]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/enlighten.c
65d8d79b46a8467cbc11c4495a160d7b416a0b32
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30 #include <linux/pci.h>
31 #include <linux/gfp.h>
32
33 #include <xen/xen.h>
34 #include <xen/interface/xen.h>
35 #include <xen/interface/version.h>
36 #include <xen/interface/physdev.h>
37 #include <xen/interface/vcpu.h>
38 #include <xen/features.h>
39 #include <xen/page.h>
40 #include <xen/hvc-console.h>
41
42 #include <asm/paravirt.h>
43 #include <asm/apic.h>
44 #include <asm/page.h>
45 #include <asm/xen/hypercall.h>
46 #include <asm/xen/hypervisor.h>
47 #include <asm/fixmap.h>
48 #include <asm/processor.h>
49 #include <asm/proto.h>
50 #include <asm/msr-index.h>
51 #include <asm/traps.h>
52 #include <asm/setup.h>
53 #include <asm/desc.h>
54 #include <asm/pgalloc.h>
55 #include <asm/pgtable.h>
56 #include <asm/tlbflush.h>
57 #include <asm/reboot.h>
58 #include <asm/stackprotector.h>
59
60 #include "xen-ops.h"
61 #include "mmu.h"
62 #include "multicalls.h"
63
64 EXPORT_SYMBOL_GPL(hypercall_page);
65
66 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
67 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
68
69 enum xen_domain_type xen_domain_type = XEN_NATIVE;
70 EXPORT_SYMBOL_GPL(xen_domain_type);
71
72 struct start_info *xen_start_info;
73 EXPORT_SYMBOL_GPL(xen_start_info);
74
75 struct shared_info xen_dummy_shared_info;
76
77 void *xen_initial_gdt;
78
79 /*
80 * Point at some empty memory to start with. We map the real shared_info
81 * page as soon as fixmap is up and running.
82 */
83 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
84
85 /*
86 * Flag to determine whether vcpu info placement is available on all
87 * VCPUs. We assume it is to start with, and then set it to zero on
88 * the first failure. This is because it can succeed on some VCPUs
89 * and not others, since it can involve hypervisor memory allocation,
90 * or because the guest failed to guarantee all the appropriate
91 * constraints on all VCPUs (ie buffer can't cross a page boundary).
92 *
93 * Note that any particular CPU may be using a placed vcpu structure,
94 * but we can only optimise if the all are.
95 *
96 * 0: not available, 1: available
97 */
98 static int have_vcpu_info_placement = 1;
99
100 static void xen_vcpu_setup(int cpu)
101 {
102 struct vcpu_register_vcpu_info info;
103 int err;
104 struct vcpu_info *vcpup;
105
106 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
107 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
108
109 if (!have_vcpu_info_placement)
110 return; /* already tested, not available */
111
112 vcpup = &per_cpu(xen_vcpu_info, cpu);
113
114 info.mfn = arbitrary_virt_to_mfn(vcpup);
115 info.offset = offset_in_page(vcpup);
116
117 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
118 cpu, vcpup, info.mfn, info.offset);
119
120 /* Check to see if the hypervisor will put the vcpu_info
121 structure where we want it, which allows direct access via
122 a percpu-variable. */
123 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
124
125 if (err) {
126 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
127 have_vcpu_info_placement = 0;
128 } else {
129 /* This cpu is using the registered vcpu info, even if
130 later ones fail to. */
131 per_cpu(xen_vcpu, cpu) = vcpup;
132
133 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
134 cpu, vcpup);
135 }
136 }
137
138 /*
139 * On restore, set the vcpu placement up again.
140 * If it fails, then we're in a bad state, since
141 * we can't back out from using it...
