]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/enlighten.c
Merge branch 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/xen-mca.h>
44 #include <xen/features.h>
45 #include <xen/page.h>
46 #include <xen/hvm.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49
50 #include <asm/paravirt.h>
51 #include <asm/apic.h>
52 #include <asm/page.h>
53 #include <asm/xen/pci.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/fixmap.h>
57 #include <asm/processor.h>
58 #include <asm/proto.h>
59 #include <asm/msr-index.h>
60 #include <asm/traps.h>
61 #include <asm/setup.h>
62 #include <asm/desc.h>
63 #include <asm/pgalloc.h>
64 #include <asm/pgtable.h>
65 #include <asm/tlbflush.h>
66 #include <asm/reboot.h>
67 #include <asm/stackprotector.h>
68 #include <asm/hypervisor.h>
69 #include <asm/mwait.h>
70 #include <asm/pci_x86.h>
71 #include <asm/pat.h>
72
73 #ifdef CONFIG_ACPI
74 #include <linux/acpi.h>
75 #include <asm/acpi.h>
76 #include <acpi/pdc_intel.h>
77 #include <acpi/processor.h>
78 #include <xen/interface/platform.h>
79 #endif
80
81 #include "xen-ops.h"
82 #include "mmu.h"
83 #include "smp.h"
84 #include "multicalls.h"
85
86 EXPORT_SYMBOL_GPL(hypercall_page);
87
88 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
89 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
90
91 enum xen_domain_type xen_domain_type = XEN_NATIVE;
92 EXPORT_SYMBOL_GPL(xen_domain_type);
93
94 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
95 EXPORT_SYMBOL(machine_to_phys_mapping);
96 unsigned long machine_to_phys_nr;
97 EXPORT_SYMBOL(machine_to_phys_nr);
98
99 struct start_info *xen_start_info;
100 EXPORT_SYMBOL_GPL(xen_start_info);
101
102 struct shared_info xen_dummy_shared_info;
103
104 void *xen_initial_gdt;
105
106 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
107 __read_mostly int xen_have_vector_callback;
108 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
109
110 /*
111 * Point at some empty memory to start with. We map the real shared_info
112 * page as soon as fixmap is up and running.
113 */
114 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
115
116 /*
117 * Flag to determine whether vcpu info placement is available on all
118 * VCPUs. We assume it is to start with, and then set it to zero on
119 * the first failure. This is because it can succeed on some VCPUs
120 * and not others, since it can involve hypervisor memory allocation,
121 * or because the guest failed to guarantee all the appropriate
122 * constraints on all VCPUs (ie buffer can't cross a page boundary).
123 *
124 * Note that any particular CPU may be using a placed vcpu structure,
125 * but we can only optimise if the all are.
126 *
127 * 0: not available, 1: available
128 */
129 static int have_vcpu_info_placement = 1;
130
131 struct tls_descs {
132 struct desc_struct desc[3];
133 };
134
135 /*
136 * Updating the 3 TLS descriptors in the GDT on every task switch is
137 * surprisingly expensive so we avoid updating them if they haven't
138 * changed. Since Xen writes different descriptors than the one
139 * passed in the update_descriptor hypercall we keep shadow copies to
140 * compare against.
141 */
142 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
143
144 static void clamp_max_cpus(void)
145 {
146 #ifdef CONFIG_SMP
147 if (setup_max_cpus > MAX_VIRT_CPUS)
148 setup_max_cpus = MAX_VIRT_CPUS;
149 #endif
150 }
151
152 static void xen_vcpu_setup(int cpu)
153 {
154 struct vcpu_register_vcpu_info info;
155 int err;
156 struct vcpu_info *vcpup;
157
158 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
159
160 if (cpu < MAX_VIRT_CPUS)
161 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
162
163 if (!have_vcpu_info_placement) {
164 if (cpu >= MAX_VIRT_CPUS)
165 clamp_max_cpus();
166 return;
167 }
168
169 vcpup = &per_cpu(xen_vcpu_info, cpu);
170 info.mfn = arbitrary_virt_to_mfn(vcpup);
171 info.offset = offset_in_page(vcpup);
172
173 /* Check to see if the hypervisor will put the vcpu_info
174 structure where we want it, which allows direct access via
175 a percpu-variable. */
176 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
177
178 if (err) {
179 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
180 have_vcpu_info_placement = 0;
181 clamp_max_cpus();
182 } else {
183 /* This cpu is using the registered vcpu info, even if
184 later ones fail to. */
185 per_cpu(xen_vcpu, cpu) = vcpup;
186 }
187 }
188
189 /*
190 * On restore, set the vcpu placement up again.
191 * If it fails, then we're in a bad state, since
192 * we can't back out from using it...
193 */
194 void xen_vcpu_restore(void)
195 {
196 int cpu;
197
198 for_each_possible_cpu(cpu) {
199 bool other_cpu = (cpu != smp_processor_id());
200 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
201
202 if (other_cpu && is_up &&
203 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
204 BUG();
205
206 xen_setup_runstate_info(cpu);
207
208 if (have_vcpu_info_placement)
209 xen_vcpu_setup(cpu);
210
211 if (other_cpu && is_up &&
212 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
213 BUG();
214 }
215 }
216
217 static void __init xen_banner(void)
218 {
219 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
220 struct xen_extraversion extra;
221 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
222
223 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
224 pv_info.name);
225 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
226 version >> 16, version & 0xffff, extra.extraversion,
227 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
228 }
229 /* Check if running on Xen version (major, minor) or later */
230 bool
231 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
232 {
233 unsigned int version;
234
235 if (!xen_domain())
236 return false;
237
238 version = HYPERVISOR_xen_version(XENVER_version, NULL);
239 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
240 ((version >> 16) > major))
241 return true;
242 return false;
243 }
244
245 #define CPUID_THERM_POWER_LEAF 6
246 #define APERFMPERF_PRESENT 0
247
248 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
249 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
250
251 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
252 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
253 static __read_mostly unsigned int cpuid_leaf5_edx_val;
254
255 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
256 unsigned int *cx, unsigned int *dx)
257 {
258 unsigned maskebx = ~0;
259 unsigned maskecx = ~0;
260 unsigned maskedx = ~0;
261 unsigned setecx = 0;
262 /*
263 * Mask out inconvenient features, to try and disable as many
264 * unsupported kernel subsystems as possible.
