]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/xen/enlighten.c
Input: xpad - add USB ID for the drumkit controller from Rock Band
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30
31 #include <xen/interface/xen.h>
32 #include <xen/interface/version.h>
33 #include <xen/interface/physdev.h>
34 #include <xen/interface/vcpu.h>
35 #include <xen/features.h>
36 #include <xen/page.h>
37 #include <xen/hvc-console.h>
38
39 #include <asm/paravirt.h>
40 #include <asm/apic.h>
41 #include <asm/page.h>
42 #include <asm/xen/hypercall.h>
43 #include <asm/xen/hypervisor.h>
44 #include <asm/fixmap.h>
45 #include <asm/processor.h>
46 #include <asm/proto.h>
47 #include <asm/msr-index.h>
48 #include <asm/traps.h>
49 #include <asm/setup.h>
50 #include <asm/desc.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/reboot.h>
54
55 #include "xen-ops.h"
56 #include "mmu.h"
57 #include "multicalls.h"
58
59 EXPORT_SYMBOL_GPL(hypercall_page);
60
61 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
62 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
63
64 enum xen_domain_type xen_domain_type = XEN_NATIVE;
65 EXPORT_SYMBOL_GPL(xen_domain_type);
66
67 struct start_info *xen_start_info;
68 EXPORT_SYMBOL_GPL(xen_start_info);
69
70 struct shared_info xen_dummy_shared_info;
71
72 void *xen_initial_gdt;
73
74 /*
75 * Point at some empty memory to start with. We map the real shared_info
76 * page as soon as fixmap is up and running.
77 */
78 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
79
80 /*
81 * Flag to determine whether vcpu info placement is available on all
82 * VCPUs. We assume it is to start with, and then set it to zero on
83 * the first failure. This is because it can succeed on some VCPUs
84 * and not others, since it can involve hypervisor memory allocation,
85 * or because the guest failed to guarantee all the appropriate
86 * constraints on all VCPUs (ie buffer can't cross a page boundary).
87 *
88 * Note that any particular CPU may be using a placed vcpu structure,
89 * but we can only optimise if the all are.
90 *
91 * 0: not available, 1: available
92 */
93 static int have_vcpu_info_placement = 1;
94
95 static void xen_vcpu_setup(int cpu)
96 {
97 struct vcpu_register_vcpu_info info;
98 int err;
99 struct vcpu_info *vcpup;
100
101 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
102 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
103
104 if (!have_vcpu_info_placement)
105 return; /* already tested, not available */
106
107 vcpup = &per_cpu(xen_vcpu_info, cpu);
108
109 info.mfn = arbitrary_virt_to_mfn(vcpup);
110 info.offset = offset_in_page(vcpup);
111
112 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
113 cpu, vcpup, info.mfn, info.offset);
114
115 /* Check to see if the hypervisor will put the vcpu_info
116 structure where we want it, which allows direct access via
117 a percpu-variable. */
118 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
119
120 if (err) {
121 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
122 have_vcpu_info_placement = 0;
123 } else {
124 /* This cpu is using the registered vcpu info, even if
125 later ones fail to. */
126 per_cpu(xen_vcpu, cpu) = vcpup;
127
128 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
129 cpu, vcpup);
130 }
131 }
132
133 /*
134 * On restore, set the vcpu placement up again.
135 * If it fails, then we're in a bad state, since
136 * we can't back out from using it...
137 */
138 void xen_vcpu_restore(void)
139 {
140 if (have_vcpu_info_placement) {
141 int cpu;
142
143 for_each_online_cpu(cpu) {
144 bool other_cpu = (cpu != smp_processor_id());
145
146 if (other_cpu &&
147 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
148 BUG();
149
150 xen_vcpu_setup(cpu);
151
152 if (other_cpu &&
153 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
154 BUG();
155 }
156
157 BUG_ON(!have_vcpu_info_placement);
158 }
159 }
160
161 static void __init xen_banner(void)
162 {
163 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
164 struct xen_extraversion extra;
165 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
166
167 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
168 pv_info.name);
169 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
170 version >> 16, version & 0xffff, extra.extraversion,
171 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
172 }
173
174 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
175 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
176
177 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
178 unsigned int *cx, unsigned int *dx)
179 {
180 unsigned maskecx = ~0;
181 unsigned maskedx = ~0;
182
183 /*
184 * Mask out inconvenient features, to try and disable as many
185 * unsupported kernel subsystems as possible.