142 */
143 void xen_vcpu_restore(void)
144 {
145 int cpu;
146
147 for_each_online_cpu(cpu) {
148 bool other_cpu = (cpu != smp_processor_id());
149
150 if (other_cpu &&
151 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
152 BUG();
153
154 xen_setup_runstate_info(cpu);
155
156 if (have_vcpu_info_placement)
157 xen_vcpu_setup(cpu);
158
159 if (other_cpu &&
160 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
161 BUG();
162 }
163 }
164
165 static void __init xen_banner(void)
166 {
167 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
168 struct xen_extraversion extra;
169 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
170
171 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
172 pv_info.name);
173 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
174 version >> 16, version & 0xffff, extra.extraversion,
175 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
176 }
177
178 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
179 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
180
181 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
182 unsigned int *cx, unsigned int *dx)
183 {
184 unsigned maskebx = ~0;
185 unsigned maskecx = ~0;
186 unsigned maskedx = ~0;
187
188 /*
189 * Mask out inconvenient features, to try and disable as many
190 * unsupported kernel subsystems as possible.
191 */
192 switch (*ax) {
193 case 1:
194 maskecx = cpuid_leaf1_ecx_mask;
195 maskedx = cpuid_leaf1_edx_mask;
196 break;
197
198 case 0xb:
199 /* Suppress extended topology stuff */
200 maskebx = 0;
201 break;
202 }
203
204 asm(XEN_EMULATE_PREFIX "cpuid"
205 : "=a" (*ax),
206 "=b" (*bx),
207 "=c" (*cx),
208 "=d" (*dx)
209 : "0" (*ax), "2" (*cx));
210
211 *bx &= maskebx;
212 *cx &= maskecx;
213 *dx &= maskedx;
214 }
215
216 static __init void xen_init_cpuid_mask(void)
217 {
218 unsigned int ax, bx, cx, dx;
219
220 cpuid_leaf1_edx_mask =
221 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
222 (1 << X86_FEATURE_MCA) | /* disable MCA */
223 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
224
225 if (!xen_initial_domain())
226 cpuid_leaf1_edx_mask &=
227 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
228 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
229
230 ax = 1;
231 cx = 0;
232 xen_cpuid(&ax, &bx, &cx, &dx);
233
234 /* cpuid claims we support xsave; try enabling it to see what happens */
235 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
236 unsigned long cr4;
237
238 set_in_cr4(X86_CR4_OSXSAVE);
239
240 cr4 = read_cr4();
241
242 if ((cr4 & X86_CR4_OSXSAVE) == 0)
243 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
244
245 clear_in_cr4(X86_CR4_OSXSAVE);
246 }
247 }
248
249 static void xen_set_debugreg(int reg, unsigned long val)
250 {
251 HYPERVISOR_set_debugreg(reg, val);
252 }
253
254 static unsigned long xen_get_debugreg(int reg)
255 {
256 return HYPERVISOR_get_debugreg(reg);
257 }
258
259 static void xen_end_context_switch(struct task_struct *next)
260 {
261 xen_mc_flush();
262 paravirt_end_context_switch(next);
263 }
264
265 static unsigned long xen_store_tr(void)
266 {
267 return 0;
268 }
269
270 /*
271 * Set the page permissions for a particular virtual address. If the
272 * address is a vmalloc mapping (or other non-linear mapping), then
273 * find the linear mapping of the page and also set its protections to
274 * match.
275 */
276 static void set_aliased_prot(void *v, pgprot_t prot)
277 {
278 int level;
279 pte_t *ptep;
280 pte_t pte;
281 unsigned long pfn;
282 struct page *page;
283
284 ptep = lookup_address((unsigned long)v, &level);
285 BUG_ON(ptep == NULL);
286
287 pfn = pte_pfn(*ptep);
288 page = pfn_to_page(pfn);
289
290 pte = pfn_pte(pfn, prot);
291
292 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
293 BUG();
294
295 if (!PageHighMem(page)) {
296 void *av = __va(PFN_PHYS(pfn));
297
298 if (av != v)
299 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
300 BUG();
301 } else
302 kmap_flush_unused();
303 }
304
305 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
306 {
307 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
308 int i;
309
310 for(i = 0; i < entries; i += entries_per_page)
311 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
312 }
313
314 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
315 {
316 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
317 int i;
318
319 for(i = 0; i < entries; i += entries_per_page)
320 set_aliased_prot(ldt + i, PAGE_KERNEL);
321 }
322
323 static void xen_set_ldt(const void *addr, unsigned entries)
324 {
325 struct mmuext_op *op;
326 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
327
328 op = mcs.args;
329 op->cmd = MMUEXT_SET_LDT;
330 op->arg1.linear_addr = (unsigned long)addr;
331 op->arg2.nr_ents = entries;
332
333 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
334
335 xen_mc_issue(PARAVIRT_LAZY_CPU);
336 }
337
338 static void xen_load_gdt(const struct desc_ptr *dtr)
339 {
340 unsigned long va = dtr->address;
341 unsigned int size = dtr->size + 1;
342 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
343 unsigned long frames[pages];
344 int f;
345
346 /*
347 * A GDT can be up to 64k in size, which corresponds to 8192
348 * 8-byte entries, or 16 4k pages..