265 */
266 switch (*ax) {
267 case 1:
268 maskecx = cpuid_leaf1_ecx_mask;
269 setecx = cpuid_leaf1_ecx_set_mask;
270 maskedx = cpuid_leaf1_edx_mask;
271 break;
272
273 case CPUID_MWAIT_LEAF:
274 /* Synthesize the values.. */
275 *ax = 0;
276 *bx = 0;
277 *cx = cpuid_leaf5_ecx_val;
278 *dx = cpuid_leaf5_edx_val;
279 return;
280
281 case CPUID_THERM_POWER_LEAF:
282 /* Disabling APERFMPERF for kernel usage */
283 maskecx = ~(1 << APERFMPERF_PRESENT);
284 break;
285
286 case 0xb:
287 /* Suppress extended topology stuff */
288 maskebx = 0;
289 break;
290 }
291
292 asm(XEN_EMULATE_PREFIX "cpuid"
293 : "=a" (*ax),
294 "=b" (*bx),
295 "=c" (*cx),
296 "=d" (*dx)
297 : "0" (*ax), "2" (*cx));
298
299 *bx &= maskebx;
300 *cx &= maskecx;
301 *cx |= setecx;
302 *dx &= maskedx;
303
304 }
305
306 static bool __init xen_check_mwait(void)
307 {
308 #ifdef CONFIG_ACPI
309 struct xen_platform_op op = {
310 .cmd = XENPF_set_processor_pminfo,
311 .u.set_pminfo.id = -1,
312 .u.set_pminfo.type = XEN_PM_PDC,
313 };
314 uint32_t buf[3];
315 unsigned int ax, bx, cx, dx;
316 unsigned int mwait_mask;
317
318 /* We need to determine whether it is OK to expose the MWAIT
319 * capability to the kernel to harvest deeper than C3 states from ACPI
320 * _CST using the processor_harvest_xen.c module. For this to work, we
321 * need to gather the MWAIT_LEAF values (which the cstate.c code
322 * checks against). The hypervisor won't expose the MWAIT flag because
323 * it would break backwards compatibility; so we will find out directly
324 * from the hardware and hypercall.
325 */
326 if (!xen_initial_domain())
327 return false;
328
329 /*
330 * When running under platform earlier than Xen4.2, do not expose
331 * mwait, to avoid the risk of loading native acpi pad driver
332 */
333 if (!xen_running_on_version_or_later(4, 2))
334 return false;
335
336 ax = 1;
337 cx = 0;
338
339 native_cpuid(&ax, &bx, &cx, &dx);
340
341 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
342 (1 << (X86_FEATURE_MWAIT % 32));
343
344 if ((cx & mwait_mask) != mwait_mask)
345 return false;
346
347 /* We need to emulate the MWAIT_LEAF and for that we need both
348 * ecx and edx. The hypercall provides only partial information.
349 */
350
351 ax = CPUID_MWAIT_LEAF;
352 bx = 0;
353 cx = 0;
354 dx = 0;
355
356 native_cpuid(&ax, &bx, &cx, &dx);
357
358 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
359 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
360 */
361 buf[0] = ACPI_PDC_REVISION_ID;
362 buf[1] = 1;
363 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
364
365 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
366
367 if ((HYPERVISOR_dom0_op(&op) == 0) &&
368 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
369 cpuid_leaf5_ecx_val = cx;
370 cpuid_leaf5_edx_val = dx;
371 }
372 return true;
373 #else
374 return false;
375 #endif
376 }
377 static void __init xen_init_cpuid_mask(void)
378 {
379 unsigned int ax, bx, cx, dx;
380 unsigned int xsave_mask;
381
382 cpuid_leaf1_edx_mask =
383 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
384 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
385
386 if (!xen_initial_domain())
387 cpuid_leaf1_edx_mask &=
388 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
389 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
390 ax = 1;
391 cx = 0;
392 xen_cpuid(&ax, &bx, &cx, &dx);
393
394 xsave_mask =
395 (1 << (X86_FEATURE_XSAVE % 32)) |
396 (1 << (X86_FEATURE_OSXSAVE % 32));
397
398 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
399 if ((cx & xsave_mask) != xsave_mask)
400 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
401 if (xen_check_mwait())
402 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
403 }
404
405 static void xen_set_debugreg(int reg, unsigned long val)
406 {
407 HYPERVISOR_set_debugreg(reg, val);
408 }
409
410 static unsigned long xen_get_debugreg(int reg)
411 {
412 return HYPERVISOR_get_debugreg(reg);
413 }
414
415 static void xen_end_context_switch(struct task_struct *next)
416 {
417 xen_mc_flush();
418 paravirt_end_context_switch(next);
419 }
420
421 static unsigned long xen_store_tr(void)
422 {
423 return 0;
424 }
425
426 /*
427 * Set the page permissions for a particular virtual address. If the
428 * address is a vmalloc mapping (or other non-linear mapping), then
429 * find the linear mapping of the page and also set its protections to
430 * match.
