]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/xen/enlighten.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <linux/kexec.h>
38
39 #include <xen/xen.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/features.h>
49 #include <xen/page.h>
50 #include <xen/hvm.h>
51 #include <xen/hvc-console.h>
52 #include <xen/acpi.h>
53
54 #include <asm/paravirt.h>
55 #include <asm/apic.h>
56 #include <asm/page.h>
57 #include <asm/xen/pci.h>
58 #include <asm/xen/hypercall.h>
59 #include <asm/xen/hypervisor.h>
60 #include <asm/xen/cpuid.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/cpu.h>
78
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92
93 EXPORT_SYMBOL_GPL(hypercall_page);
94
95 /*
96 * Pointer to the xen_vcpu_info structure or
97 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101 * acknowledge pending events.
102 * Also more subtly it is used by the patched version of irq enable/disable
103 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104 *
105 * The desire to be able to do those mask/unmask operations as a single
106 * instruction by using the per-cpu offset held in %gs is the real reason
107 * vcpu info is in a per-cpu pointer and the original reason for this
108 * hypercall.
109 *
110 */
111 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
112
113 /*
114 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115 * hypercall. This can be used both in PV and PVHVM mode. The structure
116 * overrides the default per_cpu(xen_vcpu, cpu) value.
117 */
118 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119
120 /* Linux <-> Xen vCPU id mapping */
121 DEFINE_PER_CPU(int, xen_vcpu_id) = -1;
122 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
123
124 enum xen_domain_type xen_domain_type = XEN_NATIVE;
125 EXPORT_SYMBOL_GPL(xen_domain_type);
126
127 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
128 EXPORT_SYMBOL(machine_to_phys_mapping);
129 unsigned long machine_to_phys_nr;
130 EXPORT_SYMBOL(machine_to_phys_nr);
131
132 struct start_info *xen_start_info;
133 EXPORT_SYMBOL_GPL(xen_start_info);
134
135 struct shared_info xen_dummy_shared_info;
136
137 void *xen_initial_gdt;
138
139 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
140 __read_mostly int xen_have_vector_callback;
141 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
142
143 /*
144 * Point at some empty memory to start with. We map the real shared_info
145 * page as soon as fixmap is up and running.
146 */
147 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
148
149 /*
150 * Flag to determine whether vcpu info placement is available on all
151 * VCPUs. We assume it is to start with, and then set it to zero on
152 * the first failure. This is because it can succeed on some VCPUs
153 * and not others, since it can involve hypervisor memory allocation,
154 * or because the guest failed to guarantee all the appropriate
155 * constraints on all VCPUs (ie buffer can't cross a page boundary).
156 *
157 * Note that any particular CPU may be using a placed vcpu structure,
158 * but we can only optimise if the all are.
159 *
160 * 0: not available, 1: available
161 */
162 static int have_vcpu_info_placement = 1;
163
164 struct tls_descs {
165 struct desc_struct desc[3];
166 };
167
168 /*
169 * Updating the 3 TLS descriptors in the GDT on every task switch is
170 * surprisingly expensive so we avoid updating them if they haven't
171 * changed. Since Xen writes different descriptors than the one
172 * passed in the update_descriptor hypercall we keep shadow copies to
173 * compare against.
174 */
175 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
176
177 static void clamp_max_cpus(void)
178 {
179 #ifdef CONFIG_SMP
180 if (setup_max_cpus > MAX_VIRT_CPUS)
181 setup_max_cpus = MAX_VIRT_CPUS;
182 #endif
183 }
184
185 void xen_vcpu_setup(int cpu)
186 {
187 struct vcpu_register_vcpu_info info;
188 int err;
189 struct vcpu_info *vcpup;
190
191 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
192
193 /*
194 * This path is called twice on PVHVM - first during bootup via
195 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
196 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
197 * As we can only do the VCPUOP_register_vcpu_info once lets
198 * not over-write its result.
199 *
200 * For PV it is called during restore (xen_vcpu_restore) and bootup
201 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
202 * use this function.
203 */
204 if (xen_hvm_domain()) {
205 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
206 return;
207 }
208 if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
209 per_cpu(xen_vcpu, cpu) =
210 &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
211
212 if (!have_vcpu_info_placement) {
213 if (cpu >= MAX_VIRT_CPUS)
214 clamp_max_cpus();
215 return;
216 }
217
218 vcpup = &per_cpu(xen_vcpu_info, cpu);
219 info.mfn = arbitrary_virt_to_mfn(vcpup);
220 info.offset = offset_in_page(vcpup);
221
222 /* Check to see if the hypervisor will put the vcpu_info
223 structure where we want it, which allows direct access via
224 a percpu-variable.
225 N.B. This hypercall can _only_ be called once per CPU. Subsequent
226 calls will error out with -EINVAL. This is due to the fact that
227 hypervisor has no unregister variant and this hypercall does not
228 allow to over-write info.mfn and info.offset.
229 */
230 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
231 &info);
232
233 if (err) {
234 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
235 have_vcpu_info_placement = 0;
236 clamp_max_cpus();
237 } else {
238 /* This cpu is using the registered vcpu info, even if
239 later ones fail to. */
240 per_cpu(xen_vcpu, cpu) = vcpup;
241 }
242 }
243
244 /*
245 * On restore, set the vcpu placement up again.
246 * If it fails, then we're in a bad state, since
247 * we can't back out from using it...
