]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/power/cpu.c
Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / power / cpu.c
1 /*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
16
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <linux/dmi.h>
28
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
41
42 while (msr < end) {
43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 msr++;
45 }
46 }
47
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 struct saved_msr *msr = ctxt->saved_msrs.array;
51 struct saved_msr *end = msr + ctxt->saved_msrs.num;
52
53 while (msr < end) {
54 if (msr->valid)
55 wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 msr++;
57 }
58 }
59
60 /**
61 * __save_processor_state - save CPU registers before creating a
62 * hibernation image and before restoring the memory state from it
63 * @ctxt - structure to store the registers contents in
64 *
65 * NOTE: If there is a CPU register the modification of which by the
66 * boot kernel (ie. the kernel used for loading the hibernation image)
67 * might affect the operations of the restored target kernel (ie. the one
68 * saved in the hibernation image), then its contents must be saved by this
69 * function. In other words, if kernel A is hibernated and different
70 * kernel B is used for loading the hibernation image into memory, the
71 * kernel A's __save_processor_state() function must save all registers
72 * needed by kernel A, so that it can operate correctly after the resume
73 * regardless of what kernel B does in the meantime.
74 */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 mtrr_save_fixed_ranges(NULL);
79 #endif
80 kernel_fpu_begin();
81
82 /*
83 * descriptor tables
84 */
85 store_idt(&ctxt->idt);
86
87 /*
88 * We save it here, but restore it only in the hibernate case.
89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 * 'pmode_gdt' in wakeup_start.
92 */
93 ctxt->gdt_desc.size = GDT_SIZE - 1;
94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95
96 store_tr(ctxt->tr);
97
98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
99 /*
100 * segment registers
101 */
102 #ifdef CONFIG_X86_32_LAZY_GS
103 savesegment(gs, ctxt->gs);
104 #endif
105 #ifdef CONFIG_X86_64
106 savesegment(gs, ctxt->gs);
107 savesegment(fs, ctxt->fs);
108 savesegment(ds, ctxt->ds);
109 savesegment(es, ctxt->es);
110
111 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
114 mtrr_save_fixed_ranges(NULL);
115
116 rdmsrl(MSR_EFER, ctxt->efer);
117 #endif
118
119 /*
120 * control registers
121 */
122 ctxt->cr0 = read_cr0();
123 ctxt->cr2 = read_cr2();
124 ctxt->cr3 = __read_cr3();
125 ctxt->cr4 = __read_cr4();
126 #ifdef CONFIG_X86_64
127 ctxt->cr8 = read_cr8();
128 #endif
129 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
130 &ctxt->misc_enable);
131 msr_save_context(ctxt);
132 }
133
134 /* Needed by apm.c */
135 void save_processor_state(void)
136 {
137 __save_processor_state(&saved_context);
138 x86_platform.save_sched_clock_state();
139 }
140 #ifdef CONFIG_X86_32
141 EXPORT_SYMBOL(save_processor_state);
142 #endif
143
144 static void do_fpu_end(void)
145 {
146 /*
147 * Restore FPU regs if necessary.
148 */
149 kernel_fpu_end();
150 }
151
152 static void fix_processor_context(void)
153 {
154 int cpu = smp_processor_id();
155 #ifdef CONFIG_X86_64
156 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
157 tss_desc tss;
158 #endif
159
160 /*
161 * We need to reload TR, which requires that we change the
162 * GDT entry to indicate "available" first.
163 *
164 * XXX: This could probably all be replaced by a call to
165 * force_reload_TR().
166 */
167 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
168
169 #ifdef CONFIG_X86_64
170 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
171 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
172 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
173
174 syscall_init(); /* This sets MSR_*STAR and related */
175 #else
176 if (boot_cpu_has(X86_FEATURE_SEP))
177 enable_sep_cpu();
178 #endif
179 load_TR_desc(); /* This does ltr */
180 load_mm_ldt(current->active_mm); /* This does lldt */
181 initialize_tlbstate_and_flush();
182
183 fpu__resume_cpu();
184
185 /* The processor is back on the direct GDT, load back the fixmap */
186 load_fixmap_gdt(cpu);
187 }
188
189 /**
190 * __restore_processor_state - restore the contents of CPU registers saved
191 * by __save_processor_state()
192 * @ctxt - structure to load the registers contents from
193 *
194 * The asm code that gets us here will have restored a usable GDT, although
195 * it will be pointing to the wrong alias.