186 */
187 if (*ax == 1) {
188 maskecx = cpuid_leaf1_ecx_mask;
189 maskedx = cpuid_leaf1_edx_mask;
190 }
191
192 asm(XEN_EMULATE_PREFIX "cpuid"
193 : "=a" (*ax),
194 "=b" (*bx),
195 "=c" (*cx),
196 "=d" (*dx)
197 : "0" (*ax), "2" (*cx));
198
199 *cx &= maskecx;
200 *dx &= maskedx;
201 }
202
203 static __init void xen_init_cpuid_mask(void)
204 {
205 unsigned int ax, bx, cx, dx;
206
207 cpuid_leaf1_edx_mask =
208 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
209 (1 << X86_FEATURE_MCA) | /* disable MCA */
210 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
211
212 if (!xen_initial_domain())
213 cpuid_leaf1_edx_mask &=
214 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
215 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
216
217 ax = 1;
218 xen_cpuid(&ax, &bx, &cx, &dx);
219
220 /* cpuid claims we support xsave; try enabling it to see what happens */
221 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
222 unsigned long cr4;
223
224 set_in_cr4(X86_CR4_OSXSAVE);
225
226 cr4 = read_cr4();
227
228 if ((cr4 & X86_CR4_OSXSAVE) == 0)
229 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
230
231 clear_in_cr4(X86_CR4_OSXSAVE);
232 }
233 }
234
235 static void xen_set_debugreg(int reg, unsigned long val)
236 {
237 HYPERVISOR_set_debugreg(reg, val);
238 }
239
240 static unsigned long xen_get_debugreg(int reg)
241 {
242 return HYPERVISOR_get_debugreg(reg);
243 }
244
245 static void xen_end_context_switch(struct task_struct *next)
246 {
247 xen_mc_flush();
248 paravirt_end_context_switch(next);
249 }
250
251 static unsigned long xen_store_tr(void)
252 {
253 return 0;
254 }
255
256 /*
257 * Set the page permissions for a particular virtual address. If the
258 * address is a vmalloc mapping (or other non-linear mapping), then
259 * find the linear mapping of the page and also set its protections to
260 * match.
261 */
262 static void set_aliased_prot(void *v, pgprot_t prot)
263 {
264 int level;
265 pte_t *ptep;
266 pte_t pte;
267 unsigned long pfn;
268 struct page *page;
269
270 ptep = lookup_address((unsigned long)v, &level);
271 BUG_ON(ptep == NULL);
272
273 pfn = pte_pfn(*ptep);
274 page = pfn_to_page(pfn);
275
276 pte = pfn_pte(pfn, prot);
277
278 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
279 BUG();
280
281 if (!PageHighMem(page)) {
282 void *av = __va(PFN_PHYS(pfn));
283
284 if (av != v)
285 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
286 BUG();
287 } else
288 kmap_flush_unused();
289 }
290
291 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
292 {
293 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
294 int i;
295
296 for(i = 0; i < entries; i += entries_per_page)
297 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
298 }
299
300 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
301 {
302 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
303 int i;
304
305 for(i = 0; i < entries; i += entries_per_page)
306 set_aliased_prot(ldt + i, PAGE_KERNEL);
307 }
308
309 static void xen_set_ldt(const void *addr, unsigned entries)
310 {
311 struct mmuext_op *op;
312 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
313
314 op = mcs.args;
315 op->cmd = MMUEXT_SET_LDT;
316 op->arg1.linear_addr = (unsigned long)addr;
317 op->arg2.nr_ents = entries;
318
319 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
320
321 xen_mc_issue(PARAVIRT_LAZY_CPU);
322 }
323
324 static void xen_load_gdt(const struct desc_ptr *dtr)
325 {
326 unsigned long va = dtr->address;
327 unsigned int size = dtr->size + 1;
328 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
329 unsigned long frames[pages];
330 int f;
331
332 /* A GDT can be up to 64k in size, which corresponds to 8192
333 8-byte entries, or 16 4k pages.. */
334
335 BUG_ON(size > 65536);
336 BUG_ON(va & ~PAGE_MASK);
337
338 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
339 int level;
340 pte_t *ptep = lookup_address(va, &level);
341 unsigned long pfn, mfn;
342 void *virt;
343
344 BUG_ON(ptep == NULL);
345
346 pfn = pte_pfn(*ptep);
347 mfn = pfn_to_mfn(pfn);
348 virt = __va(PFN_PHYS(pfn));
349
350 frames[f] = mfn;
351
352 make_lowmem_page_readonly((void *)va);
353 make_lowmem_page_readonly(virt);
354 }
355
356 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
357 BUG();
358 }
359
360 static void load_TLS_descriptor(struct thread_struct *t,
361 unsigned int cpu, unsigned int i)
362 {
363 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
364 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
365 struct multicall_space mc = __xen_mc_entry(0);
366
367 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
368 }
369
370 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
371 {
372 /*
373 * XXX sleazy hack: If we're being called in a lazy-cpu zone
374 * and lazy gs handling is enabled, it means we're in a
375 * context switch, and %gs has just been saved. This means we
376 * can zero it out to prevent faults on exit from the
377 * hypervisor if the next process has no %gs. Either way, it
378 * has been saved, and the new value will get loaded properly.
