]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/power/cpu.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / power / cpu.c
1 /*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
16
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <linux/dmi.h>
28
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
41
42 while (msr < end) {
43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 msr++;
45 }
46 }
47
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 struct saved_msr *msr = ctxt->saved_msrs.array;
51 struct saved_msr *end = msr + ctxt->saved_msrs.num;
52
53 while (msr < end) {
54 if (msr->valid)
55 wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 msr++;
57 }
58 }
59
60 /**
61 * __save_processor_state - save CPU registers before creating a
62 * hibernation image and before restoring the memory state from it
63 * @ctxt - structure to store the registers contents in
64 *
65 * NOTE: If there is a CPU register the modification of which by the
66 * boot kernel (ie. the kernel used for loading the hibernation image)
67 * might affect the operations of the restored target kernel (ie. the one
68 * saved in the hibernation image), then its contents must be saved by this
69 * function. In other words, if kernel A is hibernated and different
70 * kernel B is used for loading the hibernation image into memory, the
71 * kernel A's __save_processor_state() function must save all registers
72 * needed by kernel A, so that it can operate correctly after the resume
73 * regardless of what kernel B does in the meantime.
74 */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 mtrr_save_fixed_ranges(NULL);
79 #endif
80 kernel_fpu_begin();
81
82 /*
83 * descriptor tables
84 */
85 store_idt(&ctxt->idt);
86
87 /*
88 * We save it here, but restore it only in the hibernate case.
89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 * 'pmode_gdt' in wakeup_start.
92 */
93 ctxt->gdt_desc.size = GDT_SIZE - 1;
94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95
96 store_tr(ctxt->tr);
97
98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
99 /*
100 * segment registers
101 */
102 #ifdef CONFIG_X86_32_LAZY_GS
103 savesegment(gs, ctxt->gs);
104 #endif
105 #ifdef CONFIG_X86_64
106 savesegment(gs, ctxt->gs);
107 savesegment(fs, ctxt->fs);
108 savesegment(ds, ctxt->ds);
109 savesegment(es, ctxt->es);
110
111 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
114 mtrr_save_fixed_ranges(NULL);
115
116 rdmsrl(MSR_EFER, ctxt->efer);
117 #endif
118
119 /*
120 * control registers
121 */
122 ctxt->cr0 = read_cr0();
123 ctxt->cr2 = read_cr2();
124 ctxt->cr3 = __read_cr3();
125 ctxt->cr4 = __read_cr4();
126 #ifdef CONFIG_X86_64
127 ctxt->cr8 = read_cr8();
128 #endif
129 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
130 &ctxt->misc_enable);
131 msr_save_context(ctxt);
132 }
133
134 /* Needed by apm.c */
135 void save_processor_state(void)
136 {
137 __save_processor_state(&saved_context);
138 x86_platform.save_sched_clock_state();
139 }
140 #ifdef CONFIG_X86_32
141 EXPORT_SYMBOL(save_processor_state);
142 #endif
143
144 static void do_fpu_end(void)
145 {
146 /*
147 * Restore FPU regs if necessary.
148 */
149 kernel_fpu_end();
150 }
151
152 static void fix_processor_context(void)
153 {
154 int cpu = smp_processor_id();
155 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
156 #ifdef CONFIG_X86_64
157 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
158 tss_desc tss;
159 #endif
160 set_tss_desc(cpu, t); /*
161 * This just modifies memory; should not be
162 * necessary. But... This is necessary, because
163 * 386 hardware has concept of busy TSS or some
164 * similar stupidity.
165 */
166
167 #ifdef CONFIG_X86_64
168 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171
172 syscall_init(); /* This sets MSR_*STAR and related */
173 #else
174 if (boot_cpu_has(X86_FEATURE_SEP))
175 enable_sep_cpu();
176 #endif
177 load_TR_desc(); /* This does ltr */
178 load_mm_ldt(current->active_mm); /* This does lldt */
179 initialize_tlbstate_and_flush();
180
181 fpu__resume_cpu();
182
183 /* The processor is back on the direct GDT, load back the fixmap */
184 load_fixmap_gdt(cpu);
185 }
186
187 /**
188 * __restore_processor_state - restore the contents of CPU registers saved
189 * by __save_processor_state()
190 * @ctxt - structure to load the registers contents from
191 *
192 * The asm code that gets us here will have restored a usable GDT, although
193 * it will be pointing to the wrong alias.