431 */
432 static void set_aliased_prot(void *v, pgprot_t prot)
433 {
434 int level;
435 pte_t *ptep;
436 pte_t pte;
437 unsigned long pfn;
438 struct page *page;
439
440 ptep = lookup_address((unsigned long)v, &level);
441 BUG_ON(ptep == NULL);
442
443 pfn = pte_pfn(*ptep);
444 page = pfn_to_page(pfn);
445
446 pte = pfn_pte(pfn, prot);
447
448 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
449 BUG();
450
451 if (!PageHighMem(page)) {
452 void *av = __va(PFN_PHYS(pfn));
453
454 if (av != v)
455 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
456 BUG();
457 } else
458 kmap_flush_unused();
459 }
460
461 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
462 {
463 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
464 int i;
465
466 for(i = 0; i < entries; i += entries_per_page)
467 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
468 }
469
470 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
471 {
472 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
473 int i;
474
475 for(i = 0; i < entries; i += entries_per_page)
476 set_aliased_prot(ldt + i, PAGE_KERNEL);
477 }
478
479 static void xen_set_ldt(const void *addr, unsigned entries)
480 {
481 struct mmuext_op *op;
482 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
483
484 trace_xen_cpu_set_ldt(addr, entries);
485
486 op = mcs.args;
487 op->cmd = MMUEXT_SET_LDT;
488 op->arg1.linear_addr = (unsigned long)addr;
489 op->arg2.nr_ents = entries;
490
491 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
492
493 xen_mc_issue(PARAVIRT_LAZY_CPU);
494 }
495
496 static void xen_load_gdt(const struct desc_ptr *dtr)
497 {
498 unsigned long va = dtr->address;
499 unsigned int size = dtr->size + 1;
500 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
501 unsigned long frames[pages];
502 int f;
503
504 /*
505 * A GDT can be up to 64k in size, which corresponds to 8192
506 * 8-byte entries, or 16 4k pages..
507 */
508
509 BUG_ON(size > 65536);
510 BUG_ON(va & ~PAGE_MASK);
511
512 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
513 int level;
514 pte_t *ptep;
515 unsigned long pfn, mfn;
516 void *virt;
517
518 /*
519 * The GDT is per-cpu and is in the percpu data area.
520 * That can be virtually mapped, so we need to do a
521 * page-walk to get the underlying MFN for the
522 * hypercall. The page can also be in the kernel's
523 * linear range, so we need to RO that mapping too.
524 */
525 ptep = lookup_address(va, &level);
526 BUG_ON(ptep == NULL);
527
528 pfn = pte_pfn(*ptep);
529 mfn = pfn_to_mfn(pfn);
530 virt = __va(PFN_PHYS(pfn));
531
532 frames[f] = mfn;
533
534 make_lowmem_page_readonly((void *)va);
535 make_lowmem_page_readonly(virt);
536 }
537
538 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
539 BUG();
540 }
541
542 /*
543 * load_gdt for early boot, when the gdt is only mapped once
544 */
545 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
546 {
547 unsigned long va = dtr->address;
548 unsigned int size = dtr->size + 1;
549 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
550 unsigned long frames[pages];
551 int f;
552
553 /*
554 * A GDT can be up to 64k in size, which corresponds to 8192
555 * 8-byte entries, or 16 4k pages..
556 */
557
558 BUG_ON(size > 65536);
559 BUG_ON(va & ~PAGE_MASK);
560
561 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
562 pte_t pte;
563 unsigned long pfn, mfn;
564
565 pfn = virt_to_pfn(va);
566 mfn = pfn_to_mfn(pfn);
567
568 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
569
570 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
571 BUG();
572
573 frames[f] = mfn;
574 }
575
576 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
577 BUG();
578 }
579
580 static inline bool desc_equal(const struct desc_struct *d1,
581 const struct desc_struct *d2)
582 {
583 return d1->a == d2->a && d1->b == d2->b;
584 }
585
586 static void load_TLS_descriptor(struct thread_struct *t,
587 unsigned int cpu, unsigned int i)
588 {
589 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
590 struct desc_struct *gdt;
591 xmaddr_t maddr;
592 struct multicall_space mc;
593
594 if (desc_equal(shadow, &t->tls_array[i]))
595 return;
596
597 *shadow = t->tls_array[i];
598
599 gdt = get_cpu_gdt_table(cpu);
600 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
601 mc = __xen_mc_entry(0);
602
603 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
604 }
605
606 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
607 {
608 /*
609 * XXX sleazy hack: If we're being called in a lazy-cpu zone
610 * and lazy gs handling is enabled, it means we're in a
611 * context switch, and %gs has just been saved. This means we
612 * can zero it out to prevent faults on exit from the
613 * hypervisor if the next process has no %gs. Either way, it
614 * has been saved, and the new value will get loaded properly.
615 * This will go away as soon as Xen has been modified to not
616 * save/restore %gs for normal hypercalls.
617 *
618 * On x86_64, this hack is not used for %gs, because gs points
619 * to KERNEL_GS_BASE (and uses it for PDA references), so we
620 * must not zero %gs on x86_64
621 *
622 * For x86_64, we need to zero %fs, otherwise we may get an
623 * exception between the new %fs descriptor being loaded and
624 * %fs being effectively cleared at __switch_to().
625 */
626 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
627 #ifdef CONFIG_X86_32
628 lazy_load_gs(0);
629 #else
630 loadsegment(fs, 0);
631 #endif
632 }
633
634 xen_mc_batch();
635
636 load_TLS_descriptor(t, cpu, 0);
637 load_TLS_descriptor(t, cpu, 1);
638 load_TLS_descriptor(t, cpu, 2);
639
640 xen_mc_issue(PARAVIRT_LAZY_CPU);
641 }
642
643 #ifdef CONFIG_X86_64
644 static void xen_load_gs_index(unsigned int idx)
645 {
646 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
647 BUG();
648 }
649 #endif
650
651 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
652 const void *ptr)
653 {
654 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
655 u64 entry = *(u64 *)ptr;
656
657 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
658
659 preempt_disable();
660
661 xen_mc_flush();
662 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
663 BUG();
664
665 preempt_enable();
666 }
667
668 static int cvt_gate_to_trap(int vector, const gate_desc *val,
669 struct trap_info *info)
670 {
671 unsigned long addr;
672
673 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
674 return 0;
675
676 info->vector = vector;
677
678 addr = gate_offset(*val);
679 #ifdef CONFIG_X86_64
680 /*
681 * Look for known traps using IST, and substitute them
682 * appropriately. The debugger ones are the only ones we care
683 * about. Xen will handle faults like double_fault,
684 * so we should never see them. Warn if
685 * there's an unexpected IST-using fault handler.