349 */
350
351 BUG_ON(size > 65536);
352 BUG_ON(va & ~PAGE_MASK);
353
354 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
355 int level;
356 pte_t *ptep;
357 unsigned long pfn, mfn;
358 void *virt;
359
360 /*
361 * The GDT is per-cpu and is in the percpu data area.
362 * That can be virtually mapped, so we need to do a
363 * page-walk to get the underlying MFN for the
364 * hypercall. The page can also be in the kernel's
365 * linear range, so we need to RO that mapping too.
366 */
367 ptep = lookup_address(va, &level);
368 BUG_ON(ptep == NULL);
369
370 pfn = pte_pfn(*ptep);
371 mfn = pfn_to_mfn(pfn);
372 virt = __va(PFN_PHYS(pfn));
373
374 frames[f] = mfn;
375
376 make_lowmem_page_readonly((void *)va);
377 make_lowmem_page_readonly(virt);
378 }
379
380 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
381 BUG();
382 }
383
384 /*
385 * load_gdt for early boot, when the gdt is only mapped once
386 */
387 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
388 {
389 unsigned long va = dtr->address;
390 unsigned int size = dtr->size + 1;
391 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
392 unsigned long frames[pages];
393 int f;
394
395 /*
396 * A GDT can be up to 64k in size, which corresponds to 8192
397 * 8-byte entries, or 16 4k pages..
398 */
399
400 BUG_ON(size > 65536);
401 BUG_ON(va & ~PAGE_MASK);
402
403 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
404 pte_t pte;
405 unsigned long pfn, mfn;
406
407 pfn = virt_to_pfn(va);
408 mfn = pfn_to_mfn(pfn);
409
410 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
411
412 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
413 BUG();
414
415 frames[f] = mfn;
416 }
417
418 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
419 BUG();
420 }
421
422 static void load_TLS_descriptor(struct thread_struct *t,
423 unsigned int cpu, unsigned int i)
424 {
425 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
426 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
427 struct multicall_space mc = __xen_mc_entry(0);
428
429 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
430 }
431
432 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
433 {
434 /*
435 * XXX sleazy hack: If we're being called in a lazy-cpu zone
436 * and lazy gs handling is enabled, it means we're in a
437 * context switch, and %gs has just been saved. This means we
438 * can zero it out to prevent faults on exit from the
439 * hypervisor if the next process has no %gs. Either way, it
440 * has been saved, and the new value will get loaded properly.
441 * This will go away as soon as Xen has been modified to not
442 * save/restore %gs for normal hypercalls.
443 *
444 * On x86_64, this hack is not used for %gs, because gs points
445 * to KERNEL_GS_BASE (and uses it for PDA references), so we
446 * must not zero %gs on x86_64
447 *
448 * For x86_64, we need to zero %fs, otherwise we may get an
449 * exception between the new %fs descriptor being loaded and
450 * %fs being effectively cleared at __switch_to().
