]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/xen/enlighten.c
xen/pvh: Don't setup P2M tree.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/xen-mca.h>
44 #include <xen/features.h>
45 #include <xen/page.h>
46 #include <xen/hvm.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49 #include <xen/features.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mwait.h>
71 #include <asm/pci_x86.h>
72 #include <asm/pat.h>
73
74 #ifdef CONFIG_ACPI
75 #include <linux/acpi.h>
76 #include <asm/acpi.h>
77 #include <acpi/pdc_intel.h>
78 #include <acpi/processor.h>
79 #include <xen/interface/platform.h>
80 #endif
81
82 #include "xen-ops.h"
83 #include "mmu.h"
84 #include "smp.h"
85 #include "multicalls.h"
86
87 EXPORT_SYMBOL_GPL(hypercall_page);
88
89 /*
90 * Pointer to the xen_vcpu_info structure or
91 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
92 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
93 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
94 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
95 * acknowledge pending events.
96 * Also more subtly it is used by the patched version of irq enable/disable
97 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
98 *
99 * The desire to be able to do those mask/unmask operations as a single
100 * instruction by using the per-cpu offset held in %gs is the real reason
101 * vcpu info is in a per-cpu pointer and the original reason for this
102 * hypercall.
103 *
104 */
105 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
106
107 /*
108 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
109 * hypercall. This can be used both in PV and PVHVM mode. The structure
110 * overrides the default per_cpu(xen_vcpu, cpu) value.
111 */
112 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
113
114 enum xen_domain_type xen_domain_type = XEN_NATIVE;
115 EXPORT_SYMBOL_GPL(xen_domain_type);
116
117 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
118 EXPORT_SYMBOL(machine_to_phys_mapping);
119 unsigned long machine_to_phys_nr;
120 EXPORT_SYMBOL(machine_to_phys_nr);
121
122 struct start_info *xen_start_info;
123 EXPORT_SYMBOL_GPL(xen_start_info);
124
125 struct shared_info xen_dummy_shared_info;
126
127 void *xen_initial_gdt;
128
129 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
130 __read_mostly int xen_have_vector_callback;
131 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
132
133 /*
134 * Point at some empty memory to start with. We map the real shared_info
135 * page as soon as fixmap is up and running.
136 */
137 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
138
139 /*
140 * Flag to determine whether vcpu info placement is available on all
141 * VCPUs. We assume it is to start with, and then set it to zero on
142 * the first failure. This is because it can succeed on some VCPUs
143 * and not others, since it can involve hypervisor memory allocation,
144 * or because the guest failed to guarantee all the appropriate
145 * constraints on all VCPUs (ie buffer can't cross a page boundary).
146 *
147 * Note that any particular CPU may be using a placed vcpu structure,
148 * but we can only optimise if the all are.
149 *
150 * 0: not available, 1: available
151 */
152 static int have_vcpu_info_placement = 1;
153
154 struct tls_descs {
155 struct desc_struct desc[3];
156 };
157
158 /*
159 * Updating the 3 TLS descriptors in the GDT on every task switch is
160 * surprisingly expensive so we avoid updating them if they haven't
161 * changed. Since Xen writes different descriptors than the one
162 * passed in the update_descriptor hypercall we keep shadow copies to
163 * compare against.
164 */
165 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
166
167 static void clamp_max_cpus(void)
168 {
169 #ifdef CONFIG_SMP
170 if (setup_max_cpus > MAX_VIRT_CPUS)
171 setup_max_cpus = MAX_VIRT_CPUS;
172 #endif
173 }
174
175 static void xen_vcpu_setup(int cpu)
176 {
177 struct vcpu_register_vcpu_info info;
178 int err;
179 struct vcpu_info *vcpup;
180
181 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
182
183 /*
184 * This path is called twice on PVHVM - first during bootup via
185 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
186 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
187 * As we can only do the VCPUOP_register_vcpu_info once lets
188 * not over-write its result.
189 *
190 * For PV it is called during restore (xen_vcpu_restore) and bootup
191 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
192 * use this function.
193 */
194 if (xen_hvm_domain()) {
195 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
196 return;
197 }
198 if (cpu < MAX_VIRT_CPUS)
199 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
200
201 if (!have_vcpu_info_placement) {
202 if (cpu >= MAX_VIRT_CPUS)
203 clamp_max_cpus();
204 return;
205 }
206
207 vcpup = &per_cpu(xen_vcpu_info, cpu);
208 info.mfn = arbitrary_virt_to_mfn(vcpup);
209 info.offset = offset_in_page(vcpup);
210
211 /* Check to see if the hypervisor will put the vcpu_info
212 structure where we want it, which allows direct access via
213 a percpu-variable.
214 N.B. This hypercall can _only_ be called once per CPU. Subsequent
215 calls will error out with -EINVAL. This is due to the fact that
216 hypervisor has no unregister variant and this hypercall does not
217 allow to over-write info.mfn and info.offset.
218 */
219 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
220
221 if (err) {
222 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
223 have_vcpu_info_placement = 0;
224 clamp_max_cpus();
225 } else {
226 /* This cpu is using the registered vcpu info, even if
227 later ones fail to. */
228 per_cpu(xen_vcpu, cpu) = vcpup;
229 }
230 }
231
232 /*
233 * On restore, set the vcpu placement up again.
234 * If it fails, then we're in a bad state, since
235 * we can't back out from using it...
236 */
237 void xen_vcpu_restore(void)
238 {
239 int cpu;
240
241 for_each_possible_cpu(cpu) {
242 bool other_cpu = (cpu != smp_processor_id());
243 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
244
245 if (other_cpu && is_up &&
246 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
247 BUG();
248
249 xen_setup_runstate_info(cpu);
250
251 if (have_vcpu_info_placement)
252 xen_vcpu_setup(cpu);
253
254 if (other_cpu && is_up &&
255 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
256 BUG();
257 }
258 }
259
260 static void __init xen_banner(void)
261 {
262 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
263 struct xen_extraversion extra;
264 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
265
266 pr_info("Booting paravirtualized kernel %son %s\n",
267 xen_feature(XENFEAT_auto_translated_physmap) ?