686 */
687 if (addr == (unsigned long)debug)
688 addr = (unsigned long)xen_debug;
689 else if (addr == (unsigned long)int3)
690 addr = (unsigned long)xen_int3;
691 else if (addr == (unsigned long)stack_segment)
692 addr = (unsigned long)xen_stack_segment;
693 else if (addr == (unsigned long)double_fault ||
694 addr == (unsigned long)nmi) {
695 /* Don't need to handle these */
696 return 0;
697 #ifdef CONFIG_X86_MCE
698 } else if (addr == (unsigned long)machine_check) {
699 /*
700 * when xen hypervisor inject vMCE to guest,
701 * use native mce handler to handle it
702 */
703 ;
704 #endif
705 } else {
706 /* Some other trap using IST? */
707 if (WARN_ON(val->ist != 0))
708 return 0;
709 }
710 #endif /* CONFIG_X86_64 */
711 info->address = addr;
712
713 info->cs = gate_segment(*val);
714 info->flags = val->dpl;
715 /* interrupt gates clear IF */
716 if (val->type == GATE_INTERRUPT)
717 info->flags |= 1 << 2;
718
719 return 1;
720 }
721
722 /* Locations of each CPU's IDT */
723 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
724
725 /* Set an IDT entry. If the entry is part of the current IDT, then
726 also update Xen. */
727 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
728 {
729 unsigned long p = (unsigned long)&dt[entrynum];
730 unsigned long start, end;
731
732 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
733
734 preempt_disable();
735
736 start = __this_cpu_read(idt_desc.address);
737 end = start + __this_cpu_read(idt_desc.size) + 1;
738
739 xen_mc_flush();
740
741 native_write_idt_entry(dt, entrynum, g);
742
743 if (p >= start && (p + 8) <= end) {
744 struct trap_info info[2];
745
746 info[1].address = 0;
747
748 if (cvt_gate_to_trap(entrynum, g, &info[0]))
749 if (HYPERVISOR_set_trap_table(info))
750 BUG();
751 }
752
753 preempt_enable();
754 }
755
756 static void xen_convert_trap_info(const struct desc_ptr *desc,
757 struct trap_info *traps)
758 {
759 unsigned in, out, count;
760
761 count = (desc->size+1) / sizeof(gate_desc);
762 BUG_ON(count > 256);
763
764 for (in = out = 0; in < count; in++) {
765 gate_desc *entry = (gate_desc*)(desc->address) + in;
766
767 if (cvt_gate_to_trap(in, entry, &traps[out]))
768 out++;
769 }
770 traps[out].address = 0;
771 }
772
773 void xen_copy_trap_info(struct trap_info *traps)
774 {
775 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
776
777 xen_convert_trap_info(desc, traps);
778 }
779
780 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
781 hold a spinlock to protect the static traps[] array (static because
782 it avoids allocation, and saves stack space). */
783 static void xen_load_idt(const struct desc_ptr *desc)
784 {
785 static DEFINE_SPINLOCK(lock);
786 static struct trap_info traps[257];
787
788 trace_xen_cpu_load_idt(desc);
789
790 spin_lock(&lock);
791
792 __get_cpu_var(idt_desc) = *desc;
793
794 xen_convert_trap_info(desc, traps);
795
796 xen_mc_flush();
797 if (HYPERVISOR_set_trap_table(traps))
798 BUG();
799
800 spin_unlock(&lock);
801 }
802
803 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
804 they're handled differently. */
805 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
806 const void *desc, int type)
807 {
808 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
809
810 preempt_disable();
811
812 switch (type) {
813 case DESC_LDT:
814 case DESC_TSS:
815 /* ignore */
816 break;
817
818 default: {
819 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
820
821 xen_mc_flush();
822 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
823 BUG();
824 }
825
826 }
827
828 preempt_enable();
829 }
830
831 /*
832 * Version of write_gdt_entry for use at early boot-time needed to
833 * update an entry as simply as possible.
834 */
835 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
836 const void *desc, int type)
837 {
838 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
839
840 switch (type) {
841 case DESC_LDT:
842 case DESC_TSS:
843 /* ignore */
844 break;
845
846 default: {
847 xmaddr_t maddr = virt_to_machine(&dt[entry]);
848
849 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
850 dt[entry] = *(struct desc_struct *)desc;
851 }
852
853 }
854 }
855
856 static void xen_load_sp0(struct tss_struct *tss,
857 struct thread_struct *thread)
858 {
859 struct multicall_space mcs;
860
861 mcs = xen_mc_entry(0);
862 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
863 xen_mc_issue(PARAVIRT_LAZY_CPU);
864 }
865
866 static void xen_set_iopl_mask(unsigned mask)
867 {
868 struct physdev_set_iopl set_iopl;
869
870 /* Force the change at ring 0. */
871 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
872 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
873 }
874
875 static void xen_io_delay(void)
876 {
877 }
878
879 #ifdef CONFIG_X86_LOCAL_APIC
880 static unsigned long xen_set_apic_id(unsigned int x)
881 {
882 WARN_ON(1);
883 return x;
884 }
885 static unsigned int xen_get_apic_id(unsigned long x)
886 {
887 return ((x)>>24) & 0xFFu;
888 }
889 static u32 xen_apic_read(u32 reg)
890 {
891 struct xen_platform_op op = {
892 .cmd = XENPF_get_cpuinfo,
893 .interface_version = XENPF_INTERFACE_VERSION,
894 .u.pcpu_info.xen_cpuid = 0,
895 };
896 int ret = 0;
897
898 /* Shouldn't need this as APIC is turned off for PV, and we only
899 * get called on the bootup processor. But just in case. */
900 if (!xen_initial_domain() || smp_processor_id())
901 return 0;
902
903 if (reg == APIC_LVR)
904 return 0x10;
905
906 if (reg != APIC_ID)
907 return 0;
908
909 ret = HYPERVISOR_dom0_op(&op);
910 if (ret)
911 return 0;
912
913 return op.u.pcpu_info.apic_id << 24;
914 }
915
916 static void xen_apic_write(u32 reg, u32 val)
917 {