248 */
249 void xen_vcpu_restore(void)
250 {
251 int cpu;
252
253 for_each_possible_cpu(cpu) {
254 bool other_cpu = (cpu != smp_processor_id());
255 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
256 NULL);
257
258 if (other_cpu && is_up &&
259 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
260 BUG();
261
262 xen_setup_runstate_info(cpu);
263
264 if (have_vcpu_info_placement)
265 xen_vcpu_setup(cpu);
266
267 if (other_cpu && is_up &&
268 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
269 BUG();
270 }
271 }
272
273 static void __init xen_banner(void)
274 {
275 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
276 struct xen_extraversion extra;
277 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
278
279 pr_info("Booting paravirtualized kernel %son %s\n",
280 xen_feature(XENFEAT_auto_translated_physmap) ?
281 "with PVH extensions " : "", pv_info.name);
282 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
283 version >> 16, version & 0xffff, extra.extraversion,
284 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
285 }
286 /* Check if running on Xen version (major, minor) or later */
287 bool
288 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
289 {
290 unsigned int version;
291
292 if (!xen_domain())
293 return false;
294
295 version = HYPERVISOR_xen_version(XENVER_version, NULL);
296 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
297 ((version >> 16) > major))
298 return true;
299 return false;
300 }
301
302 #define CPUID_THERM_POWER_LEAF 6
303 #define APERFMPERF_PRESENT 0
304
305 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
306 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
307
308 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
309 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
310 static __read_mostly unsigned int cpuid_leaf5_edx_val;
311
312 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
313 unsigned int *cx, unsigned int *dx)
314 {
315 unsigned maskebx = ~0;
316 unsigned maskecx = ~0;
317 unsigned maskedx = ~0;
318 unsigned setecx = 0;
319 /*
320 * Mask out inconvenient features, to try and disable as many
321 * unsupported kernel subsystems as possible.
322 */
323 switch (*ax) {
324 case 1:
325 maskecx = cpuid_leaf1_ecx_mask;
326 setecx = cpuid_leaf1_ecx_set_mask;
327 maskedx = cpuid_leaf1_edx_mask;
328 break;
329
330 case CPUID_MWAIT_LEAF:
331 /* Synthesize the values.. */
332 *ax = 0;
333 *bx = 0;
334 *cx = cpuid_leaf5_ecx_val;
335 *dx = cpuid_leaf5_edx_val;
336 return;
337
338 case CPUID_THERM_POWER_LEAF:
339 /* Disabling APERFMPERF for kernel usage */
340 maskecx = ~(1 << APERFMPERF_PRESENT);
341 break;
342
343 case 0xb:
344 /* Suppress extended topology stuff */
345 maskebx = 0;
346 break;
347 }
348
349 asm(XEN_EMULATE_PREFIX "cpuid"
350 : "=a" (*ax),
351 "=b" (*bx),
352 "=c" (*cx),
353 "=d" (*dx)
354 : "0" (*ax), "2" (*cx));
355
356 *bx &= maskebx;
357 *cx &= maskecx;
358 *cx |= setecx;
359 *dx &= maskedx;
360 }
361 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
362
363 static bool __init xen_check_mwait(void)
364 {
365 #ifdef CONFIG_ACPI
366 struct xen_platform_op op = {
367 .cmd = XENPF_set_processor_pminfo,
368 .u.set_pminfo.id = -1,
369 .u.set_pminfo.type = XEN_PM_PDC,
370 };
371 uint32_t buf[3];
372 unsigned int ax, bx, cx, dx;
373 unsigned int mwait_mask;
374
375 /* We need to determine whether it is OK to expose the MWAIT
376 * capability to the kernel to harvest deeper than C3 states from ACPI
377 * _CST using the processor_harvest_xen.c module. For this to work, we
378 * need to gather the MWAIT_LEAF values (which the cstate.c code
379 * checks against). The hypervisor won't expose the MWAIT flag because
380 * it would break backwards compatibility; so we will find out directly
381 * from the hardware and hypercall.
382 */
383 if (!xen_initial_domain())
384 return false;
385
386 /*
387 * When running under platform earlier than Xen4.2, do not expose
388 * mwait, to avoid the risk of loading native acpi pad driver
389 */
390 if (!xen_running_on_version_or_later(4, 2))
391 return false;
392
393 ax = 1;
394 cx = 0;
395
396 native_cpuid(&ax, &bx, &cx, &dx);
397
398 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
399 (1 << (X86_FEATURE_MWAIT % 32));
400
401 if ((cx & mwait_mask) != mwait_mask)
402 return false;
403
404 /* We need to emulate the MWAIT_LEAF and for that we need both
405 * ecx and edx. The hypercall provides only partial information.
406 */
407
408 ax = CPUID_MWAIT_LEAF;
409 bx = 0;
410 cx = 0;
411 dx = 0;
412
413 native_cpuid(&ax, &bx, &cx, &dx);
414
415 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
416 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
417 */
418 buf[0] = ACPI_PDC_REVISION_ID;
419 buf[1] = 1;
420 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
421
422 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
423
424 if ((HYPERVISOR_platform_op(&op) == 0) &&
425 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
426 cpuid_leaf5_ecx_val = cx;
427 cpuid_leaf5_edx_val = dx;
428 }
429 return true;
430 #else
431 return false;
432 #endif
433 }
434 static void __init xen_init_cpuid_mask(void)
435 {
436 unsigned int ax, bx, cx, dx;
437 unsigned int xsave_mask;
438
439 cpuid_leaf1_edx_mask =
440 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
441 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
442
443 if (!xen_initial_domain())
444 cpuid_leaf1_edx_mask &=
445 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
446
447 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
448
449 ax = 1;
450 cx = 0;
451 cpuid(1, &ax, &bx, &cx, &dx);
452
453 xsave_mask =
454 (1 << (X86_FEATURE_XSAVE % 32)) |
455 (1 << (X86_FEATURE_OSXSAVE % 32));
456
457 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
458 if ((cx & xsave_mask) != xsave_mask)
459 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
460 if (xen_check_mwait())
461 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
462 }
463
464 static void xen_set_debugreg(int reg, unsigned long val)
465 {
466 HYPERVISOR_set_debugreg(reg, val);
467 }
468
469 static unsigned long xen_get_debugreg(int reg)
470 {
471 return HYPERVISOR_get_debugreg(reg);
472 }
473
474 static void xen_end_context_switch(struct task_struct *next)
475 {
476 xen_mc_flush();
477 paravirt_end_context_switch(next);
478 }
479
480 static unsigned long xen_store_tr(void)
481 {
482 return 0;
483 }
484
485 /*
486 * Set the page permissions for a particular virtual address. If the
487 * address is a vmalloc mapping (or other non-linear mapping), then
488 * find the linear mapping of the page and also set its protections to
489 * match.