379 * This will go away as soon as Xen has been modified to not
380 * save/restore %gs for normal hypercalls.
381 *
382 * On x86_64, this hack is not used for %gs, because gs points
383 * to KERNEL_GS_BASE (and uses it for PDA references), so we
384 * must not zero %gs on x86_64
385 *
386 * For x86_64, we need to zero %fs, otherwise we may get an
387 * exception between the new %fs descriptor being loaded and
388 * %fs being effectively cleared at __switch_to().
389 */
390 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
391 #ifdef CONFIG_X86_32
392 lazy_load_gs(0);
393 #else
394 loadsegment(fs, 0);
395 #endif
396 }
397
398 xen_mc_batch();
399
400 load_TLS_descriptor(t, cpu, 0);
401 load_TLS_descriptor(t, cpu, 1);
402 load_TLS_descriptor(t, cpu, 2);
403
404 xen_mc_issue(PARAVIRT_LAZY_CPU);
405 }
406
407 #ifdef CONFIG_X86_64
408 static void xen_load_gs_index(unsigned int idx)
409 {
410 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
411 BUG();
412 }
413 #endif
414
415 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
416 const void *ptr)
417 {
418 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
419 u64 entry = *(u64 *)ptr;
420
421 preempt_disable();
422
423 xen_mc_flush();
424 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
425 BUG();
426
427 preempt_enable();
428 }
429
430 static int cvt_gate_to_trap(int vector, const gate_desc *val,
431 struct trap_info *info)
432 {
433 unsigned long addr;
434
435 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
436 return 0;
437
438 info->vector = vector;
439
440 addr = gate_offset(*val);
441 #ifdef CONFIG_X86_64
442 /*
443 * Look for known traps using IST, and substitute them
444 * appropriately. The debugger ones are the only ones we care
445 * about. Xen will handle faults like double_fault and
446 * machine_check, so we should never see them. Warn if
447 * there's an unexpected IST-using fault handler.