268 "with PVH extensions " : "", pv_info.name);
269 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
270 version >> 16, version & 0xffff, extra.extraversion,
271 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
272 }
273 /* Check if running on Xen version (major, minor) or later */
274 bool
275 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
276 {
277 unsigned int version;
278
279 if (!xen_domain())
280 return false;
281
282 version = HYPERVISOR_xen_version(XENVER_version, NULL);
283 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
284 ((version >> 16) > major))
285 return true;
286 return false;
287 }
288
289 #define CPUID_THERM_POWER_LEAF 6
290 #define APERFMPERF_PRESENT 0
291
292 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
293 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
294
295 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
296 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
297 static __read_mostly unsigned int cpuid_leaf5_edx_val;
298
299 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
300 unsigned int *cx, unsigned int *dx)
301 {
302 unsigned maskebx = ~0;
303 unsigned maskecx = ~0;
304 unsigned maskedx = ~0;
305 unsigned setecx = 0;
306 /*
307 * Mask out inconvenient features, to try and disable as many
308 * unsupported kernel subsystems as possible.
309 */
310 switch (*ax) {
311 case 1:
312 maskecx = cpuid_leaf1_ecx_mask;
313 setecx = cpuid_leaf1_ecx_set_mask;
314 maskedx = cpuid_leaf1_edx_mask;
315 break;
316
317 case CPUID_MWAIT_LEAF:
318 /* Synthesize the values.. */
319 *ax = 0;
320 *bx = 0;
321 *cx = cpuid_leaf5_ecx_val;
322 *dx = cpuid_leaf5_edx_val;
323 return;
324
325 case CPUID_THERM_POWER_LEAF:
326 /* Disabling APERFMPERF for kernel usage */
327 maskecx = ~(1 << APERFMPERF_PRESENT);
328 break;
329
330 case 0xb:
331 /* Suppress extended topology stuff */
332 maskebx = 0;
333 break;
334 }
335
336 asm(XEN_EMULATE_PREFIX "cpuid"
337 : "=a" (*ax),
338 "=b" (*bx),
339 "=c" (*cx),
340 "=d" (*dx)
341 : "0" (*ax), "2" (*cx));
342
343 *bx &= maskebx;
344 *cx &= maskecx;
345 *cx |= setecx;
346 *dx &= maskedx;
347
348 }
349
350 static bool __init xen_check_mwait(void)
351 {
352 #ifdef CONFIG_ACPI
353 struct xen_platform_op op = {
354 .cmd = XENPF_set_processor_pminfo,
355 .u.set_pminfo.id = -1,
356 .u.set_pminfo.type = XEN_PM_PDC,
357 };
358 uint32_t buf[3];
359 unsigned int ax, bx, cx, dx;
360 unsigned int mwait_mask;
361
362 /* We need to determine whether it is OK to expose the MWAIT
363 * capability to the kernel to harvest deeper than C3 states from ACPI
364 * _CST using the processor_harvest_xen.c module. For this to work, we
365 * need to gather the MWAIT_LEAF values (which the cstate.c code
366 * checks against). The hypervisor won't expose the MWAIT flag because
367 * it would break backwards compatibility; so we will find out directly
368 * from the hardware and hypercall.
369 */
370 if (!xen_initial_domain())
371 return false;
372
373 /*
374 * When running under platform earlier than Xen4.2, do not expose
375 * mwait, to avoid the risk of loading native acpi pad driver
376 */
377 if (!xen_running_on_version_or_later(4, 2))
378 return false;
379
380 ax = 1;
381 cx = 0;
382
383 native_cpuid(&ax, &bx, &cx, &dx);
384
385 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
386 (1 << (X86_FEATURE_MWAIT % 32));
387
388 if ((cx & mwait_mask) != mwait_mask)
389 return false;
390
391 /* We need to emulate the MWAIT_LEAF and for that we need both
392 * ecx and edx. The hypercall provides only partial information.
393 */
394
395 ax = CPUID_MWAIT_LEAF;
396 bx = 0;
397 cx = 0;
398 dx = 0;
399
400 native_cpuid(&ax, &bx, &cx, &dx);
401
402 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
403 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
404 */
405 buf[0] = ACPI_PDC_REVISION_ID;
406 buf[1] = 1;
407 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
408
409 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
410
411 if ((HYPERVISOR_dom0_op(&op) == 0) &&
412 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
413 cpuid_leaf5_ecx_val = cx;
414 cpuid_leaf5_edx_val = dx;
415 }
416 return true;
417 #else
418 return false;
419 #endif
420 }
421 static void __init xen_init_cpuid_mask(void)
422 {
423 unsigned int ax, bx, cx, dx;
424 unsigned int xsave_mask;
425
426 cpuid_leaf1_edx_mask =
427 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
428 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
429
430 if (!xen_initial_domain())
431 cpuid_leaf1_edx_mask &=
432 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
433
434 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
435
436 ax = 1;
437 cx = 0;
438 cpuid(1, &ax, &bx, &cx, &dx);
439
440 xsave_mask =
441 (1 << (X86_FEATURE_XSAVE % 32)) |
442 (1 << (X86_FEATURE_OSXSAVE % 32));
443
444 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
445 if ((cx & xsave_mask) != xsave_mask)
446 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
447 if (xen_check_mwait())
448 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
449 }
450
451 static void xen_set_debugreg(int reg, unsigned long val)
452 {
453 HYPERVISOR_set_debugreg(reg, val);
454 }
455
456 static unsigned long xen_get_debugreg(int reg)
457 {
458 return HYPERVISOR_get_debugreg(reg);
459 }
460
461 static void xen_end_context_switch(struct task_struct *next)
462 {
463 xen_mc_flush();
464 paravirt_end_context_switch(next);
465 }
466
467 static unsigned long xen_store_tr(void)
468 {
469 return 0;
470 }
471
472 /*
473 * Set the page permissions for a particular virtual address. If the
474 * address is a vmalloc mapping (or other non-linear mapping), then
475 * find the linear mapping of the page and also set its protections to
476 * match.