451 */
452 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
453 #ifdef CONFIG_X86_32
454 lazy_load_gs(0);
455 #else
456 loadsegment(fs, 0);
457 #endif
458 }
459
460 xen_mc_batch();
461
462 load_TLS_descriptor(t, cpu, 0);
463 load_TLS_descriptor(t, cpu, 1);
464 load_TLS_descriptor(t, cpu, 2);
465
466 xen_mc_issue(PARAVIRT_LAZY_CPU);
467 }
468
469 #ifdef CONFIG_X86_64
470 static void xen_load_gs_index(unsigned int idx)
471 {
472 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
473 BUG();
474 }
475 #endif
476
477 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
478 const void *ptr)
479 {
480 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
481 u64 entry = *(u64 *)ptr;
482
483 preempt_disable();
484
485 xen_mc_flush();
486 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
487 BUG();
488
489 preempt_enable();
490 }
491
492 static int cvt_gate_to_trap(int vector, const gate_desc *val,
493 struct trap_info *info)
494 {
495 unsigned long addr;
496
497 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
498 return 0;
499
500 info->vector = vector;
501
502 addr = gate_offset(*val);
503 #ifdef CONFIG_X86_64
504 /*
505 * Look for known traps using IST, and substitute them
506 * appropriately. The debugger ones are the only ones we care
507 * about. Xen will handle faults like double_fault and
508 * machine_check, so we should never see them. Warn if
509 * there's an unexpected IST-using fault handler.
510 */
511 if (addr == (unsigned long)debug)
512 addr = (unsigned long)xen_debug;
513 else if (addr == (unsigned long)int3)
514 addr = (unsigned long)xen_int3;
515 else if (addr == (unsigned long)stack_segment)
516 addr = (unsigned long)xen_stack_segment;
517 else if (addr == (unsigned long)double_fault ||
518 addr == (unsigned long)nmi) {
519 /* Don't need to handle these */
520 return 0;
521 #ifdef CONFIG_X86_MCE
522 } else if (addr == (unsigned long)machine_check) {
523 return 0;
524 #endif
525 } else {
526 /* Some other trap using IST? */
527 if (WARN_ON(val->ist != 0))
528 return 0;
529 }
530 #endif /* CONFIG_X86_64 */
531 info->address = addr;
532
533 info->cs = gate_segment(*val);
534 info->flags = val->dpl;
535 /* interrupt gates clear IF */
536 if (val->type == GATE_INTERRUPT)
537 info->flags |= 1 << 2;
538
539 return 1;
540 }
541
542 /* Locations of each CPU's IDT */
543 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
544
545 /* Set an IDT entry. If the entry is part of the current IDT, then
546 also update Xen. */
547 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
548 {
549 unsigned long p = (unsigned long)&dt[entrynum];
550 unsigned long start, end;
551
552 preempt_disable();
553
554 start = __get_cpu_var(idt_desc).address;
555 end = start + __get_cpu_var(idt_desc).size + 1;
556
557 xen_mc_flush();
558
559 native_write_idt_entry(dt, entrynum, g);
560
561 if (p >= start && (p + 8) <= end) {
562 struct trap_info info[2];
563
564 info[1].address = 0;
565
566 if (cvt_gate_to_trap(entrynum, g, &info[0]))
567 if (HYPERVISOR_set_trap_table(info))
568 BUG();
569 }
570
571 preempt_enable();
572 }
573
574 static void xen_convert_trap_info(const struct desc_ptr *desc,
575 struct trap_info *traps)
576 {
577 unsigned in, out, count;
578
579 count = (desc->size+1) / sizeof(gate_desc);
580 BUG_ON(count > 256);
581
582 for (in = out = 0; in < count; in++) {
583 gate_desc *entry = (gate_desc*)(desc->address) + in;
584
585 if (cvt_gate_to_trap(in, entry, &traps[out]))
586 out++;
587 }
588 traps[out].address = 0;
589 }
590
591 void xen_copy_trap_info(struct trap_info *traps)
592 {
593 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
594
595 xen_convert_trap_info(desc, traps);
596 }
597
598 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
599 hold a spinlock to protect the static traps[] array (static because
600 it avoids allocation, and saves stack space). */
601 static void xen_load_idt(const struct desc_ptr *desc)
602 {
603 static DEFINE_SPINLOCK(lock);
604 static struct trap_info traps[257];
605
606 spin_lock(&lock);
607
608 __get_cpu_var(idt_desc) = *desc;
609
610 xen_convert_trap_info(desc, traps);
611
612 xen_mc_flush();
613 if (HYPERVISOR_set_trap_table(traps))
614 BUG();
615
616 spin_unlock(&lock);
617 }
618
619 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
620 they're handled differently. */
621 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
622 const void *desc, int type)
623 {
624 preempt_disable();
625
626 switch (type) {
627 case DESC_LDT:
628 case DESC_TSS:
629 /* ignore */
630 break;
631
632 default: {
633 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
634
635 xen_mc_flush();
636 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
637 BUG();
638 }
639
640 }
641
642 preempt_enable();
643 }
644
645 /*
646 * Version of write_gdt_entry for use at early boot-time needed to
647 * update an entry as simply as possible.