194 */
195 static void notrace __restore_processor_state(struct saved_context *ctxt)
196 {
197 if (ctxt->misc_enable_saved)
198 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
199 /*
200 * control registers
201 */
202 /* cr4 was introduced in the Pentium CPU */
203 #ifdef CONFIG_X86_32
204 if (ctxt->cr4)
205 __write_cr4(ctxt->cr4);
206 #else
207 /* CONFIG X86_64 */
208 wrmsrl(MSR_EFER, ctxt->efer);
209 write_cr8(ctxt->cr8);
210 __write_cr4(ctxt->cr4);
211 #endif
212 write_cr3(ctxt->cr3);
213 write_cr2(ctxt->cr2);
214 write_cr0(ctxt->cr0);
215
216 /* Restore the IDT. */
217 load_idt(&ctxt->idt);
218
219 /*
220 * Just in case the asm code got us here with the SS, DS, or ES
221 * out of sync with the GDT, update them.
222 */
223 loadsegment(ss, __KERNEL_DS);
224 loadsegment(ds, __USER_DS);
225 loadsegment(es, __USER_DS);
226
227 /*
228 * Restore percpu access. Percpu access can happen in exception
229 * handlers or in complicated helpers like load_gs_index().
230 */
231 #ifdef CONFIG_X86_64
232 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
233 #else
234 loadsegment(fs, __KERNEL_PERCPU);
235 loadsegment(gs, __KERNEL_STACK_CANARY);
236 #endif
237
238 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239 fix_processor_context();
240
241 /*
242 * Now that we have descriptor tables fully restored and working
243 * exception handling, restore the usermode segments.
244 */
245 #ifdef CONFIG_X86_64
246 loadsegment(ds, ctxt->es);
247 loadsegment(es, ctxt->es);
248 loadsegment(fs, ctxt->fs);
249 load_gs_index(ctxt->gs);
250
251 /*
252 * Restore FSBASE and GSBASE after restoring the selectors, since
253 * restoring the selectors clobbers the bases. Keep in mind
254 * that MSR_KERNEL_GS_BASE is horribly misnamed.
255 */
256 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258 #elif defined(CONFIG_X86_32_LAZY_GS)
259 loadsegment(gs, ctxt->gs);
260 #endif
261
262 do_fpu_end();
263 tsc_verify_tsc_adjust(true);
264 x86_platform.restore_sched_clock_state();
265 mtrr_bp_restore();
266 perf_restore_debug_store();
267 msr_restore_context(ctxt);
268 }
269
270 /* Needed by apm.c */
271 void notrace restore_processor_state(void)
272 {
273 __restore_processor_state(&saved_context);
274 }
275 #ifdef CONFIG_X86_32
276 EXPORT_SYMBOL(restore_processor_state);
277 #endif
278
279 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
280 static void resume_play_dead(void)
281 {
282 play_dead_common();
283 tboot_shutdown(TB_SHUTDOWN_WFS);
284 hlt_play_dead();
285 }
286
287 int hibernate_resume_nonboot_cpu_disable(void)
288 {
289 void (*play_dead)(void) = smp_ops.play_dead;
290 int ret;
291
292 /*
293 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
294 * during hibernate image restoration, because it is likely that the
295 * monitored address will be actually written to at that time and then
296 * the "dead" CPU will attempt to execute instructions again, but the
297 * address in its instruction pointer may not be possible to resolve
298 * any more at that point (the page tables used by it previously may
299 * have been overwritten by hibernate image data).
300 */
301 smp_ops.play_dead = resume_play_dead;
302 ret = disable_nonboot_cpus();
303 smp_ops.play_dead = play_dead;
304 return ret;
305 }
306 #endif
307
308 /*
309 * When bsp_check() is called in hibernate and suspend, cpu hotplug
310 * is disabled already. So it's unnessary to handle race condition between
311 * cpumask query and cpu hotplug.