918 /* Warn to see if there's any stray references */
919 WARN_ON(1);
920 }
921
922 static u64 xen_apic_icr_read(void)
923 {
924 return 0;
925 }
926
927 static void xen_apic_icr_write(u32 low, u32 id)
928 {
929 /* Warn to see if there's any stray references */
930 WARN_ON(1);
931 }
932
933 static void xen_apic_wait_icr_idle(void)
934 {
935 return;
936 }
937
938 static u32 xen_safe_apic_wait_icr_idle(void)
939 {
940 return 0;
941 }
942
943 static void set_xen_basic_apic_ops(void)
944 {
945 apic->read = xen_apic_read;
946 apic->write = xen_apic_write;
947 apic->icr_read = xen_apic_icr_read;
948 apic->icr_write = xen_apic_icr_write;
949 apic->wait_icr_idle = xen_apic_wait_icr_idle;
950 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
951 apic->set_apic_id = xen_set_apic_id;
952 apic->get_apic_id = xen_get_apic_id;
953
954 #ifdef CONFIG_SMP
955 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
956 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
957 apic->send_IPI_mask = xen_send_IPI_mask;
958 apic->send_IPI_all = xen_send_IPI_all;
959 apic->send_IPI_self = xen_send_IPI_self;
960 #endif
961 }
962
963 #endif
964
965 static void xen_clts(void)
966 {
967 struct multicall_space mcs;
968
969 mcs = xen_mc_entry(0);
970
971 MULTI_fpu_taskswitch(mcs.mc, 0);
972
973 xen_mc_issue(PARAVIRT_LAZY_CPU);
974 }
975
976 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
977
978 static unsigned long xen_read_cr0(void)
979 {
980 unsigned long cr0 = this_cpu_read(xen_cr0_value);
981
982 if (unlikely(cr0 == 0)) {
983 cr0 = native_read_cr0();
984 this_cpu_write(xen_cr0_value, cr0);
985 }
986
987 return cr0;
988 }
989
990 static void xen_write_cr0(unsigned long cr0)
991 {
992 struct multicall_space mcs;
993
994 this_cpu_write(xen_cr0_value, cr0);
995
996 /* Only pay attention to cr0.TS; everything else is
997 ignored. */
998 mcs = xen_mc_entry(0);
999
1000 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1001
1002 xen_mc_issue(PARAVIRT_LAZY_CPU);
1003 }
1004
1005 static void xen_write_cr4(unsigned long cr4)
1006 {
1007 cr4 &= ~X86_CR4_PGE;
1008 cr4 &= ~X86_CR4_PSE;
1009
1010 native_write_cr4(cr4);
1011 }
1012 #ifdef CONFIG_X86_64
1013 static inline unsigned long xen_read_cr8(void)
1014 {
1015 return 0;
1016 }
1017 static inline void xen_write_cr8(unsigned long val)
1018 {
1019 BUG_ON(val);
1020 }
1021 #endif
1022 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1023 {
1024 int ret;
1025
1026 ret = 0;
1027
1028 switch (msr) {
1029 #ifdef CONFIG_X86_64
1030 unsigned which;
1031 u64 base;
1032
1033 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1034 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1035 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1036
1037 set:
1038 base = ((u64)high << 32) | low;
1039 if (HYPERVISOR_set_segment_base(which, base) != 0)
1040 ret = -EIO;
1041 break;
1042 #endif
1043
1044 case MSR_STAR:
1045 case MSR_CSTAR:
1046 case MSR_LSTAR:
1047 case MSR_SYSCALL_MASK:
1048 case MSR_IA32_SYSENTER_CS:
1049 case MSR_IA32_SYSENTER_ESP:
1050 case MSR_IA32_SYSENTER_EIP:
1051 /* Fast syscall setup is all done in hypercalls, so
1052 these are all ignored. Stub them out here to stop
1053 Xen console noise. */
1054 break;
1055
1056 case MSR_IA32_CR_PAT:
1057 if (smp_processor_id() == 0)
1058 xen_set_pat(((u64)high << 32) | low);
1059 break;
1060
1061 default:
1062 ret = native_write_msr_safe(msr, low, high);
1063 }
1064
1065 return ret;
1066 }
1067
1068 void xen_setup_shared_info(void)
1069 {
1070 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1071 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1072 xen_start_info->shared_info);
1073
1074 HYPERVISOR_shared_info =
1075 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1076 } else
1077 HYPERVISOR_shared_info =
1078 (struct shared_info *)__va(xen_start_info->shared_info);
1079
1080 #ifndef CONFIG_SMP
1081 /* In UP this is as good a place as any to set up shared info */
1082 xen_setup_vcpu_info_placement();
1083 #endif
1084
1085 xen_setup_mfn_list_list();
1086 }
1087
1088 /* This is called once we have the cpu_possible_mask */
1089 void xen_setup_vcpu_info_placement(void)
1090 {
1091 int cpu;
1092
1093 for_each_possible_cpu(cpu)
1094 xen_vcpu_setup(cpu);
1095
1096 /* xen_vcpu_setup managed to place the vcpu_info within the
1097 percpu area for all cpus, so make use of it */
1098 if (have_vcpu_info_placement) {
1099 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1100 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1101 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1102 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1103 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1104 }
1105 }
1106
1107 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1108 unsigned long addr, unsigned len)
1109 {
1110 char *start, *end, *reloc;
1111 unsigned ret;
1112
1113 start = end = reloc = NULL;
1114
1115 #define SITE(op, x) \
1116 case PARAVIRT_PATCH(op.x): \
1117 if (have_vcpu_info_placement) { \
1118 start = (char *)xen_##x##_direct; \
1119 end = xen_##x##_direct_end; \
1120 reloc = xen_##x##_direct_reloc; \
1121 } \
1122 goto patch_site
1123
1124 switch (type) {
1125 SITE(pv_irq_ops, irq_enable);
1126 SITE(pv_irq_ops, irq_disable);
1127 SITE(pv_irq_ops, save_fl);
1128 SITE(pv_irq_ops, restore_fl);
1129 #undef SITE
1130
1131 patch_site:
1132 if (start == NULL || (end-start) > len)
1133 goto default_patch;
1134
1135 ret = paravirt_patch_insns(insnbuf, len, start, end);
1136
1137 /* Note: because reloc is assigned from something that
1138 appears to be an array, gcc assumes it's non-null,
1139 but doesn't know its relationship with start and