648 */
649 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
650 const void *desc, int type)
651 {
652 switch (type) {
653 case DESC_LDT:
654 case DESC_TSS:
655 /* ignore */
656 break;
657
658 default: {
659 xmaddr_t maddr = virt_to_machine(&dt[entry]);
660
661 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
662 dt[entry] = *(struct desc_struct *)desc;
663 }
664
665 }
666 }
667
668 static void xen_load_sp0(struct tss_struct *tss,
669 struct thread_struct *thread)
670 {
671 struct multicall_space mcs = xen_mc_entry(0);
672 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
673 xen_mc_issue(PARAVIRT_LAZY_CPU);
674 }
675
676 static void xen_set_iopl_mask(unsigned mask)
677 {
678 struct physdev_set_iopl set_iopl;
679
680 /* Force the change at ring 0. */
681 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
682 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
683 }
684
685 static void xen_io_delay(void)
686 {
687 }
688
689 #ifdef CONFIG_X86_LOCAL_APIC
690 static u32 xen_apic_read(u32 reg)
691 {
692 return 0;
693 }
694
695 static void xen_apic_write(u32 reg, u32 val)
696 {
697 /* Warn to see if there's any stray references */
698 WARN_ON(1);
699 }
700
701 static u64 xen_apic_icr_read(void)
702 {
703 return 0;
704 }
705
706 static void xen_apic_icr_write(u32 low, u32 id)
707 {
708 /* Warn to see if there's any stray references */
709 WARN_ON(1);
710 }
711
712 static void xen_apic_wait_icr_idle(void)
713 {
714 return;
715 }
716
717 static u32 xen_safe_apic_wait_icr_idle(void)
718 {
719 return 0;
720 }
721
722 static void set_xen_basic_apic_ops(void)
723 {
724 apic->read = xen_apic_read;
725 apic->write = xen_apic_write;
726 apic->icr_read = xen_apic_icr_read;
727 apic->icr_write = xen_apic_icr_write;
728 apic->wait_icr_idle = xen_apic_wait_icr_idle;
729 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
730 }
731
732 #endif
733
734
735 static void xen_clts(void)
736 {
737 struct multicall_space mcs;
738
739 mcs = xen_mc_entry(0);
740
741 MULTI_fpu_taskswitch(mcs.mc, 0);
742
743 xen_mc_issue(PARAVIRT_LAZY_CPU);
744 }
745
746 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
747
748 static unsigned long xen_read_cr0(void)
749 {
750 unsigned long cr0 = percpu_read(xen_cr0_value);
751
752 if (unlikely(cr0 == 0)) {
753 cr0 = native_read_cr0();
754 percpu_write(xen_cr0_value, cr0);
755 }
756
757 return cr0;
758 }
759
760 static void xen_write_cr0(unsigned long cr0)
761 {
762 struct multicall_space mcs;
763
764 percpu_write(xen_cr0_value, cr0);
765
766 /* Only pay attention to cr0.TS; everything else is
767 ignored. */
768 mcs = xen_mc_entry(0);
769
770 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
771
772 xen_mc_issue(PARAVIRT_LAZY_CPU);
773 }
774
775 static void xen_write_cr4(unsigned long cr4)
776 {
777 cr4 &= ~X86_CR4_PGE;
778 cr4 &= ~X86_CR4_PSE;
779
780 native_write_cr4(cr4);
781 }
782
783 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
784 {
785 int ret;
786
787 ret = 0;
788
789 switch (msr) {
790 #ifdef CONFIG_X86_64
791 unsigned which;
792 u64 base;
793
794 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
795 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
796 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
797
798 set:
799 base = ((u64)high << 32) | low;
800 if (HYPERVISOR_set_segment_base(which, base) != 0)
801 ret = -EIO;
802 break;
803 #endif
804
805 case MSR_STAR:
806 case MSR_CSTAR:
807 case MSR_LSTAR:
808 case MSR_SYSCALL_MASK:
809 case MSR_IA32_SYSENTER_CS:
810 case MSR_IA32_SYSENTER_ESP:
811 case MSR_IA32_SYSENTER_EIP:
812 /* Fast syscall setup is all done in hypercalls, so
813 these are all ignored. Stub them out here to stop