477 */
478 static void set_aliased_prot(void *v, pgprot_t prot)
479 {
480 int level;
481 pte_t *ptep;
482 pte_t pte;
483 unsigned long pfn;
484 struct page *page;
485
486 ptep = lookup_address((unsigned long)v, &level);
487 BUG_ON(ptep == NULL);
488
489 pfn = pte_pfn(*ptep);
490 page = pfn_to_page(pfn);
491
492 pte = pfn_pte(pfn, prot);
493
494 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
495 BUG();
496
497 if (!PageHighMem(page)) {
498 void *av = __va(PFN_PHYS(pfn));
499
500 if (av != v)
501 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
502 BUG();
503 } else
504 kmap_flush_unused();
505 }
506
507 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
508 {
509 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
510 int i;
511
512 for(i = 0; i < entries; i += entries_per_page)
513 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
514 }
515
516 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
517 {
518 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
519 int i;
520
521 for(i = 0; i < entries; i += entries_per_page)
522 set_aliased_prot(ldt + i, PAGE_KERNEL);
523 }
524
525 static void xen_set_ldt(const void *addr, unsigned entries)
526 {
527 struct mmuext_op *op;
528 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
529
530 trace_xen_cpu_set_ldt(addr, entries);
531
532 op = mcs.args;
533 op->cmd = MMUEXT_SET_LDT;
534 op->arg1.linear_addr = (unsigned long)addr;
535 op->arg2.nr_ents = entries;
536
537 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
538
539 xen_mc_issue(PARAVIRT_LAZY_CPU);
540 }
541
542 static void xen_load_gdt(const struct desc_ptr *dtr)
543 {
544 unsigned long va = dtr->address;
545 unsigned int size = dtr->size + 1;
546 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
547 unsigned long frames[pages];
548 int f;
549
550 /*
551 * A GDT can be up to 64k in size, which corresponds to 8192
552 * 8-byte entries, or 16 4k pages..
553 */
554
555 BUG_ON(size > 65536);
556 BUG_ON(va & ~PAGE_MASK);
557
558 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
559 int level;
560 pte_t *ptep;
561 unsigned long pfn, mfn;
562 void *virt;
563
564 /*
565 * The GDT is per-cpu and is in the percpu data area.
566 * That can be virtually mapped, so we need to do a
567 * page-walk to get the underlying MFN for the
568 * hypercall. The page can also be in the kernel's
569 * linear range, so we need to RO that mapping too.
570 */
571 ptep = lookup_address(va, &level);
572 BUG_ON(ptep == NULL);
573
574 pfn = pte_pfn(*ptep);
575 mfn = pfn_to_mfn(pfn);
576 virt = __va(PFN_PHYS(pfn));
577
578 frames[f] = mfn;
579
580 make_lowmem_page_readonly((void *)va);
581 make_lowmem_page_readonly(virt);
582 }
583
584 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
585 BUG();
586 }
587
588 /*
589 * load_gdt for early boot, when the gdt is only mapped once
590 */
591 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
592 {
593 unsigned long va = dtr->address;
594 unsigned int size = dtr->size + 1;
595 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
596 unsigned long frames[pages];
597 int f;
598
599 /*
600 * A GDT can be up to 64k in size, which corresponds to 8192
601 * 8-byte entries, or 16 4k pages..
602 */
603
604 BUG_ON(size > 65536);
605 BUG_ON(va & ~PAGE_MASK);
606
607 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
608 pte_t pte;
609 unsigned long pfn, mfn;
610
611 pfn = virt_to_pfn(va);
612 mfn = pfn_to_mfn(pfn);
613
614 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
615
616 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
617 BUG();
618
619 frames[f] = mfn;
620 }
621
622 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
623 BUG();
624 }
625
626 static inline bool desc_equal(const struct desc_struct *d1,
627 const struct desc_struct *d2)
628 {
629 return d1->a == d2->a && d1->b == d2->b;
630 }
631
632 static void load_TLS_descriptor(struct thread_struct *t,
633 unsigned int cpu, unsigned int i)
634 {
635 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
636 struct desc_struct *gdt;
637 xmaddr_t maddr;
638 struct multicall_space mc;
639
640 if (desc_equal(shadow, &t->tls_array[i]))
641 return;
642
643 *shadow = t->tls_array[i];
644
645 gdt = get_cpu_gdt_table(cpu);
646 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
647 mc = __xen_mc_entry(0);
648
649 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
650 }
651
652 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
653 {
654 /*
655 * XXX sleazy hack: If we're being called in a lazy-cpu zone
656 * and lazy gs handling is enabled, it means we're in a
657 * context switch, and %gs has just been saved. This means we
658 * can zero it out to prevent faults on exit from the
659 * hypervisor if the next process has no %gs. Either way, it
660 * has been saved, and the new value will get loaded properly.
661 * This will go away as soon as Xen has been modified to not
662 * save/restore %gs for normal hypercalls.
663 *
664 * On x86_64, this hack is not used for %gs, because gs points
665 * to KERNEL_GS_BASE (and uses it for PDA references), so we
666 * must not zero %gs on x86_64
667 *
668 * For x86_64, we need to zero %fs, otherwise we may get an
669 * exception between the new %fs descriptor being loaded and
670 * %fs being effectively cleared at __switch_to().
671 */
672 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
673 #ifdef CONFIG_X86_32
674 lazy_load_gs(0);
675 #else
676 loadsegment(fs, 0);
677 #endif
678 }
679
680 xen_mc_batch();
681
682 load_TLS_descriptor(t, cpu, 0);
683 load_TLS_descriptor(t, cpu, 1);
684 load_TLS_descriptor(t, cpu, 2);
685
686 xen_mc_issue(PARAVIRT_LAZY_CPU);
687 }
688
689 #ifdef CONFIG_X86_64
690 static void xen_load_gs_index(unsigned int idx)
691 {
692 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
693 BUG();
694 }
695 #endif
696
697 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
698 const void *ptr)
699 {
700 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
701 u64 entry = *(u64 *)ptr;
702
703 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
704
705 preempt_disable();
706
707 xen_mc_flush();
708 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
709 BUG();
710
711 preempt_enable();
712 }
713
714 static int cvt_gate_to_trap(int vector, const gate_desc *val,
715 struct trap_info *info)
716 {
717 unsigned long addr;
718
719 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
720 return 0;
721
722 info->vector = vector;
723
724 addr = gate_offset(*val);
725 #ifdef CONFIG_X86_64
726 /*
727 * Look for known traps using IST, and substitute them
728 * appropriately. The debugger ones are the only ones we care
729 * about. Xen will handle faults like double_fault,
730 * so we should never see them. Warn if
731 * there's an unexpected IST-using fault handler.