196 */
197 static void notrace __restore_processor_state(struct saved_context *ctxt)
198 {
199 if (ctxt->misc_enable_saved)
200 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201 /*
202 * control registers
203 */
204 /* cr4 was introduced in the Pentium CPU */
205 #ifdef CONFIG_X86_32
206 if (ctxt->cr4)
207 __write_cr4(ctxt->cr4);
208 #else
209 /* CONFIG X86_64 */
210 wrmsrl(MSR_EFER, ctxt->efer);
211 write_cr8(ctxt->cr8);
212 __write_cr4(ctxt->cr4);
213 #endif
214 write_cr3(ctxt->cr3);
215 write_cr2(ctxt->cr2);
216 write_cr0(ctxt->cr0);
217
218 /* Restore the IDT. */
219 load_idt(&ctxt->idt);
220
221 /*
222 * Just in case the asm code got us here with the SS, DS, or ES
223 * out of sync with the GDT, update them.
224 */
225 loadsegment(ss, __KERNEL_DS);
226 loadsegment(ds, __USER_DS);
227 loadsegment(es, __USER_DS);
228
229 /*
230 * Restore percpu access. Percpu access can happen in exception
231 * handlers or in complicated helpers like load_gs_index().
232 */
233 #ifdef CONFIG_X86_64
234 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
235 #else
236 loadsegment(fs, __KERNEL_PERCPU);
237 loadsegment(gs, __KERNEL_STACK_CANARY);
238 #endif
239
240 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
241 fix_processor_context();
242
243 /*
244 * Now that we have descriptor tables fully restored and working
245 * exception handling, restore the usermode segments.
246 */
247 #ifdef CONFIG_X86_64
248 loadsegment(ds, ctxt->es);
249 loadsegment(es, ctxt->es);
250 loadsegment(fs, ctxt->fs);
251 load_gs_index(ctxt->gs);
252
253 /*
254 * Restore FSBASE and GSBASE after restoring the selectors, since
255 * restoring the selectors clobbers the bases. Keep in mind
256 * that MSR_KERNEL_GS_BASE is horribly misnamed.
257 */
258 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
259 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
260 #elif defined(CONFIG_X86_32_LAZY_GS)
261 loadsegment(gs, ctxt->gs);
262 #endif
263
264 do_fpu_end();
265 tsc_verify_tsc_adjust(true);
266 x86_platform.restore_sched_clock_state();
267 mtrr_bp_restore();
268 perf_restore_debug_store();
269 msr_restore_context(ctxt);
270 }
271
272 /* Needed by apm.c */
273 void notrace restore_processor_state(void)
274 {
275 __restore_processor_state(&saved_context);
276 }
277 #ifdef CONFIG_X86_32
278 EXPORT_SYMBOL(restore_processor_state);
279 #endif
280
281 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
282 static void resume_play_dead(void)
283 {
284 play_dead_common();
285 tboot_shutdown(TB_SHUTDOWN_WFS);
286 hlt_play_dead();
287 }
288
289 int hibernate_resume_nonboot_cpu_disable(void)
290 {
291 void (*play_dead)(void) = smp_ops.play_dead;
292 int ret;
293
294 /*
295 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
296 * during hibernate image restoration, because it is likely that the
297 * monitored address will be actually written to at that time and then
298 * the "dead" CPU will attempt to execute instructions again, but the
299 * address in its instruction pointer may not be possible to resolve
300 * any more at that point (the page tables used by it previously may
301 * have been overwritten by hibernate image data).
302 */
303 smp_ops.play_dead = resume_play_dead;
304 ret = disable_nonboot_cpus();
305 smp_ops.play_dead = play_dead;
306 return ret;
307 }
308 #endif
309
310 /*
311 * When bsp_check() is called in hibernate and suspend, cpu hotplug
312 * is disabled already. So it's unnessary to handle race condition between
313 * cpumask query and cpu hotplug.