448 */
449 if (addr == (unsigned long)debug)
450 addr = (unsigned long)xen_debug;
451 else if (addr == (unsigned long)int3)
452 addr = (unsigned long)xen_int3;
453 else if (addr == (unsigned long)stack_segment)
454 addr = (unsigned long)xen_stack_segment;
455 else if (addr == (unsigned long)double_fault ||
456 addr == (unsigned long)nmi) {
457 /* Don't need to handle these */
458 return 0;
459 #ifdef CONFIG_X86_MCE
460 } else if (addr == (unsigned long)machine_check) {
461 return 0;
462 #endif
463 } else {
464 /* Some other trap using IST? */
465 if (WARN_ON(val->ist != 0))
466 return 0;
467 }
468 #endif /* CONFIG_X86_64 */
469 info->address = addr;
470
471 info->cs = gate_segment(*val);
472 info->flags = val->dpl;
473 /* interrupt gates clear IF */
474 if (val->type == GATE_INTERRUPT)
475 info->flags |= 1 << 2;
476
477 return 1;
478 }
479
480 /* Locations of each CPU's IDT */
481 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
482
483 /* Set an IDT entry. If the entry is part of the current IDT, then
484 also update Xen. */
485 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
486 {
487 unsigned long p = (unsigned long)&dt[entrynum];
488 unsigned long start, end;
489
490 preempt_disable();
491
492 start = __get_cpu_var(idt_desc).address;
493 end = start + __get_cpu_var(idt_desc).size + 1;
494
495 xen_mc_flush();
496
497 native_write_idt_entry(dt, entrynum, g);
498
499 if (p >= start && (p + 8) <= end) {
500 struct trap_info info[2];
501
502 info[1].address = 0;
503
504 if (cvt_gate_to_trap(entrynum, g, &info[0]))
505 if (HYPERVISOR_set_trap_table(info))
506 BUG();
507 }
508
509 preempt_enable();
510 }
511
512 static void xen_convert_trap_info(const struct desc_ptr *desc,
513 struct trap_info *traps)
514 {
515 unsigned in, out, count;
516
517 count = (desc->size+1) / sizeof(gate_desc);
518 BUG_ON(count > 256);
519
520 for (in = out = 0; in < count; in++) {
521 gate_desc *entry = (gate_desc*)(desc->address) + in;
522
523 if (cvt_gate_to_trap(in, entry, &traps[out]))
524 out++;
525 }
526 traps[out].address = 0;
527 }
528
529 void xen_copy_trap_info(struct trap_info *traps)
530 {
531 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
532
533 xen_convert_trap_info(desc, traps);
534 }
535
536 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
537 hold a spinlock to protect the static traps[] array (static because
538 it avoids allocation, and saves stack space). */
539 static void xen_load_idt(const struct desc_ptr *desc)
540 {
541 static DEFINE_SPINLOCK(lock);
542 static struct trap_info traps[257];
543
544 spin_lock(&lock);
545
546 __get_cpu_var(idt_desc) = *desc;
547
548 xen_convert_trap_info(desc, traps);
549
550 xen_mc_flush();
551 if (HYPERVISOR_set_trap_table(traps))
552 BUG();
553
554 spin_unlock(&lock);
555 }
556
557 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
558 they're handled differently. */
559 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
560 const void *desc, int type)
561 {
562 preempt_disable();
563
564 switch (type) {
565 case DESC_LDT:
566 case DESC_TSS:
567 /* ignore */
568 break;
569
570 default: {
571 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
572
573 xen_mc_flush();
574 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
575 BUG();
576 }
577
578 }
579
580 preempt_enable();
581 }
582
583 static void xen_load_sp0(struct tss_struct *tss,
584 struct thread_struct *thread)
585 {
586 struct multicall_space mcs = xen_mc_entry(0);
587 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
588 xen_mc_issue(PARAVIRT_LAZY_CPU);
589 }
590
591 static void xen_set_iopl_mask(unsigned mask)
592 {
593 struct physdev_set_iopl set_iopl;
594
595 /* Force the change at ring 0. */
596 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
597 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
598 }
599
600 static void xen_io_delay(void)
601 {
602 }
603
604 #ifdef CONFIG_X86_LOCAL_APIC
605 static u32 xen_apic_read(u32 reg)
606 {
607 return 0;
608 }
609
610 static void xen_apic_write(u32 reg, u32 val)
611 {