732 */
733 if (addr == (unsigned long)debug)
734 addr = (unsigned long)xen_debug;
735 else if (addr == (unsigned long)int3)
736 addr = (unsigned long)xen_int3;
737 else if (addr == (unsigned long)stack_segment)
738 addr = (unsigned long)xen_stack_segment;
739 else if (addr == (unsigned long)double_fault) {
740 /* Don't need to handle these */
741 return 0;
742 #ifdef CONFIG_X86_MCE
743 } else if (addr == (unsigned long)machine_check) {
744 /*
745 * when xen hypervisor inject vMCE to guest,
746 * use native mce handler to handle it
747 */
748 ;
749 #endif
750 } else if (addr == (unsigned long)nmi)
751 /*
752 * Use the native version as well.
753 */
754 ;
755 else {
756 /* Some other trap using IST? */
757 if (WARN_ON(val->ist != 0))
758 return 0;
759 }
760 #endif /* CONFIG_X86_64 */
761 info->address = addr;
762
763 info->cs = gate_segment(*val);
764 info->flags = val->dpl;
765 /* interrupt gates clear IF */
766 if (val->type == GATE_INTERRUPT)
767 info->flags |= 1 << 2;
768
769 return 1;
770 }
771
772 /* Locations of each CPU's IDT */
773 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
774
775 /* Set an IDT entry. If the entry is part of the current IDT, then
776 also update Xen. */
777 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
778 {
779 unsigned long p = (unsigned long)&dt[entrynum];
780 unsigned long start, end;
781
782 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
783
784 preempt_disable();
785
786 start = __this_cpu_read(idt_desc.address);
787 end = start + __this_cpu_read(idt_desc.size) + 1;
788
789 xen_mc_flush();
790
791 native_write_idt_entry(dt, entrynum, g);
792
793 if (p >= start && (p + 8) <= end) {
794 struct trap_info info[2];
795
796 info[1].address = 0;
797
798 if (cvt_gate_to_trap(entrynum, g, &info[0]))
799 if (HYPERVISOR_set_trap_table(info))
800 BUG();
801 }
802
803 preempt_enable();
804 }
805
806 static void xen_convert_trap_info(const struct desc_ptr *desc,
807 struct trap_info *traps)
808 {
809 unsigned in, out, count;
810
811 count = (desc->size+1) / sizeof(gate_desc);
812 BUG_ON(count > 256);
813
814 for (in = out = 0; in < count; in++) {
815 gate_desc *entry = (gate_desc*)(desc->address) + in;
816
817 if (cvt_gate_to_trap(in, entry, &traps[out]))
818 out++;
819 }
820 traps[out].address = 0;
821 }
822
823 void xen_copy_trap_info(struct trap_info *traps)
824 {
825 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
826
827 xen_convert_trap_info(desc, traps);
828 }
829
830 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
831 hold a spinlock to protect the static traps[] array (static because
832 it avoids allocation, and saves stack space). */
833 static void xen_load_idt(const struct desc_ptr *desc)
834 {
835 static DEFINE_SPINLOCK(lock);
836 static struct trap_info traps[257];
837
838 trace_xen_cpu_load_idt(desc);
839
840 spin_lock(&lock);
841
842 __get_cpu_var(idt_desc) = *desc;
843
844 xen_convert_trap_info(desc, traps);
845
846 xen_mc_flush();
847 if (HYPERVISOR_set_trap_table(traps))
848 BUG();
849
850 spin_unlock(&lock);
851 }
852
853 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
854 they're handled differently. */
855 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
856 const void *desc, int type)
857 {
858 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
859
860 preempt_disable();
861
862 switch (type) {
863 case DESC_LDT:
864 case DESC_TSS:
865 /* ignore */
866 break;
867
868 default: {
869 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
870
871 xen_mc_flush();
872 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
873 BUG();
874 }
875
876 }
877
878 preempt_enable();
879 }
880
881 /*
882 * Version of write_gdt_entry for use at early boot-time needed to
883 * update an entry as simply as possible.
884 */
885 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
886 const void *desc, int type)
887 {
888 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
889
890 switch (type) {
891 case DESC_LDT:
892 case DESC_TSS:
893 /* ignore */
894 break;
895
896 default: {
897 xmaddr_t maddr = virt_to_machine(&dt[entry]);
898
899 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
900 dt[entry] = *(struct desc_struct *)desc;
901 }
902
903 }
904 }
905
906 static void xen_load_sp0(struct tss_struct *tss,
907 struct thread_struct *thread)
908 {
909 struct multicall_space mcs;
910
911 mcs = xen_mc_entry(0);
912 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
913 xen_mc_issue(PARAVIRT_LAZY_CPU);
914 }
915
916 static void xen_set_iopl_mask(unsigned mask)
917 {
918 struct physdev_set_iopl set_iopl;
919
920 /* Force the change at ring 0. */
921 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
922 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
923 }
924
925 static void xen_io_delay(void)
926 {
927 }
928
929 #ifdef CONFIG_X86_LOCAL_APIC
930 static unsigned long xen_set_apic_id(unsigned int x)
931 {
932 WARN_ON(1);
933 return x;
934 }
935 static unsigned int xen_get_apic_id(unsigned long x)
936 {
937 return ((x)>>24) & 0xFFu;
938 }
939 static u32 xen_apic_read(u32 reg)
940 {
941 struct xen_platform_op op = {
942 .cmd = XENPF_get_cpuinfo,
943 .interface_version = XENPF_INTERFACE_VERSION,
944 .u.pcpu_info.xen_cpuid = 0,
945 };
946 int ret = 0;
947
948 /* Shouldn't need this as APIC is turned off for PV, and we only
949 * get called on the bootup processor. But just in case. */
950 if (!xen_initial_domain() || smp_processor_id())
951 return 0;
952
953 if (reg == APIC_LVR)
954 return 0x10;
955
956 if (reg != APIC_ID)
957 return 0;
958
959 ret = HYPERVISOR_dom0_op(&op);
960 if (ret)
961 return 0;
962
963 return op.u.pcpu_info.apic_id << 24;
964 }
965
966 static void xen_apic_write(u32 reg, u32 val)