814 Xen console noise. */
815 break;
816
817 default:
818 ret = native_write_msr_safe(msr, low, high);
819 }
820
821 return ret;
822 }
823
824 void xen_setup_shared_info(void)
825 {
826 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
827 set_fixmap(FIX_PARAVIRT_BOOTMAP,
828 xen_start_info->shared_info);
829
830 HYPERVISOR_shared_info =
831 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
832 } else
833 HYPERVISOR_shared_info =
834 (struct shared_info *)__va(xen_start_info->shared_info);
835
836 #ifndef CONFIG_SMP
837 /* In UP this is as good a place as any to set up shared info */
838 xen_setup_vcpu_info_placement();
839 #endif
840
841 xen_setup_mfn_list_list();
842 }
843
844 /* This is called once we have the cpu_possible_map */
845 void xen_setup_vcpu_info_placement(void)
846 {
847 int cpu;
848
849 for_each_possible_cpu(cpu)
850 xen_vcpu_setup(cpu);
851
852 /* xen_vcpu_setup managed to place the vcpu_info within the
853 percpu area for all cpus, so make use of it */
854 if (have_vcpu_info_placement) {
855 printk(KERN_INFO "Xen: using vcpu_info placement\n");
856
857 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
858 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
859 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
860 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
861 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
862 }
863 }
864
865 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
866 unsigned long addr, unsigned len)
867 {
868 char *start, *end, *reloc;
869 unsigned ret;
870
871 start = end = reloc = NULL;
872
873 #define SITE(op, x) \
874 case PARAVIRT_PATCH(op.x): \
875 if (have_vcpu_info_placement) { \
876 start = (char *)xen_##x##_direct; \
877 end = xen_##x##_direct_end; \
878 reloc = xen_##x##_direct_reloc; \
879 } \
880 goto patch_site
881
882 switch (type) {
883 SITE(pv_irq_ops, irq_enable);
884 SITE(pv_irq_ops, irq_disable);
885 SITE(pv_irq_ops, save_fl);
886 SITE(pv_irq_ops, restore_fl);
887 #undef SITE
888
889 patch_site:
890 if (start == NULL || (end-start) > len)
891 goto default_patch;
892
893 ret = paravirt_patch_insns(insnbuf, len, start, end);
894
895 /* Note: because reloc is assigned from something that
896 appears to be an array, gcc assumes it's non-null,
897 but doesn't know its relationship with start and
898 end. */
899 if (reloc > start && reloc < end) {
900 int reloc_off = reloc - start;
901 long *relocp = (long *)(insnbuf + reloc_off);
902 long delta = start - (char *)addr;
903
904 *relocp += delta;
905 }
906 break;
907
908 default_patch:
909 default:
910 ret = paravirt_patch_default(type, clobbers, insnbuf,
911 addr, len);
912 break;
913 }
914
915 return ret;
916 }
917
918 static const struct pv_info xen_info __initdata = {
919 .paravirt_enabled = 1,
920 .shared_kernel_pmd = 0,
921
922 .name = "Xen",
923 };
924
925 static const struct pv_init_ops xen_init_ops __initdata = {
926 .patch = xen_patch,
927 };
928
929 static const struct pv_time_ops xen_time_ops __initdata = {
930 .sched_clock = xen_sched_clock,
931 };
932
933 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
934 .cpuid = xen_cpuid,
935
936 .set_debugreg = xen_set_debugreg,
937 .get_debugreg = xen_get_debugreg,
938
939 .clts = xen_clts,
940
941 .read_cr0 = xen_read_cr0,
942 .write_cr0 = xen_write_cr0,
943
944 .read_cr4 = native_read_cr4,
945 .read_cr4_safe = native_read_cr4_safe,
946 .write_cr4 = xen_write_cr4,
947
948 .wbinvd = native_wbinvd,
949
950 .read_msr = native_read_msr_safe,
951 .write_msr = xen_write_msr_safe,
952 .read_tsc = native_read_tsc,
953 .read_pmc = native_read_pmc,
954
955 .iret = xen_iret,