490 */
491 static void set_aliased_prot(void *v, pgprot_t prot)
492 {
493 int level;
494 pte_t *ptep;
495 pte_t pte;
496 unsigned long pfn;
497 struct page *page;
498 unsigned char dummy;
499
500 ptep = lookup_address((unsigned long)v, &level);
501 BUG_ON(ptep == NULL);
502
503 pfn = pte_pfn(*ptep);
504 page = pfn_to_page(pfn);
505
506 pte = pfn_pte(pfn, prot);
507
508 /*
509 * Careful: update_va_mapping() will fail if the virtual address
510 * we're poking isn't populated in the page tables. We don't
511 * need to worry about the direct map (that's always in the page
512 * tables), but we need to be careful about vmap space. In
513 * particular, the top level page table can lazily propagate
514 * entries between processes, so if we've switched mms since we
515 * vmapped the target in the first place, we might not have the
516 * top-level page table entry populated.
517 *
518 * We disable preemption because we want the same mm active when
519 * we probe the target and when we issue the hypercall. We'll
520 * have the same nominal mm, but if we're a kernel thread, lazy
521 * mm dropping could change our pgd.
522 *
523 * Out of an abundance of caution, this uses __get_user() to fault
524 * in the target address just in case there's some obscure case
525 * in which the target address isn't readable.
526 */
527
528 preempt_disable();
529
530 probe_kernel_read(&dummy, v, 1);
531
532 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
533 BUG();
534
535 if (!PageHighMem(page)) {
536 void *av = __va(PFN_PHYS(pfn));
537
538 if (av != v)
539 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
540 BUG();
541 } else
542 kmap_flush_unused();
543
544 preempt_enable();
545 }
546
547 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
548 {
549 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
550 int i;
551
552 /*
553 * We need to mark the all aliases of the LDT pages RO. We
554 * don't need to call vm_flush_aliases(), though, since that's
555 * only responsible for flushing aliases out the TLBs, not the
556 * page tables, and Xen will flush the TLB for us if needed.
557 *
558 * To avoid confusing future readers: none of this is necessary
559 * to load the LDT. The hypervisor only checks this when the
560 * LDT is faulted in due to subsequent descriptor access.
561 */
562
563 for(i = 0; i < entries; i += entries_per_page)
564 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
565 }
566
567 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
568 {
569 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
570 int i;
571
572 for(i = 0; i < entries; i += entries_per_page)
573 set_aliased_prot(ldt + i, PAGE_KERNEL);
574 }
575
576 static void xen_set_ldt(const void *addr, unsigned entries)
577 {
578 struct mmuext_op *op;
579 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
580
581 trace_xen_cpu_set_ldt(addr, entries);
582
583 op = mcs.args;
584 op->cmd = MMUEXT_SET_LDT;
585 op->arg1.linear_addr = (unsigned long)addr;
586 op->arg2.nr_ents = entries;
587
588 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
589
590 xen_mc_issue(PARAVIRT_LAZY_CPU);
591 }
592
593 static void xen_load_gdt(const struct desc_ptr *dtr)
594 {
595 unsigned long va = dtr->address;
596 unsigned int size = dtr->size + 1;
597 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
598 unsigned long frames[pages];
599 int f;
600
601 /*
602 * A GDT can be up to 64k in size, which corresponds to 8192
603 * 8-byte entries, or 16 4k pages..
604 */
605
606 BUG_ON(size > 65536);
607 BUG_ON(va & ~PAGE_MASK);
608
609 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
610 int level;
611 pte_t *ptep;
612 unsigned long pfn, mfn;
613 void *virt;
614
615 /*
616 * The GDT is per-cpu and is in the percpu data area.
617 * That can be virtually mapped, so we need to do a
618 * page-walk to get the underlying MFN for the
619 * hypercall. The page can also be in the kernel's
620 * linear range, so we need to RO that mapping too.
621 */
622 ptep = lookup_address(va, &level);
623 BUG_ON(ptep == NULL);
624
625 pfn = pte_pfn(*ptep);
626 mfn = pfn_to_mfn(pfn);
627 virt = __va(PFN_PHYS(pfn));
628
629 frames[f] = mfn;
630
631 make_lowmem_page_readonly((void *)va);
632 make_lowmem_page_readonly(virt);
633 }
634
635 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
636 BUG();
637 }
638
639 /*
640 * load_gdt for early boot, when the gdt is only mapped once
641 */
642 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
643 {
644 unsigned long va = dtr->address;
645 unsigned int size = dtr->size + 1;
646 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
647 unsigned long frames[pages];
648 int f;
649
650 /*
651 * A GDT can be up to 64k in size, which corresponds to 8192
652 * 8-byte entries, or 16 4k pages..
