernel will decide itself
308 * what to do with them.
309 */
310 ret = cpuhp_smt_enable();
311 if (ret)
312 return ret;
313 smp_ops.play_dead = resume_play_dead;
314 ret = freeze_secondary_cpus(0);
315 smp_ops.play_dead = play_dead;
316 return ret;
317 }
318 #endif
319
320 /*
321 * When bsp_check() is called in hibernate and suspend, cpu hotplug
322 * is disabled already. So it's unnecessary to handle race condition between
323 * cpumask query and cpu hotplug.
324 */
325 static int bsp_check(void)
326 {
327 if (cpumask_first(cpu_online_mask) != 0) {
328 pr_warn("CPU0 is offline.\n");
329 return -ENODEV;
330 }
331
332 return 0;
333 }
334
335 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
336 void *ptr)
337 {
338 int ret = 0;
339
340 switch (action) {
341 case PM_SUSPEND_PREPARE:
342 case PM_HIBERNATION_PREPARE:
343 ret = bsp_check();
344 break;
345 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
346 case PM_RESTORE_PREPARE:
347 /*
348 * When system resumes from hibernation, online CPU0 because
349 * 1. it's required for resume and
350 * 2. the CPU was online before hibernation
351 */
352 if (!cpu_online(0))
353 _debug_hotplug_cpu(0, 1);
354 break;
355 case PM_POST_RESTORE:
356 /*
357 * When a resume really happens, this code won't be called.
358 *
359 * This code is called only when user space hibernation software
360 * prepares for snapshot device during boot time. So we just
361 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
362 * preparing the snapshot device.
363 *
364 * This works for normal boot case in our CPU0 hotplug debug
365 * mode, i.e. CPU0 is offline and user mode hibernation
366 * software initializes during boot time.
367 *
368 * If CPU0 is online and user application accesses snapshot
369 * device after boot time, this will offline CPU0 and user may
370 * see different CPU0 state before and after accessing
371 * the snapshot device. But hopefully this is not a case when
372 * user debugging CPU0 hotplug. Even if users hit this case,
373 * they can easily online CPU0 back.
374 *
375 * To simplify this debug code, we only consider normal boot
376 * case. Otherwise we need to remember CPU0's state and restore
377 * to that state and resolve racy conditions etc.
378 */
379 _debug_hotplug_cpu(0, 0);
380 break;
381 #endif
382 default:
383 break;
384 }
385 return notifier_from_errno(ret);
386 }
387
388 static int __init bsp_pm_check_init(void)
389 {
390 /*
391 * Set this bsp_pm_callback as lower priority than
392 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
393 * earlier to disable cpu hotplug before bsp online check.
394 */
395 pm_notifier(bsp_pm_callback, -INT_MAX);
396 return 0;
397 }
398
399 core_initcall(bsp_pm_check_init);
400
401 static int msr_build_context(const u32 *msr_id, const int num)
402 {
403 struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
404 struct saved_msr *msr_array;
405 int total_num;
406 int i, j;
407
408 total_num = saved_msrs->num + num;
409
410 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
411 if (!msr_array) {
412 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
413 return -ENOMEM;
414 }
415
416 if (saved_msrs->array) {
417 /*
418 * Multiple callbacks can invoke this function, so copy any
419 * MSR save requests from previous invocations.
420 */
421 memcpy(msr_array, saved_msrs->array,
422 sizeof(struct saved_msr) * saved_msrs->num);
423
424 kfree(saved_msrs->array);
425 }
426
427 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
428 u64 dummy;
429
430 msr_array[i].info.msr_no = msr_id[j];
431 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy);
432 msr_array[i].info.reg.q = 0;
433 }
434 saved_msrs->num = total_num;
435 saved_msrs->array = msr_array;
436
437 return 0;
438 }
439
440 /*
441 * The following sections are a quirk framework for problematic BIOSen:
442 * Sometimes MSRs are modified by the BIOSen after suspended to
443 * RAM, this might cause unexpected behavior after wakeup.
444 * Thus we save/restore these specified MSRs across suspend/resume
445 * in order to work around it.
446 *
447 * For any further problematic BIOSen/platforms,
448 * please add your own function similar to msr_initialize_bdw.
449 */
450 static int msr_initialize_bdw(const struct dmi_system_id *d)
451 {
452 /* Add any extra MSR ids into this array. */
453 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
454
455 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
456 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
457 }
458
459 static const struct dmi_system_id msr_save_dmi_table[] = {
460 {
461 .callback = msr_initialize_bdw,
462 .ident = "BROADWELL BDX_EP",
463 .matches = {
464 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
465 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
466 },
467 },
468 {}
469 };
470
471 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
472 {
473 u32 cpuid_msr_id[] = {
474 MSR_AMD64_CPUID_FN_1,
475 };
476
477 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
478 c->family);
479
480 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
481 }
482
483 static const struct x86_cpu_id msr_save_cpu_table[] = {
484 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
485 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
486 {}
487 };
488
489 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
490 static int pm_cpu_check(const struct x86_cpu_id *c)
491 {
492 const struct x86_cpu_id *m;
493 int ret = 0;
494
495 m = x86_match_cpu(msr_save_cpu_table);
496 if (m) {
497 pm_cpu_match_t fn;
498
499 fn = (pm_cpu_match_t)m->driver_data;
500 ret = fn(m);
501 }
502
503 return ret;
504 }
505
506 static void pm_save_spec_msr(void)
507 {
508 u32 spec_msr_id[] = {
509 MSR_IA32_SPEC_CTRL,
510 MSR_IA32_TSX_CTRL,
511 MSR_TSX_FORCE_ABORT,
512 MSR_IA32_MCU_OPT_CTRL,
513 MSR_AMD64_LS_CFG,
514 };
515
516 msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id));
517 }
518
519 static int pm_check_save_msr(void)
520 {
521 dmi_check_system(msr_save_dmi_table);
522 pm_cpu_check(msr_save_cpu_table);
523 pm_save_spec_msr();
524
525 return 0;
526 }
527
528 device_initcall(pm_check_save_msr);