612 /* Warn to see if there's any stray references */
613 WARN_ON(1);
614 }
615
616 static u64 xen_apic_icr_read(void)
617 {
618 return 0;
619 }
620
621 static void xen_apic_icr_write(u32 low, u32 id)
622 {
623 /* Warn to see if there's any stray references */
624 WARN_ON(1);
625 }
626
627 static void xen_apic_wait_icr_idle(void)
628 {
629 return;
630 }
631
632 static u32 xen_safe_apic_wait_icr_idle(void)
633 {
634 return 0;
635 }
636
637 static void set_xen_basic_apic_ops(void)
638 {
639 apic->read = xen_apic_read;
640 apic->write = xen_apic_write;
641 apic->icr_read = xen_apic_icr_read;
642 apic->icr_write = xen_apic_icr_write;
643 apic->wait_icr_idle = xen_apic_wait_icr_idle;
644 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
645 }
646
647 #endif
648
649
650 static void xen_clts(void)
651 {
652 struct multicall_space mcs;
653
654 mcs = xen_mc_entry(0);
655
656 MULTI_fpu_taskswitch(mcs.mc, 0);
657
658 xen_mc_issue(PARAVIRT_LAZY_CPU);
659 }
660
661 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
662
663 static unsigned long xen_read_cr0(void)
664 {
665 unsigned long cr0 = percpu_read(xen_cr0_value);
666
667 if (unlikely(cr0 == 0)) {
668 cr0 = native_read_cr0();
669 percpu_write(xen_cr0_value, cr0);
670 }
671
672 return cr0;
673 }
674
675 static void xen_write_cr0(unsigned long cr0)
676 {
677 struct multicall_space mcs;
678
679 percpu_write(xen_cr0_value, cr0);
680
681 /* Only pay attention to cr0.TS; everything else is
682 ignored. */
683 mcs = xen_mc_entry(0);
684
685 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
686
687 xen_mc_issue(PARAVIRT_LAZY_CPU);
688 }
689
690 static void xen_write_cr4(unsigned long cr4)
691 {
692 cr4 &= ~X86_CR4_PGE;
693 cr4 &= ~X86_CR4_PSE;
694
695 native_write_cr4(cr4);
696 }
697
698 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
699 {
700 int ret;
701
702 ret = 0;
703
704 switch (msr) {
705 #ifdef CONFIG_X86_64
706 unsigned which;
707 u64 base;
708
709 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
710 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
711 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
712
713 set:
714 base = ((u64)high << 32) | low;
715 if (HYPERVISOR_set_segment_base(which, base) != 0)
716 ret = -EFAULT;
717 break;
718 #endif
719
720 case MSR_STAR:
721 case MSR_CSTAR:
722 case MSR_LSTAR:
723 case MSR_SYSCALL_MASK:
724 case MSR_IA32_SYSENTER_CS:
725 case MSR_IA32_SYSENTER_ESP:
726 case MSR_IA32_SYSENTER_EIP:
727 /* Fast syscall setup is all done in hypercalls, so
728 these are all ignored. Stub them out here to stop
729 Xen console noise. */
730 break;
731
732 default:
733 ret = native_write_msr_safe(msr, low, high);
734 }
735
736 return ret;
737 }
738
739 void xen_setup_shared_info(void)
740 {
741 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
742 set_fixmap(FIX_PARAVIRT_BOOTMAP,
743 xen_start_info->shared_info);
744
745 HYPERVISOR_shared_info =
746 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
747 } else
748 HYPERVISOR_shared_info =
749 (struct shared_info *)__va(xen_start_info->shared_info);
750
751 #ifndef CONFIG_SMP
752 /* In UP this is as good a place as any to set up shared info */
753 xen_setup_vcpu_info_placement();
754 #endif
755
756 xen_setup_mfn_list_list();
757 }
758
759 /* This is called once we have the cpu_possible_map */
760 void xen_setup_vcpu_info_placement(void)
761 {
762 int cpu;
763
764 for_each_possible_cpu(cpu)
765 xen_vcpu_setup(cpu);
766
767 /* xen_vcpu_setup managed to place the vcpu_info within the
768 percpu area for all cpus, so make use of it */
769 if (have_vcpu_info_placement) {
770 printk(KERN_INFO "Xen: using vcpu_info placement\n");
771
772 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
773 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
774 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
775 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
776 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
777 }
778 }
779
780 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
781 unsigned long addr, unsigned len)
782 {