1140 end. */
1141 if (reloc > start && reloc < end) {
1142 int reloc_off = reloc - start;
1143 long *relocp = (long *)(insnbuf + reloc_off);
1144 long delta = start - (char *)addr;
1145
1146 *relocp += delta;
1147 }
1148 break;
1149
1150 default_patch:
1151 default:
1152 ret = paravirt_patch_default(type, clobbers, insnbuf,
1153 addr, len);
1154 break;
1155 }
1156
1157 return ret;
1158 }
1159
1160 static const struct pv_info xen_info __initconst = {
1161 .paravirt_enabled = 1,
1162 .shared_kernel_pmd = 0,
1163
1164 #ifdef CONFIG_X86_64
1165 .extra_user_64bit_cs = FLAT_USER_CS64,
1166 #endif
1167
1168 .name = "Xen",
1169 };
1170
1171 static const struct pv_init_ops xen_init_ops __initconst = {
1172 .patch = xen_patch,
1173 };
1174
1175 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1176 .cpuid = xen_cpuid,
1177
1178 .set_debugreg = xen_set_debugreg,
1179 .get_debugreg = xen_get_debugreg,
1180
1181 .clts = xen_clts,
1182
1183 .read_cr0 = xen_read_cr0,
1184 .write_cr0 = xen_write_cr0,
1185
1186 .read_cr4 = native_read_cr4,
1187 .read_cr4_safe = native_read_cr4_safe,
1188 .write_cr4 = xen_write_cr4,
1189
1190 #ifdef CONFIG_X86_64
1191 .read_cr8 = xen_read_cr8,
1192 .write_cr8 = xen_write_cr8,
1193 #endif
1194
1195 .wbinvd = native_wbinvd,
1196
1197 .read_msr = native_read_msr_safe,
1198 .write_msr = xen_write_msr_safe,
1199
1200 .read_tsc = native_read_tsc,
1201 .read_pmc = native_read_pmc,
1202
1203 .read_tscp = native_read_tscp,
1204
1205 .iret = xen_iret,
1206 .irq_enable_sysexit = xen_sysexit,
1207 #ifdef CONFIG_X86_64
1208 .usergs_sysret32 = xen_sysret32,
1209 .usergs_sysret64 = xen_sysret64,
1210 #endif
1211
1212 .load_tr_desc = paravirt_nop,
1213 .set_ldt = xen_set_ldt,
1214 .load_gdt = xen_load_gdt,
1215 .load_idt = xen_load_idt,
1216 .load_tls = xen_load_tls,
1217 #ifdef CONFIG_X86_64
1218 .load_gs_index = xen_load_gs_index,
1219 #endif
1220
1221 .alloc_ldt = xen_alloc_ldt,
1222 .free_ldt = xen_free_ldt,
1223
1224 .store_idt = native_store_idt,
1225 .store_tr = xen_store_tr,
1226
1227 .write_ldt_entry = xen_write_ldt_entry,
1228 .write_gdt_entry = xen_write_gdt_entry,
1229 .write_idt_entry = xen_write_idt_entry,
1230 .load_sp0 = xen_load_sp0,
1231
1232 .set_iopl_mask = xen_set_iopl_mask,
1233 .io_delay = xen_io_delay,
1234
1235 /* Xen takes care of %gs when switching to usermode for us */
1236 .swapgs = paravirt_nop,
1237
1238 .start_context_switch = paravirt_start_context_switch,
1239 .end_context_switch = xen_end_context_switch,
1240 };
1241
1242 static const struct pv_apic_ops xen_apic_ops __initconst = {
1243 #ifdef CONFIG_X86_LOCAL_APIC
1244 .startup_ipi_hook = paravirt_nop,
1245 #endif
1246 };
1247
1248 static void xen_reboot(int reason)
1249 {
1250 struct sched_shutdown r = { .reason = reason };
1251
1252 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1253 BUG();
1254 }
1255
1256 static void xen_restart(char *msg)
1257 {
1258 xen_reboot(SHUTDOWN_reboot);
1259 }
1260
1261 static void xen_emergency_restart(void)
1262 {
1263 xen_reboot(SHUTDOWN_reboot);
1264 }
1265
1266 static void xen_machine_halt(void)
1267 {
1268 xen_reboot(SHUTDOWN_poweroff);
1269 }
1270
1271 static void xen_machine_power_off(void)
1272 {
1273 if (pm_power_off)
1274 pm_power_off();
1275 xen_reboot(SHUTDOWN_poweroff);
1276 }
1277
1278 static void xen_crash_shutdown(struct pt_regs *regs)
1279 {
1280 xen_reboot(SHUTDOWN_crash);
1281 }
1282
1283 static int
1284 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1285 {
1286 xen_reboot(SHUTDOWN_crash);
1287 return NOTIFY_DONE;
1288 }
1289
1290 static struct notifier_block xen_panic_block = {
1291 .notifier_call= xen_panic_event,
1292 };
1293
1294 int xen_panic_handler_init(void)
1295 {
1296 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1297 return 0;
1298 }
1299
1300 static const struct machine_ops xen_machine_ops __initconst = {
1301 .restart = xen_restart,
1302 .halt = xen_machine_halt,
1303 .power_off = xen_machine_power_off,
1304 .shutdown = xen_machine_halt,
1305 .crash_shutdown = xen_crash_shutdown,
1306 .emergency_restart = xen_emergency_restart,
1307 };
1308
1309 static void __init xen_boot_params_init_edd(void)
1310 {
1311 #if IS_ENABLED(CONFIG_EDD)
1312 struct xen_platform_op op;
1313 struct edd_info *edd_info;
1314 u32 *mbr_signature;
1315 unsigned nr;
1316 int ret;
1317
1318 edd_info = boot_params.eddbuf;
1319 mbr_signature = boot_params.edd_mbr_sig_buffer;
1320
1321 op.cmd = XENPF_firmware_info;
1322
1323 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1324 for (nr = 0; nr < EDDMAXNR; nr++) {
1325 struct edd_info *info = edd_info + nr;
1326
1327 op.u.firmware_info.index = nr;
1328 info->params.length = sizeof(info->params);
1329 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1330 &info->params);
1331 ret = HYPERVISOR_dom0_op(&op);
1332 if (ret)
1333 break;
1334
1335 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1336 C(device);
1337 C(version);
1338 C(interface_support);
1339 C(legacy_max_cylinder);
1340 C(legacy_max_head);
1341 C(legacy_sectors_per_track);
1342 #undef C
1343 }
1344 boot_params.eddbuf_entries = nr;
1345
1346 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1347 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1348 op.u.firmware_info.index = nr;
1349 ret = HYPERVISOR_dom0_op(&op);
1350 if (ret)
1351 break;
1352 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1353 }
1354 boot_params.edd_mbr_sig_buf_entries = nr;
1355 #endif
1356 }
1357
1358 /*
1359 * Set up the GDT and segment registers for -fstack-protector. Until
1360 * we do this, we have to be careful not to call any stack-protected
1361 * function, which is most of the kernel.