314 */
315 static int bsp_check(void)
316 {
317 if (cpumask_first(cpu_online_mask) != 0) {
318 pr_warn("CPU0 is offline.\n");
319 return -ENODEV;
320 }
321
322 return 0;
323 }
324
325 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
326 void *ptr)
327 {
328 int ret = 0;
329
330 switch (action) {
331 case PM_SUSPEND_PREPARE:
332 case PM_HIBERNATION_PREPARE:
333 ret = bsp_check();
334 break;
335 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
336 case PM_RESTORE_PREPARE:
337 /*
338 * When system resumes from hibernation, online CPU0 because
339 * 1. it's required for resume and
340 * 2. the CPU was online before hibernation
341 */
342 if (!cpu_online(0))
343 _debug_hotplug_cpu(0, 1);
344 break;
345 case PM_POST_RESTORE:
346 /*
347 * When a resume really happens, this code won't be called.
348 *
349 * This code is called only when user space hibernation software
350 * prepares for snapshot device during boot time. So we just
351 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
352 * preparing the snapshot device.
353 *
354 * This works for normal boot case in our CPU0 hotplug debug
355 * mode, i.e. CPU0 is offline and user mode hibernation
356 * software initializes during boot time.
357 *
358 * If CPU0 is online and user application accesses snapshot
359 * device after boot time, this will offline CPU0 and user may
360 * see different CPU0 state before and after accessing
361 * the snapshot device. But hopefully this is not a case when
362 * user debugging CPU0 hotplug. Even if users hit this case,
363 * they can easily online CPU0 back.
364 *
365 * To simplify this debug code, we only consider normal boot
366 * case. Otherwise we need to remember CPU0's state and restore
367 * to that state and resolve racy conditions etc.
368 */
369 _debug_hotplug_cpu(0, 0);
370 break;
371 #endif
372 default:
373 break;
374 }
375 return notifier_from_errno(ret);
376 }
377
378 static int __init bsp_pm_check_init(void)
379 {
380 /*
381 * Set this bsp_pm_callback as lower priority than
382 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
383 * earlier to disable cpu hotplug before bsp online check.
384 */
385 pm_notifier(bsp_pm_callback, -INT_MAX);
386 return 0;
387 }
388
389 core_initcall(bsp_pm_check_init);
390
391 static int msr_init_context(const u32 *msr_id, const int total_num)
392 {
393 int i = 0;
394 struct saved_msr *msr_array;
395
396 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
397 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
398 return -EINVAL;
399 }
400
401 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
402 if (!msr_array) {
403 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
404 return -ENOMEM;
405 }
406
407 for (i = 0; i < total_num; i++) {
408 msr_array[i].info.msr_no = msr_id[i];
409 msr_array[i].valid = false;
410 msr_array[i].info.reg.q = 0;
411 }
412 saved_context.saved_msrs.num = total_num;
413 saved_context.saved_msrs.array = msr_array;
414
415 return 0;
416 }
417
418 /*
419 * The following section is a quirk framework for problematic BIOSen:
420 * Sometimes MSRs are modified by the BIOSen after suspended to
421 * RAM, this might cause unexpected behavior after wakeup.
422 * Thus we save/restore these specified MSRs across suspend/resume
423 * in order to work around it.
424 *
425 * For any further problematic BIOSen/platforms,
426 * please add your own function similar to msr_initialize_bdw.
427 */
428 static int msr_initialize_bdw(const struct dmi_system_id *d)
429 {
430 /* Add any extra MSR ids into this array. */
431 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
432
433 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
434 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
435 }
436
437 static const struct dmi_system_id msr_save_dmi_table[] = {
438 {
439 .callback = msr_initialize_bdw,
440 .ident = "BROADWELL BDX_EP",
441 .matches = {
442 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
443 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
444 },
445 },
446 {}
447 };
448
449 static int pm_check_save_msr(void)
450 {
451 dmi_check_system(msr_save_dmi_table);
452 return 0;
453 }
454
455 device_initcall(pm_check_save_msr);