967 {
968 /* Warn to see if there's any stray references */
969 WARN_ON(1);
970 }
971
972 static u64 xen_apic_icr_read(void)
973 {
974 return 0;
975 }
976
977 static void xen_apic_icr_write(u32 low, u32 id)
978 {
979 /* Warn to see if there's any stray references */
980 WARN_ON(1);
981 }
982
983 static void xen_apic_wait_icr_idle(void)
984 {
985 return;
986 }
987
988 static u32 xen_safe_apic_wait_icr_idle(void)
989 {
990 return 0;
991 }
992
993 static void set_xen_basic_apic_ops(void)
994 {
995 apic->read = xen_apic_read;
996 apic->write = xen_apic_write;
997 apic->icr_read = xen_apic_icr_read;
998 apic->icr_write = xen_apic_icr_write;
999 apic->wait_icr_idle = xen_apic_wait_icr_idle;
1000 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
1001 apic->set_apic_id = xen_set_apic_id;
1002 apic->get_apic_id = xen_get_apic_id;
1003
1004 #ifdef CONFIG_SMP
1005 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1006 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1007 apic->send_IPI_mask = xen_send_IPI_mask;
1008 apic->send_IPI_all = xen_send_IPI_all;
1009 apic->send_IPI_self = xen_send_IPI_self;
1010 #endif
1011 }
1012
1013 #endif
1014
1015 static void xen_clts(void)
1016 {
1017 struct multicall_space mcs;
1018
1019 mcs = xen_mc_entry(0);
1020
1021 MULTI_fpu_taskswitch(mcs.mc, 0);
1022
1023 xen_mc_issue(PARAVIRT_LAZY_CPU);
1024 }
1025
1026 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1027
1028 static unsigned long xen_read_cr0(void)
1029 {
1030 unsigned long cr0 = this_cpu_read(xen_cr0_value);
1031
1032 if (unlikely(cr0 == 0)) {
1033 cr0 = native_read_cr0();
1034 this_cpu_write(xen_cr0_value, cr0);
1035 }
1036
1037 return cr0;
1038 }
1039
1040 static void xen_write_cr0(unsigned long cr0)
1041 {
1042 struct multicall_space mcs;
1043
1044 this_cpu_write(xen_cr0_value, cr0);
1045
1046 /* Only pay attention to cr0.TS; everything else is
1047 ignored. */
1048 mcs = xen_mc_entry(0);
1049
1050 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1051
1052 xen_mc_issue(PARAVIRT_LAZY_CPU);
1053 }
1054
1055 static void xen_write_cr4(unsigned long cr4)
1056 {
1057 cr4 &= ~X86_CR4_PGE;
1058 cr4 &= ~X86_CR4_PSE;
1059
1060 native_write_cr4(cr4);
1061 }
1062 #ifdef CONFIG_X86_64
1063 static inline unsigned long xen_read_cr8(void)
1064 {
1065 return 0;
1066 }
1067 static inline void xen_write_cr8(unsigned long val)
1068 {
1069 BUG_ON(val);
1070 }
1071 #endif
1072 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1073 {
1074 int ret;
1075
1076 ret = 0;
1077
1078 switch (msr) {
1079 #ifdef CONFIG_X86_64
1080 unsigned which;
1081 u64 base;
1082
1083 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1084 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1085 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1086
1087 set:
1088 base = ((u64)high << 32) | low;
1089 if (HYPERVISOR_set_segment_base(which, base) != 0)
1090 ret = -EIO;
1091 break;
1092 #endif
1093
1094 case MSR_STAR:
1095 case MSR_CSTAR:
1096 case MSR_LSTAR:
1097 case MSR_SYSCALL_MASK:
1098 case MSR_IA32_SYSENTER_CS:
1099 case MSR_IA32_SYSENTER_ESP:
1100 case MSR_IA32_SYSENTER_EIP:
1101 /* Fast syscall setup is all done in hypercalls, so
1102 these are all ignored. Stub them out here to stop
1103 Xen console noise. */
1104 break;
1105
1106 case MSR_IA32_CR_PAT:
1107 if (smp_processor_id() == 0)
1108 xen_set_pat(((u64)high << 32) | low);
1109 break;
1110
1111 default:
1112 ret = native_write_msr_safe(msr, low, high);
1113 }
1114
1115 return ret;
1116 }
1117
1118 void xen_setup_shared_info(void)
1119 {
1120 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1121 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1122 xen_start_info->shared_info);
1123
1124 HYPERVISOR_shared_info =
1125 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1126 } else
1127 HYPERVISOR_shared_info =
1128 (struct shared_info *)__va(xen_start_info->shared_info);
1129
1130 #ifndef CONFIG_SMP
1131 /* In UP this is as good a place as any to set up shared info */
1132 xen_setup_vcpu_info_placement();
1133 #endif
1134
1135 xen_setup_mfn_list_list();
1136 }
1137
1138 /* This is called once we have the cpu_possible_mask */
1139 void xen_setup_vcpu_info_placement(void)
1140 {
1141 int cpu;
1142
1143 for_each_possible_cpu(cpu)
1144 xen_vcpu_setup(cpu);
1145
1146 /* xen_vcpu_setup managed to place the vcpu_info within the
1147 percpu area for all cpus, so make use of it */
1148 if (have_vcpu_info_placement) {
1149 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1150 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1151 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1152 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1153 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1154 }
1155 }
1156
1157 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1158 unsigned long addr, unsigned len)
1159 {
1160 char *start, *end, *reloc;
1161 unsigned ret;
1162
1163 start = end = reloc = NULL;
1164
1165 #define SITE(op, x) \
1166 case PARAVIRT_PATCH(op.x): \
1167 if (have_vcpu_info_placement) { \
1168 start = (char *)xen_##x##_direct; \
1169 end = xen_##x##_direct_end; \
1170 reloc = xen_##x##_direct_reloc; \
1171 } \
1172 goto patch_site
1173
1174 switch (type) {
1175 SITE(pv_irq_ops, irq_enable);
1176 SITE(pv_irq_ops, irq_disable);
1177 SITE(pv_irq_ops, save_fl);
1178 SITE(pv_irq_ops, restore_fl);
1179 #undef SITE
1180
1181 patch_site:
1182 if (start == NULL || (end-start) > len)
1183 goto default_patch;
1184
1185 ret = paravirt_patch_insns(insnbuf, len, start, end);
1186
1187 /* Note: because reloc is assigned from something that
1188 appears to be an array, gcc assumes it's non-null,