1362 */
1363 static void __init xen_setup_stackprotector(void)
1364 {
1365 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1366 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1367
1368 setup_stack_canary_segment(0);
1369 switch_to_new_gdt(0);
1370
1371 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1372 pv_cpu_ops.load_gdt = xen_load_gdt;
1373 }
1374
1375 /* First C function to be called on Xen boot */
1376 asmlinkage void __init xen_start_kernel(void)
1377 {
1378 struct physdev_set_iopl set_iopl;
1379 int rc;
1380
1381 if (!xen_start_info)
1382 return;
1383
1384 xen_domain_type = XEN_PV_DOMAIN;
1385
1386 xen_setup_machphys_mapping();
1387
1388 /* Install Xen paravirt ops */
1389 pv_info = xen_info;
1390 pv_init_ops = xen_init_ops;
1391 pv_cpu_ops = xen_cpu_ops;
1392 pv_apic_ops = xen_apic_ops;
1393
1394 x86_init.resources.memory_setup = xen_memory_setup;
1395 x86_init.oem.arch_setup = xen_arch_setup;
1396 x86_init.oem.banner = xen_banner;
1397
1398 xen_init_time_ops();
1399
1400 /*
1401 * Set up some pagetable state before starting to set any ptes.
1402 */
1403
1404 xen_init_mmu_ops();
1405
1406 /* Prevent unwanted bits from being set in PTEs. */
1407 __supported_pte_mask &= ~_PAGE_GLOBAL;
1408 #if 0
1409 if (!xen_initial_domain())
1410 #endif
1411 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1412
1413 __supported_pte_mask |= _PAGE_IOMAP;
1414
1415 /*
1416 * Prevent page tables from being allocated in highmem, even
1417 * if CONFIG_HIGHPTE is enabled.
1418 */
1419 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1420
1421 /* Work out if we support NX */
1422 x86_configure_nx();
1423
1424 xen_setup_features();
1425
1426 /* Get mfn list */
1427 if (!xen_feature(XENFEAT_auto_translated_physmap))
1428 xen_build_dynamic_phys_to_machine();
1429
1430 /*
1431 * Set up kernel GDT and segment registers, mainly so that
1432 * -fstack-protector code can be executed.
1433 */
1434 xen_setup_stackprotector();
1435
1436 xen_init_irq_ops();
1437 xen_init_cpuid_mask();
1438
1439 #ifdef CONFIG_X86_LOCAL_APIC
1440 /*
1441 * set up the basic apic ops.
1442 */
1443 set_xen_basic_apic_ops();
1444 #endif
1445
1446 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1447 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1448 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1449 }
1450
1451 machine_ops = xen_machine_ops;
1452
1453 /*
1454 * The only reliable way to retain the initial address of the
1455 * percpu gdt_page is to remember it here, so we can go and
1456 * mark it RW later, when the initial percpu area is freed.
1457 */
1458 xen_initial_gdt = &per_cpu(gdt_page, 0);
1459
1460 xen_smp_init();
1461
1462 #ifdef CONFIG_ACPI_NUMA
1463 /*
1464 * The pages we from Xen are not related to machine pages, so
1465 * any NUMA information the kernel tries to get from ACPI will
1466 * be meaningless. Prevent it from trying.
1467 */
1468 acpi_numa = -1;
1469 #endif
1470 #ifdef CONFIG_X86_PAT
1471 /*
1472 * For right now disable the PAT. We should remove this once
1473 * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1474 * (xen/pat: Disable PAT support for now) is reverted.
1475 */
1476 pat_enabled = 0;
1477 #endif
1478 /* Don't do the full vcpu_info placement stuff until we have a
1479 possible map and a non-dummy shared_info. */
1480 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1481
1482 local_irq_disable();
1483 early_boot_irqs_disabled = true;
1484
1485 xen_raw_console_write("mapping kernel into physical memory\n");
1486 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1487
1488 /* Allocate and initialize top and mid mfn levels for p2m structure */
1489 xen_build_mfn_list_list();
1490
1491 /* keep using Xen gdt for now; no urgent need to change it */
1492
1493 #ifdef CONFIG_X86_32
1494 pv_info.kernel_rpl = 1;
1495 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1496 pv_info.kernel_rpl = 0;
1497 #else
1498 pv_info.kernel_rpl = 0;
1499 #endif
1500 /* set the limit of our address space */
1501 xen_reserve_top();
1502
1503 /* We used to do this in xen_arch_setup, but that is too late on AMD
1504 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1505 * which pokes 0xcf8 port.