956 .irq_enable_sysexit = xen_sysexit,
957 #ifdef CONFIG_X86_64
958 .usergs_sysret32 = xen_sysret32,
959 .usergs_sysret64 = xen_sysret64,
960 #endif
961
962 .load_tr_desc = paravirt_nop,
963 .set_ldt = xen_set_ldt,
964 .load_gdt = xen_load_gdt,
965 .load_idt = xen_load_idt,
966 .load_tls = xen_load_tls,
967 #ifdef CONFIG_X86_64
968 .load_gs_index = xen_load_gs_index,
969 #endif
970
971 .alloc_ldt = xen_alloc_ldt,
972 .free_ldt = xen_free_ldt,
973
974 .store_gdt = native_store_gdt,
975 .store_idt = native_store_idt,
976 .store_tr = xen_store_tr,
977
978 .write_ldt_entry = xen_write_ldt_entry,
979 .write_gdt_entry = xen_write_gdt_entry,
980 .write_idt_entry = xen_write_idt_entry,
981 .load_sp0 = xen_load_sp0,
982
983 .set_iopl_mask = xen_set_iopl_mask,
984 .io_delay = xen_io_delay,
985
986 /* Xen takes care of %gs when switching to usermode for us */
987 .swapgs = paravirt_nop,
988
989 .start_context_switch = paravirt_start_context_switch,
990 .end_context_switch = xen_end_context_switch,
991 };
992
993 static const struct pv_apic_ops xen_apic_ops __initdata = {
994 #ifdef CONFIG_X86_LOCAL_APIC
995 .startup_ipi_hook = paravirt_nop,
996 #endif
997 };
998
999 static void xen_reboot(int reason)
1000 {
1001 struct sched_shutdown r = { .reason = reason };
1002
1003 #ifdef CONFIG_SMP
1004 smp_send_stop();
1005 #endif
1006
1007 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1008 BUG();
1009 }
1010
1011 static void xen_restart(char *msg)
1012 {
1013 xen_reboot(SHUTDOWN_reboot);
1014 }
1015
1016 static void xen_emergency_restart(void)
1017 {
1018 xen_reboot(SHUTDOWN_reboot);
1019 }
1020
1021 static void xen_machine_halt(void)
1022 {
1023 xen_reboot(SHUTDOWN_poweroff);
1024 }
1025
1026 static void xen_crash_shutdown(struct pt_regs *regs)
1027 {
1028 xen_reboot(SHUTDOWN_crash);
1029 }
1030
1031 static const struct machine_ops __initdata xen_machine_ops = {
1032 .restart = xen_restart,
1033 .halt = xen_machine_halt,
1034 .power_off = xen_machine_halt,
1035 .shutdown = xen_machine_halt,
1036 .crash_shutdown = xen_crash_shutdown,
1037 .emergency_restart = xen_emergency_restart,
1038 };
1039
1040 /*
1041 * Set up the GDT and segment registers for -fstack-protector. Until
1042 * we do this, we have to be careful not to call any stack-protected
1043 * function, which is most of the kernel.
1044 */
1045 static void __init xen_setup_stackprotector(void)
1046 {
1047 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1048 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1049
1050 setup_stack_canary_segment(0);
1051 switch_to_new_gdt(0);
1052
1053 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1054 pv_cpu_ops.load_gdt = xen_load_gdt;
1055 }
1056
1057 /* First C function to be called on Xen boot */
1058 asmlinkage void __init xen_start_kernel(void)
1059 {
1060 pgd_t *pgd;
1061
1062 if (!xen_start_info)
1063 return;
1064
1065 xen_domain_type = XEN_PV_DOMAIN;
1066
1067 /* Install Xen paravirt ops */
1068 pv_info = xen_info;
1069 pv_init_ops = xen_init_ops;
1070 pv_time_ops = xen_time_ops;
1071 pv_cpu_ops = xen_cpu_ops;
1072 pv_apic_ops = xen_apic_ops;
1073
1074 x86_init.resources.memory_setup = xen_memory_setup;
1075 x86_init.oem.arch_setup = xen_arch_setup;
1076 x86_init.oem.banner = xen_banner;
1077
1078 x86_init.timers.timer_init = xen_time_init;
1079 x86_init.timers.setup_percpu_clockev = x86_init_noop;
1080 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1081
1082 x86_platform.calibrate_tsc = xen_tsc_khz;
1083 x86_platform.get_wallclock = xen_get_wallclock;
1084 x86_platform.set_wallclock = xen_set_wallclock;
1085
1086 /*
1087 * Set up some pagetable state before starting to set any ptes.