1189 but doesn't know its relationship with start and
1190 end. */
1191 if (reloc > start && reloc < end) {
1192 int reloc_off = reloc - start;
1193 long *relocp = (long *)(insnbuf + reloc_off);
1194 long delta = start - (char *)addr;
1195
1196 *relocp += delta;
1197 }
1198 break;
1199
1200 default_patch:
1201 default:
1202 ret = paravirt_patch_default(type, clobbers, insnbuf,
1203 addr, len);
1204 break;
1205 }
1206
1207 return ret;
1208 }
1209
1210 static const struct pv_info xen_info __initconst = {
1211 .paravirt_enabled = 1,
1212 .shared_kernel_pmd = 0,
1213
1214 #ifdef CONFIG_X86_64
1215 .extra_user_64bit_cs = FLAT_USER_CS64,
1216 #endif
1217
1218 .name = "Xen",
1219 };
1220
1221 static const struct pv_init_ops xen_init_ops __initconst = {
1222 .patch = xen_patch,
1223 };
1224
1225 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1226 .cpuid = xen_cpuid,
1227
1228 .set_debugreg = xen_set_debugreg,
1229 .get_debugreg = xen_get_debugreg,
1230
1231 .clts = xen_clts,
1232
1233 .read_cr0 = xen_read_cr0,
1234 .write_cr0 = xen_write_cr0,
1235
1236 .read_cr4 = native_read_cr4,
1237 .read_cr4_safe = native_read_cr4_safe,
1238 .write_cr4 = xen_write_cr4,
1239
1240 #ifdef CONFIG_X86_64
1241 .read_cr8 = xen_read_cr8,
1242 .write_cr8 = xen_write_cr8,
1243 #endif
1244
1245 .wbinvd = native_wbinvd,
1246
1247 .read_msr = native_read_msr_safe,
1248 .write_msr = xen_write_msr_safe,
1249
1250 .read_tsc = native_read_tsc,
1251 .read_pmc = native_read_pmc,
1252
1253 .read_tscp = native_read_tscp,
1254
1255 .iret = xen_iret,
1256 .irq_enable_sysexit = xen_sysexit,
1257 #ifdef CONFIG_X86_64
1258 .usergs_sysret32 = xen_sysret32,
1259 .usergs_sysret64 = xen_sysret64,
1260 #endif
1261
1262 .load_tr_desc = paravirt_nop,
1263 .set_ldt = xen_set_ldt,
1264 .load_gdt = xen_load_gdt,
1265 .load_idt = xen_load_idt,
1266 .load_tls = xen_load_tls,
1267 #ifdef CONFIG_X86_64
1268 .load_gs_index = xen_load_gs_index,
1269 #endif
1270
1271 .alloc_ldt = xen_alloc_ldt,
1272 .free_ldt = xen_free_ldt,
1273
1274 .store_idt = native_store_idt,
1275 .store_tr = xen_store_tr,
1276
1277 .write_ldt_entry = xen_write_ldt_entry,
1278 .write_gdt_entry = xen_write_gdt_entry,
1279 .write_idt_entry = xen_write_idt_entry,
1280 .load_sp0 = xen_load_sp0,
1281
1282 .set_iopl_mask = xen_set_iopl_mask,
1283 .io_delay = xen_io_delay,
1284
1285 /* Xen takes care of %gs when switching to usermode for us */
1286 .swapgs = paravirt_nop,
1287
1288 .start_context_switch = paravirt_start_context_switch,
1289 .end_context_switch = xen_end_context_switch,
1290 };
1291
1292 static const struct pv_apic_ops xen_apic_ops __initconst = {
1293 #ifdef CONFIG_X86_LOCAL_APIC
1294 .startup_ipi_hook = paravirt_nop,
1295 #endif
1296 };
1297
1298 static void xen_reboot(int reason)
1299 {
1300 struct sched_shutdown r = { .reason = reason };
1301
1302 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1303 BUG();
1304 }
1305
1306 static void xen_restart(char *msg)
1307 {
1308 xen_reboot(SHUTDOWN_reboot);
1309 }
1310
1311 static void xen_emergency_restart(void)
1312 {
1313 xen_reboot(SHUTDOWN_reboot);
1314 }
1315
1316 static void xen_machine_halt(void)
1317 {
1318 xen_reboot(SHUTDOWN_poweroff);
1319 }
1320
1321 static void xen_machine_power_off(void)
1322 {
1323 if (pm_power_off)
1324 pm_power_off();
1325 xen_reboot(SHUTDOWN_poweroff);
1326 }
1327
1328 static void xen_crash_shutdown(struct pt_regs *regs)
1329 {
1330 xen_reboot(SHUTDOWN_crash);
1331 }
1332
1333 static int
1334 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1335 {
1336 xen_reboot(SHUTDOWN_crash);
1337 return NOTIFY_DONE;
1338 }
1339
1340 static struct notifier_block xen_panic_block = {
1341 .notifier_call= xen_panic_event,
1342 };
1343
1344 int xen_panic_handler_init(void)
1345 {
1346 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1347 return 0;
1348 }
1349
1350 static const struct machine_ops xen_machine_ops __initconst = {
1351 .restart = xen_restart,
1352 .halt = xen_machine_halt,
1353 .power_off = xen_machine_power_off,
1354 .shutdown = xen_machine_halt,
1355 .crash_shutdown = xen_crash_shutdown,
1356 .emergency_restart = xen_emergency_restart,
1357 };
1358
1359 static void __init xen_boot_params_init_edd(void)
1360 {
1361 #if IS_ENABLED(CONFIG_EDD)
1362 struct xen_platform_op op;
1363 struct edd_info *edd_info;
1364 u32 *mbr_signature;
1365 unsigned nr;
1366 int ret;
1367
1368 edd_info = boot_params.eddbuf;
1369 mbr_signature = boot_params.edd_mbr_sig_buffer;
1370
1371 op.cmd = XENPF_firmware_info;
1372
1373 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1374 for (nr = 0; nr < EDDMAXNR; nr++) {
1375 struct edd_info *info = edd_info + nr;
1376
1377 op.u.firmware_info.index = nr;
1378 info->params.length = sizeof(info->params);
1379 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1380 &info->params);
1381 ret = HYPERVISOR_dom0_op(&op);
1382 if (ret)
1383 break;
1384
1385 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1386 C(device);
1387 C(version);
1388 C(interface_support);
1389 C(legacy_max_cylinder);
1390 C(legacy_max_head);
1391 C(legacy_sectors_per_track);
1392 #undef C
1393 }
1394 boot_params.eddbuf_entries = nr;
1395
1396 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1397 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1398 op.u.firmware_info.index = nr;
1399 ret = HYPERVISOR_dom0_op(&op);
1400 if (ret)
1401 break;
1402 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1403 }
1404 boot_params.edd_mbr_sig_buf_entries = nr;
1405 #endif
1406 }
1407
1408 /*
1409 * Set up the GDT and segment registers for -fstack-protector. Until
1410 * we do this, we have to be careful not to call any stack-protected
1411 * function, which is most of the kernel.