653 */
654
655 BUG_ON(size > 65536);
656 BUG_ON(va & ~PAGE_MASK);
657
658 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
659 pte_t pte;
660 unsigned long pfn, mfn;
661
662 pfn = virt_to_pfn(va);
663 mfn = pfn_to_mfn(pfn);
664
665 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
666
667 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
668 BUG();
669
670 frames[f] = mfn;
671 }
672
673 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
674 BUG();
675 }
676
677 static inline bool desc_equal(const struct desc_struct *d1,
678 const struct desc_struct *d2)
679 {
680 return d1->a == d2->a && d1->b == d2->b;
681 }
682
683 static void load_TLS_descriptor(struct thread_struct *t,
684 unsigned int cpu, unsigned int i)
685 {
686 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
687 struct desc_struct *gdt;
688 xmaddr_t maddr;
689 struct multicall_space mc;
690
691 if (desc_equal(shadow, &t->tls_array[i]))
692 return;
693
694 *shadow = t->tls_array[i];
695
696 gdt = get_cpu_gdt_table(cpu);
697 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
698 mc = __xen_mc_entry(0);
699
700 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
701 }
702
703 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
704 {
705 /*
706 * XXX sleazy hack: If we're being called in a lazy-cpu zone
707 * and lazy gs handling is enabled, it means we're in a
708 * context switch, and %gs has just been saved. This means we
709 * can zero it out to prevent faults on exit from the
710 * hypervisor if the next process has no %gs. Either way, it
711 * has been saved, and the new value will get loaded properly.
712 * This will go away as soon as Xen has been modified to not
713 * save/restore %gs for normal hypercalls.
714 *
715 * On x86_64, this hack is not used for %gs, because gs points
716 * to KERNEL_GS_BASE (and uses it for PDA references), so we
717 * must not zero %gs on x86_64
718 *
719 * For x86_64, we need to zero %fs, otherwise we may get an
720 * exception between the new %fs descriptor being loaded and
721 * %fs being effectively cleared at __switch_to().
722 */
723 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
724 #ifdef CONFIG_X86_32
725 lazy_load_gs(0);
726 #else
727 loadsegment(fs, 0);
728 #endif
729 }
730
731 xen_mc_batch();
732
733 load_TLS_descriptor(t, cpu, 0);
734 load_TLS_descriptor(t, cpu, 1);
735 load_TLS_descriptor(t, cpu, 2);
736
737 xen_mc_issue(PARAVIRT_LAZY_CPU);
738 }
739
740 #ifdef CONFIG_X86_64
741 static void xen_load_gs_index(unsigned int idx)
742 {
743 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
744 BUG();
745 }
746 #endif
747
748 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
749 const void *ptr)
750 {
751 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
752 u64 entry = *(u64 *)ptr;
753
754 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
755
756 preempt_disable();
757
758 xen_mc_flush();
759 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
760 BUG();
761
762 preempt_enable();
763 }
764
765 static int cvt_gate_to_trap(int vector, const gate_desc *val,
766 struct trap_info *info)
767 {
768 unsigned long addr;
769
770 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
771 return 0;
772
773 info->vector = vector;
774
775 addr = gate_offset(*val);
776 #ifdef CONFIG_X86_64
777 /*
778 * Look for known traps using IST, and substitute them
779 * appropriately. The debugger ones are the only ones we care
780 * about. Xen will handle faults like double_fault,
781 * so we should never see them. Warn if
782 * there's an unexpected IST-using fault handler.
783 */
784 if (addr == (unsigned long)debug)
785 addr = (unsigned long)xen_debug;
786 else if (addr == (unsigned long)int3)
787 addr = (unsigned long)xen_int3;
788 else if (addr == (unsigned long)stack_segment)
789 addr = (unsigned long)xen_stack_segment;
790 else if (addr == (unsigned long)double_fault) {
791 /* Don't need to handle these */
792 return 0;
793 #ifdef CONFIG_X86_MCE
794 } else if (addr == (unsigned long)machine_check) {
795 /*
796 * when xen hypervisor inject vMCE to guest,
797 * use native mce handler to handle it
798 */
799 ;
800 #endif
801 } else if (addr == (unsigned long)nmi)
802 /*
803 * Use the native version as well.
804 */
805 ;
806 else {
807 /* Some other trap using IST? */
808 if (WARN_ON(val->ist != 0))
809 return 0;
810 }
811 #endif /* CONFIG_X86_64 */
812 info->address = addr;
813
814 info->cs = gate_segment(*val);
815 info->flags = val->dpl;
816 /* interrupt gates clear IF */
817 if (val->type == GATE_INTERRUPT)
818 info->flags |= 1 << 2;
819
820 return 1;
821 }
822
823 /* Locations of each CPU's IDT */
824 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
825
826 /* Set an IDT entry. If the entry is part of the current IDT, then
827 also update Xen. */
828 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
829 {
830 unsigned long p = (unsigned long)&dt[entrynum];
831 unsigned long start, end;
832
833 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
834
835 preempt_disable();
836
837 start = __this_cpu_read(idt_desc.address);
838 end = start + __this_cpu_read(idt_desc.size) + 1;
839
840 xen_mc_flush();
841
842 native_write_idt_entry(dt, entrynum, g);
843
844 if (p >= start && (p + 8) <= end) {
845 struct trap_info info[2];
846
847 info[1].address = 0;
848
849 if (cvt_gate_to_trap(entrynum, g, &info[0]))
850 if (HYPERVISOR_set_trap_table(info))
851 BUG();
852 }
853
854 preempt_enable();
855 }
856
857 static void xen_convert_trap_info(const struct desc_ptr *desc,
858 struct trap_info *traps)
859 {
860 unsigned in, out, count;
861
862 count = (desc->size+1) / sizeof(gate_desc);
863 BUG_ON(count > 256);
864
865 for (in = out = 0; in < count; in++) {
866 gate_desc *entry = (gate_desc*)(desc->address) + in;
867
868 if (cvt_gate_to_trap(in, entry, &traps[out]))
869 out++;
870 }
871 traps[out].address = 0;
872 }
873
874 void xen_copy_trap_info(struct trap_info *traps)
875 {
876 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
877
878 xen_convert_trap_info(desc, traps);
879 }
880
881 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
882 hold a spinlock to protect the static traps[] array (static because
883 it avoids allocation, and saves stack space). */
884 static void xen_load_idt(const struct desc_ptr *desc)
885 {
886 static DEFINE_SPINLOCK(lock);
887 static struct trap_info traps[257];
888
889 trace_xen_cpu_load_idt(desc);
890
891 spin_lock(&lock);
892
893 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
894
895 xen_convert_trap_info(desc, traps);
896
897 xen_mc_flush();
898 if (HYPERVISOR_set_trap_table(traps))
899 BUG();
900
901 spin_unlock(&lock);
902 }
903
904 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
905 they're handled differently. */
906 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
907 const void *desc, int type)
908 {
909 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
910
911 preempt_disable();
912
913 switch (type) {
914 case DESC_LDT:
915 case DESC_TSS:
916 /* ignore */
917 break;
918
919 default: {
920 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
921
922 xen_mc_flush();
923 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
924 BUG();
925 }
926
927 }
928
929 preempt_enable();
930 }
931
932 /*
933 * Version of write_gdt_entry for use at early boot-time needed to
934 * update an entry as simply as possible.