783 char *start, *end, *reloc;
784 unsigned ret;
785
786 start = end = reloc = NULL;
787
788 #define SITE(op, x) \
789 case PARAVIRT_PATCH(op.x): \
790 if (have_vcpu_info_placement) { \
791 start = (char *)xen_##x##_direct; \
792 end = xen_##x##_direct_end; \
793 reloc = xen_##x##_direct_reloc; \
794 } \
795 goto patch_site
796
797 switch (type) {
798 SITE(pv_irq_ops, irq_enable);
799 SITE(pv_irq_ops, irq_disable);
800 SITE(pv_irq_ops, save_fl);
801 SITE(pv_irq_ops, restore_fl);
802 #undef SITE
803
804 patch_site:
805 if (start == NULL || (end-start) > len)
806 goto default_patch;
807
808 ret = paravirt_patch_insns(insnbuf, len, start, end);
809
810 /* Note: because reloc is assigned from something that
811 appears to be an array, gcc assumes it's non-null,
812 but doesn't know its relationship with start and
813 end. */
814 if (reloc > start && reloc < end) {
815 int reloc_off = reloc - start;
816 long *relocp = (long *)(insnbuf + reloc_off);
817 long delta = start - (char *)addr;
818
819 *relocp += delta;
820 }
821 break;
822
823 default_patch:
824 default:
825 ret = paravirt_patch_default(type, clobbers, insnbuf,
826 addr, len);
827 break;
828 }
829
830 return ret;
831 }
832
833 static const struct pv_info xen_info __initdata = {
834 .paravirt_enabled = 1,
835 .shared_kernel_pmd = 0,
836
837 .name = "Xen",
838 };
839
840 static const struct pv_init_ops xen_init_ops __initdata = {
841 .patch = xen_patch,
842
843 .banner = xen_banner,
844 .memory_setup = xen_memory_setup,
845 .arch_setup = xen_arch_setup,
846 .post_allocator_init = xen_post_allocator_init,
847 };
848
849 static const struct pv_time_ops xen_time_ops __initdata = {
850 .time_init = xen_time_init,
851
852 .set_wallclock = xen_set_wallclock,
853 .get_wallclock = xen_get_wallclock,
854 .get_tsc_khz = xen_tsc_khz,
855 .sched_clock = xen_sched_clock,
856 };
857
858 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
859 .cpuid = xen_cpuid,
860
861 .set_debugreg = xen_set_debugreg,
862 .get_debugreg = xen_get_debugreg,
863
864 .clts = xen_clts,
865
866 .read_cr0 = xen_read_cr0,
867 .write_cr0 = xen_write_cr0,
868
869 .read_cr4 = native_read_cr4,
870 .read_cr4_safe = native_read_cr4_safe,
871 .write_cr4 = xen_write_cr4,
872
873 .wbinvd = native_wbinvd,
874
875 .read_msr = native_read_msr_safe,
876 .write_msr = xen_write_msr_safe,
877 .read_tsc = native_read_tsc,
878 .read_pmc = native_read_pmc,
879
880 .iret = xen_iret,
881 .irq_enable_sysexit = xen_sysexit,
882 #ifdef CONFIG_X86_64
883 .usergs_sysret32 = xen_sysret32,
884 .usergs_sysret64 = xen_sysret64,
885 #endif
886
887 .load_tr_desc = paravirt_nop,
888 .set_ldt = xen_set_ldt,
889 .load_gdt = xen_load_gdt,
890 .load_idt = xen_load_idt,
891 .load_tls = xen_load_tls,
892 #ifdef CONFIG_X86_64
893 .load_gs_index = xen_load_gs_index,
894 #endif
895
896 .alloc_ldt = xen_alloc_ldt,
897 .free_ldt = xen_free_ldt,
898
899 .store_gdt = native_store_gdt,
900 .store_idt = native_store_idt,
901 .store_tr = xen_store_tr,
902
903 .write_ldt_entry = xen_write_ldt_entry,
904 .write_gdt_entry = xen_write_gdt_entry,
905 .write_idt_entry = xen_write_idt_entry,
906 .load_sp0 = xen_load_sp0,
907
908 .set_iopl_mask = xen_set_iopl_mask,
909 .io_delay = xen_io_delay,
910
911 /* Xen takes care of %gs when switching to usermode for us */
912 .swapgs = paravirt_nop,
913
914 .start_context_switch = paravirt_start_context_switch,
915 .end_context_switch = xen_end_context_switch,
916 };
917
918 static const struct pv_apic_ops xen_apic_ops __initdata = {
919 #ifdef CONFIG_X86_LOCAL_APIC
920 .setup_boot_clock = paravirt_nop,
921 .setup_secondary_clock = paravirt_nop,
922 .startup_ipi_hook = paravirt_nop,
923 #endif
924 };
925
926 static void xen_reboot(int reason)
927 {
928 struct sched_shutdown r = { .reason = reason };
929
930 #ifdef CONFIG_SMP
931 smp_send_stop();
932 #endif
933
934 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
935 BUG();
936 }
937
938 static void xen_restart(char *msg)
939 {
940 xen_reboot(SHUTDOWN_reboot);
941 }
942
943 static void xen_emergency_restart(void)