1412 */
1413 static void __init xen_setup_stackprotector(void)
1414 {
1415 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1416 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1417
1418 setup_stack_canary_segment(0);
1419 switch_to_new_gdt(0);
1420
1421 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1422 pv_cpu_ops.load_gdt = xen_load_gdt;
1423 }
1424
1425 static void __init xen_pvh_early_guest_init(void)
1426 {
1427 if (!xen_feature(XENFEAT_auto_translated_physmap))
1428 return;
1429
1430 if (xen_feature(XENFEAT_hvm_callback_vector))
1431 xen_have_vector_callback = 1;
1432
1433 #ifdef CONFIG_X86_32
1434 BUG(); /* PVH: Implement proper support. */
1435 #endif
1436 }
1437
1438 /* First C function to be called on Xen boot */
1439 asmlinkage void __init xen_start_kernel(void)
1440 {
1441 struct physdev_set_iopl set_iopl;
1442 int rc;
1443
1444 if (!xen_start_info)
1445 return;
1446
1447 xen_domain_type = XEN_PV_DOMAIN;
1448
1449 xen_setup_features();
1450 xen_pvh_early_guest_init();
1451 xen_setup_machphys_mapping();
1452
1453 /* Install Xen paravirt ops */
1454 pv_info = xen_info;
1455 pv_init_ops = xen_init_ops;
1456 pv_apic_ops = xen_apic_ops;
1457 if (!xen_pvh_domain())
1458 pv_cpu_ops = xen_cpu_ops;
1459
1460 x86_init.resources.memory_setup = xen_memory_setup;
1461 x86_init.oem.arch_setup = xen_arch_setup;
1462 x86_init.oem.banner = xen_banner;
1463
1464 xen_init_time_ops();
1465
1466 /*
1467 * Set up some pagetable state before starting to set any ptes.
1468 */
1469
1470 xen_init_mmu_ops();
1471
1472 /* Prevent unwanted bits from being set in PTEs. */
1473 __supported_pte_mask &= ~_PAGE_GLOBAL;
1474 #if 0
1475 if (!xen_initial_domain())
1476 #endif
1477 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1478
1479 __supported_pte_mask |= _PAGE_IOMAP;
1480
1481 /*
1482 * Prevent page tables from being allocated in highmem, even
1483 * if CONFIG_HIGHPTE is enabled.
1484 */
1485 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1486
1487 /* Work out if we support NX */
1488 x86_configure_nx();
1489
1490 /* Get mfn list */
1491 xen_build_dynamic_phys_to_machine();
1492
1493 /*
1494 * Set up kernel GDT and segment registers, mainly so that
1495 * -fstack-protector code can be executed.
1496 */
1497 xen_setup_stackprotector();
1498
1499 xen_init_irq_ops();
1500 xen_init_cpuid_mask();
1501
1502 #ifdef CONFIG_X86_LOCAL_APIC
1503 /*
1504 * set up the basic apic ops.
1505 */
1506 set_xen_basic_apic_ops();
1507 #endif
1508
1509 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1510 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1511 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1512 }
1513
1514 machine_ops = xen_machine_ops;
1515
1516 /*
1517 * The only reliable way to retain the initial address of the
1518 * percpu gdt_page is to remember it here, so we can go and
1519 * mark it RW later, when the initial percpu area is freed.
1520 */
1521 xen_initial_gdt = &per_cpu(gdt_page, 0);
1522
1523 xen_smp_init();
1524
1525 #ifdef CONFIG_ACPI_NUMA
1526 /*
1527 * The pages we from Xen are not related to machine pages, so
1528 * any NUMA information the kernel tries to get from ACPI will
1529 * be meaningless. Prevent it from trying.
1530 */
1531 acpi_numa = -1;
1532 #endif
1533 #ifdef CONFIG_X86_PAT
1534 /*
1535 * For right now disable the PAT. We should remove this once
1536 * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1537 * (xen/pat: Disable PAT support for now) is reverted.
1538 */
1539 pat_enabled = 0;
1540 #endif
1541 /* Don't do the full vcpu_info placement stuff until we have a
1542 possible map and a non-dummy shared_info. */
1543 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1544
1545 local_irq_disable();
1546 early_boot_irqs_disabled = true;
1547
1548 xen_raw_console_write("mapping kernel into physical memory\n");
1549 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1550
1551 /* Allocate and initialize top and mid mfn levels for p2m structure */
1552 xen_build_mfn_list_list();
1553
1554 /* keep using Xen gdt for now; no urgent need to change it */
1555
1556 #ifdef CONFIG_X86_32
1557 pv_info.kernel_rpl = 1;
1558 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1559 pv_info.kernel_rpl = 0;
1560 #else
1561 pv_info.kernel_rpl = 0;
1562 #endif
1563 /* set the limit of our address space */
1564 xen_reserve_top();
1565
1566 /* PVH: runs at default kernel iopl of 0 */
1567 if (!xen_pvh_domain()) {
1568 /*
1569 * We used to do this in xen_arch_setup, but that is too late
1570 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1571 * early_amd_init which pokes 0xcf8 port.