935 */
936 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
937 const void *desc, int type)
938 {
939 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
940
941 switch (type) {
942 case DESC_LDT:
943 case DESC_TSS:
944 /* ignore */
945 break;
946
947 default: {
948 xmaddr_t maddr = virt_to_machine(&dt[entry]);
949
950 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
951 dt[entry] = *(struct desc_struct *)desc;
952 }
953
954 }
955 }
956
957 static void xen_load_sp0(struct tss_struct *tss,
958 struct thread_struct *thread)
959 {
960 struct multicall_space mcs;
961
962 mcs = xen_mc_entry(0);
963 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
964 xen_mc_issue(PARAVIRT_LAZY_CPU);
965 tss->x86_tss.sp0 = thread->sp0;
966 }
967
968 void xen_set_iopl_mask(unsigned mask)
969 {
970 struct physdev_set_iopl set_iopl;
971
972 /* Force the change at ring 0. */
973 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
974 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
975 }
976
977 static void xen_io_delay(void)
978 {
979 }
980
981 static void xen_clts(void)
982 {
983 struct multicall_space mcs;
984
985 mcs = xen_mc_entry(0);
986
987 MULTI_fpu_taskswitch(mcs.mc, 0);
988
989 xen_mc_issue(PARAVIRT_LAZY_CPU);
990 }
991
992 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
993
994 static unsigned long xen_read_cr0(void)
995 {
996 unsigned long cr0 = this_cpu_read(xen_cr0_value);
997
998 if (unlikely(cr0 == 0)) {
999 cr0 = native_read_cr0();
1000 this_cpu_write(xen_cr0_value, cr0);
1001 }
1002
1003 return cr0;
1004 }
1005
1006 static void xen_write_cr0(unsigned long cr0)
1007 {
1008 struct multicall_space mcs;
1009
1010 this_cpu_write(xen_cr0_value, cr0);
1011
1012 /* Only pay attention to cr0.TS; everything else is
1013 ignored. */
1014 mcs = xen_mc_entry(0);
1015
1016 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1017
1018 xen_mc_issue(PARAVIRT_LAZY_CPU);
1019 }
1020
1021 static void xen_write_cr4(unsigned long cr4)
1022 {
1023 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1024
1025 native_write_cr4(cr4);
1026 }
1027 #ifdef CONFIG_X86_64
1028 static inline unsigned long xen_read_cr8(void)
1029 {
1030 return 0;
1031 }
1032 static inline void xen_write_cr8(unsigned long val)
1033 {
1034 BUG_ON(val);
1035 }
1036 #endif
1037
1038 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1039 {
1040 u64 val;
1041
1042 if (pmu_msr_read(msr, &val, err))
1043 return val;
1044
1045 val = native_read_msr_safe(msr, err);
1046 switch (msr) {
1047 case MSR_IA32_APICBASE:
1048 #ifdef CONFIG_X86_X2APIC
1049 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1050 #endif
1051 val &= ~X2APIC_ENABLE;
1052 break;
1053 }
1054 return val;
1055 }
1056
1057 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1058 {
1059 int ret;
1060
1061 ret = 0;
1062
1063 switch (msr) {
1064 #ifdef CONFIG_X86_64
1065 unsigned which;
1066 u64 base;
1067
1068 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1069 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1070 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1071
1072 set:
1073 base = ((u64)high << 32) | low;
1074 if (HYPERVISOR_set_segment_base(which, base) != 0)
1075 ret = -EIO;
1076 break;
1077 #endif
1078
1079 case MSR_STAR:
1080 case MSR_CSTAR:
1081 case MSR_LSTAR:
1082 case MSR_SYSCALL_MASK:
1083 case MSR_IA32_SYSENTER_CS:
1084 case MSR_IA32_SYSENTER_ESP:
1085 case MSR_IA32_SYSENTER_EIP:
1086 /* Fast syscall setup is all done in hypercalls, so
1087 these are all ignored. Stub them out here to stop
1088 Xen console noise. */
1089 break;
1090
1091 default:
1092 if (!pmu_msr_write(msr, low, high, &ret))
1093 ret = native_write_msr_safe(msr, low, high);
1094 }
1095
1096 return ret;
1097 }
1098
1099 static u64 xen_read_msr(unsigned int msr)
1100 {
1101 /*
1102 * This will silently swallow a #GP from RDMSR. It may be worth
1103 * changing that.
1104 */
1105 int err;
1106
1107 return xen_read_msr_safe(msr, &err);
1108 }
1109
1110 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1111 {
1112 /*
1113 * This will silently swallow a #GP from WRMSR. It may be worth
1114 * changing that.