944 {
945 xen_reboot(SHUTDOWN_reboot);
946 }
947
948 static void xen_machine_halt(void)
949 {
950 xen_reboot(SHUTDOWN_poweroff);
951 }
952
953 static void xen_crash_shutdown(struct pt_regs *regs)
954 {
955 xen_reboot(SHUTDOWN_crash);
956 }
957
958 static const struct machine_ops __initdata xen_machine_ops = {
959 .restart = xen_restart,
960 .halt = xen_machine_halt,
961 .power_off = xen_machine_halt,
962 .shutdown = xen_machine_halt,
963 .crash_shutdown = xen_crash_shutdown,
964 .emergency_restart = xen_emergency_restart,
965 };
966
967 /* First C function to be called on Xen boot */
968 asmlinkage void __init xen_start_kernel(void)
969 {
970 pgd_t *pgd;
971
972 if (!xen_start_info)
973 return;
974
975 xen_domain_type = XEN_PV_DOMAIN;
976
977 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
978
979 xen_setup_features();
980
981 /* Install Xen paravirt ops */
982 pv_info = xen_info;
983 pv_init_ops = xen_init_ops;
984 pv_time_ops = xen_time_ops;
985 pv_cpu_ops = xen_cpu_ops;
986 pv_apic_ops = xen_apic_ops;
987 pv_mmu_ops = xen_mmu_ops;
988
989 xen_init_irq_ops();
990
991 xen_init_cpuid_mask();
992
993 #ifdef CONFIG_X86_LOCAL_APIC
994 /*
995 * set up the basic apic ops.
996 */
997 set_xen_basic_apic_ops();
998 #endif
999
1000 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1001 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1002 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1003 }
1004
1005 machine_ops = xen_machine_ops;
1006
1007 #ifdef CONFIG_X86_64
1008 /*
1009 * Setup percpu state. We only need to do this for 64-bit
1010 * because 32-bit already has %fs set properly.
1011 */
1012 load_percpu_segment(0);
1013 #endif
1014 /*
1015 * The only reliable way to retain the initial address of the
1016 * percpu gdt_page is to remember it here, so we can go and
1017 * mark it RW later, when the initial percpu area is freed.
1018 */
1019 xen_initial_gdt = &per_cpu(gdt_page, 0);
1020
1021 xen_smp_init();
1022
1023 /* Get mfn list */
1024 if (!xen_feature(XENFEAT_auto_translated_physmap))
1025 xen_build_dynamic_phys_to_machine();
1026
1027 pgd = (pgd_t *)xen_start_info->pt_base;
1028
1029 /* Prevent unwanted bits from being set in PTEs. */
1030 __supported_pte_mask &= ~_PAGE_GLOBAL;
1031 if (!xen_initial_domain())
1032 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1033
1034 #ifdef CONFIG_X86_64
1035 /* Work out if we support NX */
1036 check_efer();
1037 #endif
1038
1039 /* Don't do the full vcpu_info placement stuff until we have a
1040 possible map and a non-dummy shared_info. */
1041 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1042
1043 local_irq_disable();
1044 early_boot_irqs_off();
1045
1046 xen_raw_console_write("mapping kernel into physical memory\n");
1047 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1048
1049 init_mm.pgd = pgd;
1050
1051 /* keep using Xen gdt for now; no urgent need to change it */
1052
1053 pv_info.kernel_rpl = 1;
1054 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1055 pv_info.kernel_rpl = 0;
1056
1057 /* set the limit of our address space */
1058 xen_reserve_top();
1059
1060 #ifdef CONFIG_X86_32
1061 /* set up basic CPUID stuff */
1062 cpu_detect(&new_cpu_data);
1063 new_cpu_data.hard_math = 1;
1064 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1065 #endif
1066
1067 /* Poke various useful things into boot_params */
1068 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1069 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1070 ? __pa(xen_start_info->mod_start) : 0;
1071 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1072 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1073
1074 if (!xen_initial_domain()) {
1075 add_preferred_console("xenboot", 0, NULL);
1076 add_preferred_console("tty", 0, NULL);
1077 add_preferred_console("hvc", 0, NULL);
1078 }
1079
1080 xen_raw_console_write("about to get started...\n");
1081
1082 /* Start the world */
1083 #ifdef CONFIG_X86_32
1084 i386_start_kernel();
1085 #else
1086 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1087 #endif
1088 }