1088 */
1089
1090 xen_init_mmu_ops();
1091
1092 /* Prevent unwanted bits from being set in PTEs. */
1093 __supported_pte_mask &= ~_PAGE_GLOBAL;
1094 if (!xen_initial_domain())
1095 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1096
1097 __supported_pte_mask |= _PAGE_IOMAP;
1098
1099 /*
1100 * Prevent page tables from being allocated in highmem, even
1101 * if CONFIG_HIGHPTE is enabled.
1102 */
1103 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1104
1105 /* Work out if we support NX */
1106 x86_configure_nx();
1107
1108 xen_setup_features();
1109
1110 /* Get mfn list */
1111 if (!xen_feature(XENFEAT_auto_translated_physmap))
1112 xen_build_dynamic_phys_to_machine();
1113
1114 /*
1115 * Set up kernel GDT and segment registers, mainly so that
1116 * -fstack-protector code can be executed.
1117 */
1118 xen_setup_stackprotector();
1119
1120 xen_init_irq_ops();
1121 xen_init_cpuid_mask();
1122
1123 #ifdef CONFIG_X86_LOCAL_APIC
1124 /*
1125 * set up the basic apic ops.
1126 */
1127 set_xen_basic_apic_ops();
1128 #endif
1129
1130 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1131 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1132 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1133 }
1134
1135 machine_ops = xen_machine_ops;
1136
1137 /*
1138 * The only reliable way to retain the initial address of the
1139 * percpu gdt_page is to remember it here, so we can go and
1140 * mark it RW later, when the initial percpu area is freed.
1141 */
1142 xen_initial_gdt = &per_cpu(gdt_page, 0);
1143
1144 xen_smp_init();
1145
1146 pgd = (pgd_t *)xen_start_info->pt_base;
1147
1148 /* Don't do the full vcpu_info placement stuff until we have a
1149 possible map and a non-dummy shared_info. */
1150 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1151
1152 local_irq_disable();
1153 early_boot_irqs_off();
1154
1155 xen_raw_console_write("mapping kernel into physical memory\n");
1156 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1157
1158 init_mm.pgd = pgd;
1159
1160 /* keep using Xen gdt for now; no urgent need to change it */
1161
1162 #ifdef CONFIG_X86_32
1163 pv_info.kernel_rpl = 1;
1164 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1165 pv_info.kernel_rpl = 0;
1166 #else
1167 pv_info.kernel_rpl = 0;
1168 #endif
1169
1170 /* set the limit of our address space */
1171 xen_reserve_top();
1172
1173 #ifdef CONFIG_X86_32
1174 /* set up basic CPUID stuff */
1175 cpu_detect(&new_cpu_data);
1176 new_cpu_data.hard_math = 1;
1177 new_cpu_data.wp_works_ok = 1;
1178 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1179 #endif
1180
1181 /* Poke various useful things into boot_params */
1182 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1183 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1184 ? __pa(xen_start_info->mod_start) : 0;
1185 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1186 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1187
1188 if (!xen_initial_domain()) {
1189 add_preferred_console("xenboot", 0, NULL);
1190 add_preferred_console("tty", 0, NULL);
1191 add_preferred_console("hvc", 0, NULL);
1192 } else {
1193 /* Make sure ACS will be enabled */
1194 pci_request_acs();
1195 }
1196
1197
1198 xen_raw_console_write("about to get started...\n");
1199
1200 xen_setup_runstate_info(0);
1201
1202 /* Start the world */
1203 #ifdef CONFIG_X86_32
1204 i386_start_kernel();
1205 #else
1206 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1207 #endif
1208 }