1115 */
1116 xen_write_msr_safe(msr, low, high);
1117 }
1118
1119 void xen_setup_shared_info(void)
1120 {
1121 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1122 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1123 xen_start_info->shared_info);
1124
1125 HYPERVISOR_shared_info =
1126 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1127 } else
1128 HYPERVISOR_shared_info =
1129 (struct shared_info *)__va(xen_start_info->shared_info);
1130
1131 #ifndef CONFIG_SMP
1132 /* In UP this is as good a place as any to set up shared info */
1133 xen_setup_vcpu_info_placement();
1134 #endif
1135
1136 xen_setup_mfn_list_list();
1137 }
1138
1139 /* This is called once we have the cpu_possible_mask */
1140 void xen_setup_vcpu_info_placement(void)
1141 {
1142 int cpu;
1143
1144 for_each_possible_cpu(cpu) {
1145 /* Set up direct vCPU id mapping for PV guests. */
1146 per_cpu(xen_vcpu_id, cpu) = cpu;
1147 xen_vcpu_setup(cpu);
1148 }
1149
1150 /* xen_vcpu_setup managed to place the vcpu_info within the
1151 * percpu area for all cpus, so make use of it. Note that for
1152 * PVH we want to use native IRQ mechanism. */
1153 if (have_vcpu_info_placement && !xen_pvh_domain()) {
1154 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1155 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1156 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1157 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1158 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1159 }
1160 }
1161
1162 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1163 unsigned long addr, unsigned len)
1164 {
1165 char *start, *end, *reloc;
1166 unsigned ret;
1167
1168 start = end = reloc = NULL;
1169
1170 #define SITE(op, x) \
1171 case PARAVIRT_PATCH(op.x): \
1172 if (have_vcpu_info_placement) { \
1173 start = (char *)xen_##x##_direct; \
1174 end = xen_##x##_direct_end; \
1175 reloc = xen_##x##_direct_reloc; \
1176 } \
1177 goto patch_site
1178
1179 switch (type) {
1180 SITE(pv_irq_ops, irq_enable);
1181 SITE(pv_irq_ops, irq_disable);
1182 SITE(pv_irq_ops, save_fl);
1183 SITE(pv_irq_ops, restore_fl);
1184 #undef SITE
1185
1186 patch_site:
1187 if (start == NULL || (end-start) > len)
1188 goto default_patch;
1189
1190 ret = paravirt_patch_insns(insnbuf, len, start, end);
1191
1192 /* Note: because reloc is assigned from something that
1193 appears to be an array, gcc assumes it's non-null,
1194 but doesn't know its relationship with start and
1195 end. */
1196 if (reloc > start && reloc < end) {
1197 int reloc_off = reloc - start;
1198 long *relocp = (long *)(insnbuf + reloc_off);
1199 long delta = start - (char *)addr;
1200
1201 *relocp += delta;
1202 }
1203 break;
1204
1205 default_patch:
1206 default:
1207 ret = paravirt_patch_default(type, clobbers, insnbuf,
1208 addr, len);
1209 break;
1210 }
1211
1212 return ret;
1213 }
1214
1215 static const struct pv_info xen_info __initconst = {
1216 .shared_kernel_pmd = 0,
1217
1218 #ifdef CONFIG_X86_64
1219 .extra_user_64bit_cs = FLAT_USER_CS64,
1220 #endif
1221 .name = "Xen",
1222 };
1223
1224 static const struct pv_init_ops xen_init_ops __initconst = {
1225 .patch = xen_patch,
1226 };
1227
1228 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1229 .cpuid = xen_cpuid,
1230
1231 .set_debugreg = xen_set_debugreg,
1232 .get_debugreg = xen_get_debugreg,
1233
1234 .clts = xen_clts,
1235
1236 .read_cr0 = xen_read_cr0,
1237 .write_cr0 = xen_write_cr0,
1238
1239 .read_cr4 = native_read_cr4,
1240 .read_cr4_safe = native_read_cr4_safe,
1241 .write_cr4 = xen_write_cr4,
1242
1243 #ifdef CONFIG_X86_64
1244 .read_cr8 = xen_read_cr8,
1245 .write_cr8 = xen_write_cr8,
1246 #endif
1247
1248 .wbinvd = native_wbinvd,
1249
1250 .read_msr = xen_read_msr,
1251 .write_msr = xen_write_msr,
1252
1253 .read_msr_safe = xen_read_msr_safe,
1254 .write_msr_safe = xen_write_msr_safe,
1255
1256 .read_pmc = xen_read_pmc,
1257
1258 .iret = xen_iret,
1259 #ifdef CONFIG_X86_64
1260 .usergs_sysret64 = xen_sysret64,
1261 #endif
1262
1263 .load_tr_desc = paravirt_nop,
1264 .set_ldt = xen_set_ldt,
1265 .load_gdt = xen_load_gdt,
1266 .load_idt = xen_load_idt,
1267 .load_tls = xen_load_tls,
1268 #ifdef CONFIG_X86_64
1269 .load_gs_index = xen_load_gs_index,
1270 #endif
1271
1272 .alloc_ldt = xen_alloc_ldt,
1273 .free_ldt = xen_free_ldt,
1274
1275 .store_idt = native_store_idt,
1276 .store_tr = xen_store_tr,
1277
1278 .write_ldt_entry = xen_write_ldt_entry,
1279 .write_gdt_entry = xen_write_gdt_entry,
1280 .write_idt_entry = xen_write_idt_entry,
1281 .load_sp0 = xen_load_sp0,
1282
1283 .set_iopl_mask = xen_set_iopl_mask,
1284 .io_delay = xen_io_delay,
1285
1286 /* Xen takes care of %gs when switching to usermode for us */
1287 .swapgs = paravirt_nop,
1288
1289 .start_context_switch = paravirt_start_context_switch,