312 */
313 static int bsp_check(void)
314 {
315 if (cpumask_first(cpu_online_mask) != 0) {
316 pr_warn("CPU0 is offline.\n");
317 return -ENODEV;
318 }
319
320 return 0;
321 }
322
323 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
324 void *ptr)
325 {
326 int ret = 0;
327
328 switch (action) {
329 case PM_SUSPEND_PREPARE:
330 case PM_HIBERNATION_PREPARE:
331 ret = bsp_check();
332 break;
333 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
334 case PM_RESTORE_PREPARE:
335 /*
336 * When system resumes from hibernation, online CPU0 because
337 * 1. it's required for resume and
338 * 2. the CPU was online before hibernation
339 */
340 if (!cpu_online(0))
341 _debug_hotplug_cpu(0, 1);
342 break;
343 case PM_POST_RESTORE:
344 /*
345 * When a resume really happens, this code won't be called.
346 *
347 * This code is called only when user space hibernation software
348 * prepares for snapshot device during boot time. So we just
349 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
350 * preparing the snapshot device.
351 *
352 * This works for normal boot case in our CPU0 hotplug debug
353 * mode, i.e. CPU0 is offline and user mode hibernation
354 * software initializes during boot time.
355 *
356 * If CPU0 is online and user application accesses snapshot
357 * device after boot time, this will offline CPU0 and user may
358 * see different CPU0 state before and after accessing
359 * the snapshot device. But hopefully this is not a case when
360 * user debugging CPU0 hotplug. Even if users hit this case,
361 * they can easily online CPU0 back.
362 *
363 * To simplify this debug code, we only consider normal boot
364 * case. Otherwise we need to remember CPU0's state and restore
365 * to that state and resolve racy conditions etc.
366 */
367 _debug_hotplug_cpu(0, 0);
368 break;
369 #endif
370 default:
371 break;
372 }
373 return notifier_from_errno(ret);
374 }
375
376 static int __init bsp_pm_check_init(void)
377 {
378 /*
379 * Set this bsp_pm_callback as lower priority than
380 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
381 * earlier to disable cpu hotplug before bsp online check.
382 */
383 pm_notifier(bsp_pm_callback, -INT_MAX);
384 return 0;
385 }
386
387 core_initcall(bsp_pm_check_init);
388
389 static int msr_init_context(const u32 *msr_id, const int total_num)
390 {
391 int i = 0;
392 struct saved_msr *msr_array;
393
394 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
395 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
396 return -EINVAL;
397 }
398
399 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
400 if (!msr_array) {
401 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
402 return -ENOMEM;
403 }
404
405 for (i = 0; i < total_num; i++) {
406 msr_array[i].info.msr_no = msr_id[i];
407 msr_array[i].valid = false;
408 msr_array[i].info.reg.q = 0;
409 }
410 saved_context.saved_msrs.num = total_num;
411 saved_context.saved_msrs.array = msr_array;
412
413 return 0;
414 }
415
416 /*
417 * The following section is a quirk framework for problematic BIOSen:
418 * Sometimes MSRs are modified by the BIOSen after suspended to
419 * RAM, this might cause unexpected behavior after wakeup.
420 * Thus we save/restore these specified MSRs across suspend/resume
421 * in order to work around it.
422 *
423 * For any further problematic BIOSen/platforms,
424 * please add your own function similar to msr_initialize_bdw.
425 */
426 static int msr_initialize_bdw(const struct dmi_system_id *d)
427 {
428 /* Add any extra MSR ids into this array. */
429 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
430
431 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
432 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
433 }
434
435 static const struct dmi_system_id msr_save_dmi_table[] = {
436 {
437 .callback = msr_initialize_bdw,
438 .ident = "BROADWELL BDX_EP",
439 .matches = {
440 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
441 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
442 },
443 },
444 {}
445 };
446
447 static int pm_check_save_msr(void)
448 {
449 dmi_check_system(msr_save_dmi_table);
450 return 0;
451 }
452
453 device_initcall(pm_check_save_msr);