1572 */
1573 set_iopl.iopl = 1;
1574 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1575 if (rc != 0)
1576 xen_raw_printk("physdev_op failed %d\n", rc);
1577 }
1578
1579 #ifdef CONFIG_X86_32
1580 /* set up basic CPUID stuff */
1581 cpu_detect(&new_cpu_data);
1582 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1583 new_cpu_data.wp_works_ok = 1;
1584 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1585 #endif
1586
1587 /* Poke various useful things into boot_params */
1588 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1589 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1590 ? __pa(xen_start_info->mod_start) : 0;
1591 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1592 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1593
1594 if (!xen_initial_domain()) {
1595 add_preferred_console("xenboot", 0, NULL);
1596 add_preferred_console("tty", 0, NULL);
1597 add_preferred_console("hvc", 0, NULL);
1598 if (pci_xen)
1599 x86_init.pci.arch_init = pci_xen_init;
1600 } else {
1601 const struct dom0_vga_console_info *info =
1602 (void *)((char *)xen_start_info +
1603 xen_start_info->console.dom0.info_off);
1604 struct xen_platform_op op = {
1605 .cmd = XENPF_firmware_info,
1606 .interface_version = XENPF_INTERFACE_VERSION,
1607 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1608 };
1609
1610 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1611 xen_start_info->console.domU.mfn = 0;
1612 xen_start_info->console.domU.evtchn = 0;
1613
1614 if (HYPERVISOR_dom0_op(&op) == 0)
1615 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1616
1617 xen_init_apic();
1618
1619 /* Make sure ACS will be enabled */
1620 pci_request_acs();
1621
1622 xen_acpi_sleep_register();
1623
1624 /* Avoid searching for BIOS MP tables */
1625 x86_init.mpparse.find_smp_config = x86_init_noop;
1626 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1627
1628 xen_boot_params_init_edd();
1629 }
1630 #ifdef CONFIG_PCI
1631 /* PCI BIOS service won't work from a PV guest. */
1632 pci_probe &= ~PCI_PROBE_BIOS;
1633 #endif
1634 xen_raw_console_write("about to get started...\n");
1635
1636 xen_setup_runstate_info(0);
1637
1638 /* Start the world */
1639 #ifdef CONFIG_X86_32
1640 i386_start_kernel();
1641 #else
1642 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1643 #endif
1644 }
1645
1646 void __ref xen_hvm_init_shared_info(void)
1647 {
1648 int cpu;
1649 struct xen_add_to_physmap xatp;
1650 static struct shared_info *shared_info_page = 0;
1651
1652 if (!shared_info_page)
1653 shared_info_page = (struct shared_info *)
1654 extend_brk(PAGE_SIZE, PAGE_SIZE);
1655 xatp.domid = DOMID_SELF;
1656 xatp.idx = 0;
1657 xatp.space = XENMAPSPACE_shared_info;
1658 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1659 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1660 BUG();
1661
1662 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1663
1664 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1665 * page, we use it in the event channel upcall and in some pvclock
1666 * related functions. We don't need the vcpu_info placement
1667 * optimizations because we don't use any pv_mmu or pv_irq op on
1668 * HVM.
1669 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1670 * online but xen_hvm_init_shared_info is run at resume time too and
1671 * in that case multiple vcpus might be online. */
1672 for_each_online_cpu(cpu) {
1673 /* Leave it to be NULL. */
1674 if (cpu >= MAX_VIRT_CPUS)
1675 continue;
1676 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1677 }
1678 }
1679
1680 #ifdef CONFIG_XEN_PVHVM
1681 static void __init init_hvm_pv_info(void)
1682 {
1683 int major, minor;
1684 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1685 u64 pfn;
1686
1687 base = xen_cpuid_base();
1688 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1689
1690 major = eax >> 16;
1691 minor = eax & 0xffff;
1692 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1693
1694 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1695
1696 pfn = __pa(hypercall_page);
1697 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1698
1699 xen_setup_features();
1700
1701 pv_info.name = "Xen HVM";
1702
1703 xen_domain_type = XEN_HVM_DOMAIN;
1704 }
1705
1706 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1707 void *hcpu)
1708 {
1709 int cpu = (long)hcpu;
1710 switch (action) {
1711 case CPU_UP_PREPARE:
1712 xen_vcpu_setup(cpu);
1713 if (xen_have_vector_callback) {
1714 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1715 xen_setup_timer(cpu);
1716 }
1717 break;
1718 default:
1719 break;
1720 }
1721 return NOTIFY_OK;
1722 }
1723
1724 static struct notifier_block xen_hvm_cpu_notifier = {
1725 .notifier_call = xen_hvm_cpu_notify,
1726 };
1727
1728 static void __init xen_hvm_guest_init(void)
1729 {
1730 init_hvm_pv_info();
1731
1732 xen_hvm_init_shared_info();
1733
1734 xen_panic_handler_init();
1735
1736 if (xen_feature(XENFEAT_hvm_callback_vector))
1737 xen_have_vector_callback = 1;
1738 xen_hvm_smp_init();
1739 register_cpu_notifier(&xen_hvm_cpu_notifier);
1740 xen_unplug_emulated_devices();
1741 x86_init.irqs.intr_init = xen_init_IRQ;
1742 xen_hvm_init_time_ops();
1743 xen_hvm_init_mmu_ops();
1744 }
1745
1746 static uint32_t __init xen_hvm_platform(void)
1747 {
1748 if (xen_pv_domain())
1749 return 0;
1750
1751 return xen_cpuid_base();
1752 }
1753
1754 bool xen_hvm_need_lapic(void)
1755 {
1756 if (xen_pv_domain())
1757 return false;
1758 if (!xen_hvm_domain())
1759 return false;
1760 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1761 return false;
1762 return true;
1763 }
1764 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1765
1766 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1767 .name = "Xen HVM",
1768 .detect = xen_hvm_platform,
1769 .init_platform = xen_hvm_guest_init,
1770 .x2apic_available = xen_x2apic_para_available,
1771 };
1772 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1773 #endif