1290 .end_context_switch = xen_end_context_switch,
1291 };
1292
1293 static void xen_reboot(int reason)
1294 {
1295 struct sched_shutdown r = { .reason = reason };
1296 int cpu;
1297
1298 for_each_online_cpu(cpu)
1299 xen_pmu_finish(cpu);
1300
1301 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1302 BUG();
1303 }
1304
1305 static void xen_restart(char *msg)
1306 {
1307 xen_reboot(SHUTDOWN_reboot);
1308 }
1309
1310 static void xen_emergency_restart(void)
1311 {
1312 xen_reboot(SHUTDOWN_reboot);
1313 }
1314
1315 static void xen_machine_halt(void)
1316 {
1317 xen_reboot(SHUTDOWN_poweroff);
1318 }
1319
1320 static void xen_machine_power_off(void)
1321 {
1322 if (pm_power_off)
1323 pm_power_off();
1324 xen_reboot(SHUTDOWN_poweroff);
1325 }
1326
1327 static void xen_crash_shutdown(struct pt_regs *regs)
1328 {
1329 xen_reboot(SHUTDOWN_crash);
1330 }
1331
1332 static int
1333 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1334 {
1335 if (!kexec_crash_loaded())
1336 xen_reboot(SHUTDOWN_crash);
1337 return NOTIFY_DONE;
1338 }
1339
1340 static struct notifier_block xen_panic_block = {
1341 .notifier_call= xen_panic_event,
1342 .priority = INT_MIN
1343 };
1344
1345 int xen_panic_handler_init(void)
1346 {
1347 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1348 return 0;
1349 }
1350
1351 static const struct machine_ops xen_machine_ops __initconst = {
1352 .restart = xen_restart,
1353 .halt = xen_machine_halt,
1354 .power_off = xen_machine_power_off,
1355 .shutdown = xen_machine_halt,
1356 .crash_shutdown = xen_crash_shutdown,
1357 .emergency_restart = xen_emergency_restart,
1358 };
1359
1360 static unsigned char xen_get_nmi_reason(void)
1361 {
1362 unsigned char reason = 0;
1363
1364 /* Construct a value which looks like it came from port 0x61. */
1365 if (test_bit(_XEN_NMIREASON_io_error,
1366 &HYPERVISOR_shared_info->arch.nmi_reason))
1367 reason |= NMI_REASON_IOCHK;
1368 if (test_bit(_XEN_NMIREASON_pci_serr,
1369 &HYPERVISOR_shared_info->arch.nmi_reason))
1370 reason |= NMI_REASON_SERR;
1371
1372 return reason;
1373 }
1374
1375 static void __init xen_boot_params_init_edd(void)
1376 {
1377 #if IS_ENABLED(CONFIG_EDD)
1378 struct xen_platform_op op;
1379 struct edd_info *edd_info;
1380 u32 *mbr_signature;
1381 unsigned nr;
1382 int ret;
1383
1384 edd_info = boot_params.eddbuf;
1385 mbr_signature = boot_params.edd_mbr_sig_buffer;
1386
1387 op.cmd = XENPF_firmware_info;
1388
1389 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1390 for (nr = 0; nr < EDDMAXNR; nr++) {
1391 struct edd_info *info = edd_info + nr;
1392
1393 op.u.firmware_info.index = nr;
1394 info->params.length = sizeof(info->params);
1395 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1396 &info->params);
1397 ret = HYPERVISOR_platform_op(&op);
1398 if (ret)
1399 break;
1400
1401 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1402 C(device);
1403 C(version);
1404 C(interface_support);
1405 C(legacy_max_cylinder);
1406 C(legacy_max_head);
1407 C(legacy_sectors_per_track);
1408 #undef C
1409 }
1410 boot_params.eddbuf_entries = nr;
1411
1412 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1413 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1414 op.u.firmware_info.index = nr;
1415 ret = HYPERVISOR_platform_op(&op);
1416 if (ret)
1417 break;
1418 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1419 }
1420 boot_params.edd_mbr_sig_buf_entries = nr;
1421 #endif
1422 }
1423
1424 /*
1425 * Set up the GDT and segment registers for -fstack-protector. Until
1426 * we do this, we have to be careful not to call any stack-protected
1427 * function, which is most of the kernel.
1428 *
1429 * Note, that it is __ref because the only caller of this after init
1430 * is PVH which is not going to use xen_load_gdt_boot or other
1431 * __init functions.
1432 */
1433 static void __ref xen_setup_gdt(int cpu)
1434 {
1435 if (xen_feature(XENFEAT_auto_translated_physmap)) {
1436 #ifdef CONFIG_X86_64
1437 unsigned long dummy;
1438
1439 load_percpu_segment(cpu); /* We need to access per-cpu area */
1440 switch_to_new_gdt(cpu); /* GDT and GS set */
1441
1442 /* We are switching of the Xen provided GDT to our HVM mode
1443 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1444 * and we are jumping to reload it.
1445 */
1446 asm volatile ("pushq %0\n"
1447 "leaq 1f(%%rip),%0\n"
1448 "pushq %0\n"
1449 "lretq\n"
1450 "1:\n"
1451 : "=&r" (dummy) : "0" (__KERNEL_CS));
1452
1453 /*
1454 * While not needed, we also set the %es, %ds, and %fs
1455 * to zero. We don't care about %ss as it is NULL.
1456 * Strictly speaking this is not needed as Xen zeros those
1457 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1458 *
1459 * Linux zeros them in cpu_init() and in secondary_startup_64
1460 * (for BSP).