1506 */
1507 set_iopl.iopl = 1;
1508 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1509 if (rc != 0)
1510 xen_raw_printk("physdev_op failed %d\n", rc);
1511
1512 #ifdef CONFIG_X86_32
1513 /* set up basic CPUID stuff */
1514 cpu_detect(&new_cpu_data);
1515 new_cpu_data.hard_math = 1;
1516 new_cpu_data.wp_works_ok = 1;
1517 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1518 #endif
1519
1520 /* Poke various useful things into boot_params */
1521 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1522 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1523 ? __pa(xen_start_info->mod_start) : 0;
1524 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1525 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1526
1527 if (!xen_initial_domain()) {
1528 add_preferred_console("xenboot", 0, NULL);
1529 add_preferred_console("tty", 0, NULL);
1530 add_preferred_console("hvc", 0, NULL);
1531 if (pci_xen)
1532 x86_init.pci.arch_init = pci_xen_init;
1533 } else {
1534 const struct dom0_vga_console_info *info =
1535 (void *)((char *)xen_start_info +
1536 xen_start_info->console.dom0.info_off);
1537 struct xen_platform_op op = {
1538 .cmd = XENPF_firmware_info,
1539 .interface_version = XENPF_INTERFACE_VERSION,
1540 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1541 };
1542
1543 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1544 xen_start_info->console.domU.mfn = 0;
1545 xen_start_info->console.domU.evtchn = 0;
1546
1547 if (HYPERVISOR_dom0_op(&op) == 0)
1548 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1549
1550 xen_init_apic();
1551
1552 /* Make sure ACS will be enabled */
1553 pci_request_acs();
1554
1555 xen_acpi_sleep_register();
1556
1557 /* Avoid searching for BIOS MP tables */
1558 x86_init.mpparse.find_smp_config = x86_init_noop;
1559 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1560
1561 xen_boot_params_init_edd();
1562 }
1563 #ifdef CONFIG_PCI
1564 /* PCI BIOS service won't work from a PV guest. */
1565 pci_probe &= ~PCI_PROBE_BIOS;
1566 #endif
1567 xen_raw_console_write("about to get started...\n");
1568
1569 xen_setup_runstate_info(0);
1570
1571 /* Start the world */
1572 #ifdef CONFIG_X86_32
1573 i386_start_kernel();
1574 #else
1575 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1576 #endif
1577 }
1578
1579 void __ref xen_hvm_init_shared_info(void)
1580 {
1581 int cpu;
1582 struct xen_add_to_physmap xatp;
1583 static struct shared_info *shared_info_page = 0;
1584
1585 if (!shared_info_page)
1586 shared_info_page = (struct shared_info *)
1587 extend_brk(PAGE_SIZE, PAGE_SIZE);
1588 xatp.domid = DOMID_SELF;
1589 xatp.idx = 0;
1590 xatp.space = XENMAPSPACE_shared_info;
1591 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1592 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1593 BUG();
1594
1595 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1596
1597 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1598 * page, we use it in the event channel upcall and in some pvclock
1599 * related functions. We don't need the vcpu_info placement
1600 * optimizations because we don't use any pv_mmu or pv_irq op on
1601 * HVM.
1602 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1603 * online but xen_hvm_init_shared_info is run at resume time too and
1604 * in that case multiple vcpus might be online. */
1605 for_each_online_cpu(cpu) {
1606 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1607 }
1608 }
1609
1610 #ifdef CONFIG_XEN_PVHVM
1611 static void __init init_hvm_pv_info(void)
1612 {
1613 int major, minor;
1614 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1615 u64 pfn;
1616
1617 base = xen_cpuid_base();
1618 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1619
1620 major = eax >> 16;
1621 minor = eax & 0xffff;
1622 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1623
1624 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1625
1626 pfn = __pa(hypercall_page);
1627 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1628
1629 xen_setup_features();
1630
1631 pv_info.name = "Xen HVM";
1632
1633 xen_domain_type = XEN_HVM_DOMAIN;
1634 }
1635
1636 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1637 unsigned long action, void *hcpu)
1638 {
1639 int cpu = (long)hcpu;
1640 switch (action) {
1641 case CPU_UP_PREPARE:
1642 xen_vcpu_setup(cpu);
1643 if (xen_have_vector_callback) {
1644 xen_init_lock_cpu(cpu);
1645 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1646 xen_setup_timer(cpu);
1647 }
1648 break;
1649 default:
1650 break;
1651 }
1652 return NOTIFY_OK;
1653 }
1654
1655 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1656 .notifier_call = xen_hvm_cpu_notify,
1657 };
1658
1659 static void __init xen_hvm_guest_init(void)
1660 {
1661 init_hvm_pv_info();
1662
1663 xen_hvm_init_shared_info();
1664
1665 if (xen_feature(XENFEAT_hvm_callback_vector))
1666 xen_have_vector_callback = 1;
1667 xen_hvm_smp_init();
1668 register_cpu_notifier(&xen_hvm_cpu_notifier);
1669 xen_unplug_emulated_devices();
1670 x86_init.irqs.intr_init = xen_init_IRQ;
1671 xen_hvm_init_time_ops();
1672 xen_hvm_init_mmu_ops();
1673 }
1674
1675 static bool __init xen_hvm_platform(void)
1676 {
1677 if (xen_pv_domain())
1678 return false;
1679
1680 if (!xen_cpuid_base())
1681 return false;
1682
1683 return true;
1684 }
1685
1686 bool xen_hvm_need_lapic(void)
1687 {
1688 if (xen_pv_domain())
1689 return false;
1690 if (!xen_hvm_domain())
1691 return false;
1692 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1693 return false;
1694 return true;
1695 }
1696 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1697
1698 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1699 .name = "Xen HVM",
1700 .detect = xen_hvm_platform,
1701 .init_platform = xen_hvm_guest_init,
1702 .x2apic_available = xen_x2apic_para_available,
1703 };
1704 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1705 #endif