1461 */
1462 loadsegment(es, 0);
1463 loadsegment(ds, 0);
1464 loadsegment(fs, 0);
1465 #else
1466 /* PVH: TODO Implement. */
1467 BUG();
1468 #endif
1469 return; /* PVH does not need any PV GDT ops. */
1470 }
1471 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1472 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1473
1474 setup_stack_canary_segment(0);
1475 switch_to_new_gdt(0);
1476
1477 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1478 pv_cpu_ops.load_gdt = xen_load_gdt;
1479 }
1480
1481 #ifdef CONFIG_XEN_PVH
1482 /*
1483 * A PV guest starts with default flags that are not set for PVH, set them
1484 * here asap.
1485 */
1486 static void xen_pvh_set_cr_flags(int cpu)
1487 {
1488
1489 /* Some of these are setup in 'secondary_startup_64'. The others:
1490 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1491 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1492 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1493
1494 if (!cpu)
1495 return;
1496 /*
1497 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1498 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1499 */
1500 if (boot_cpu_has(X86_FEATURE_PSE))
1501 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1502
1503 if (boot_cpu_has(X86_FEATURE_PGE))
1504 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1505 }
1506
1507 /*
1508 * Note, that it is ref - because the only caller of this after init
1509 * is PVH which is not going to use xen_load_gdt_boot or other
1510 * __init functions.
1511 */
1512 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1513 {
1514 xen_setup_gdt(cpu);
1515 xen_pvh_set_cr_flags(cpu);
1516 }
1517
1518 static void __init xen_pvh_early_guest_init(void)
1519 {
1520 if (!xen_feature(XENFEAT_auto_translated_physmap))
1521 return;
1522
1523 if (!xen_feature(XENFEAT_hvm_callback_vector))
1524 return;
1525
1526 xen_have_vector_callback = 1;
1527
1528 xen_pvh_early_cpu_init(0, false);
1529 xen_pvh_set_cr_flags(0);
1530
1531 #ifdef CONFIG_X86_32
1532 BUG(); /* PVH: Implement proper support. */
1533 #endif
1534 }
1535 #endif /* CONFIG_XEN_PVH */
1536
1537 static void __init xen_dom0_set_legacy_features(void)
1538 {
1539 x86_platform.legacy.rtc = 1;
1540 }
1541
1542 /* First C function to be called on Xen boot */
1543 asmlinkage __visible void __init xen_start_kernel(void)
1544 {
1545 struct physdev_set_iopl set_iopl;
1546 unsigned long initrd_start = 0;
1547 int rc;
1548
1549 if (!xen_start_info)
1550 return;
1551
1552 xen_domain_type = XEN_PV_DOMAIN;
1553
1554 xen_setup_features();
1555 #ifdef CONFIG_XEN_PVH
1556 xen_pvh_early_guest_init();
1557 #endif
1558 xen_setup_machphys_mapping();
1559
1560 /* Install Xen paravirt ops */
1561 pv_info = xen_info;
1562 pv_init_ops = xen_init_ops;
1563 if (!xen_pvh_domain()) {
1564 pv_cpu_ops = xen_cpu_ops;
1565
1566 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1567 }
1568
1569 if (xen_feature(XENFEAT_auto_translated_physmap))
1570 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1571 else
1572 x86_init.resources.memory_setup = xen_memory_setup;
1573 x86_init.oem.arch_setup = xen_arch_setup;
1574 x86_init.oem.banner = xen_banner;
1575
1576 xen_init_time_ops();
1577
1578 /*
1579 * Set up some pagetable state before starting to set any ptes.
1580 */
1581
1582 xen_init_mmu_ops();
1583
1584 /* Prevent unwanted bits from being set in PTEs. */
1585 __supported_pte_mask &= ~_PAGE_GLOBAL;
1586
1587 /*
1588 * Prevent page tables from being allocated in highmem, even
1589 * if CONFIG_HIGHPTE is enabled.
1590 */
1591 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1592
1593 /* Work out if we support NX */
1594 x86_configure_nx();
1595
1596 /* Get mfn list */
1597 xen_build_dynamic_phys_to_machine();
1598
1599 /*
1600 * Set up kernel GDT and segment registers, mainly so that
1601 * -fstack-protector code can be executed.
1602 */
1603 xen_setup_gdt(0);
1604
1605 xen_init_irq_ops();
1606 xen_init_cpuid_mask();
1607
1608 #ifdef CONFIG_X86_LOCAL_APIC
1609 /*
1610 * set up the basic apic ops.
1611 */
1612 xen_init_apic();
1613 #endif
1614
1615 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1616 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1617 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1618 }
1619
1620 machine_ops = xen_machine_ops;
1621
1622 /*
1623 * The only reliable way to retain the initial address of the
1624 * percpu gdt_page is to remember it here, so we can go and
1625 * mark it RW later, when the initial percpu area is freed.
1626 */
1627 xen_initial_gdt = &per_cpu(gdt_page, 0);
1628
1629 xen_smp_init();
1630
1631 #ifdef CONFIG_ACPI_NUMA
1632 /*
1633 * The pages we from Xen are not related to machine pages, so
1634 * any NUMA information the kernel tries to get from ACPI will
1635 * be meaningless. Prevent it from trying.
1636 */
1637 acpi_numa = -1;
1638 #endif
1639 /* Don't do the full vcpu_info placement stuff until we have a
1640 possible map and a non-dummy shared_info. */
1641 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1642
1643 local_irq_disable();
1644 early_boot_irqs_disabled = true;
1645
1646 xen_raw_console_write("mapping kernel into physical memory\n");
1647 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1648 xen_start_info->nr_pages);
1649 xen_reserve_special_pages();
1650
1651 /* keep using Xen gdt for now; no urgent need to change it */
1652
1653 #ifdef CONFIG_X86_32
1654 pv_info.kernel_rpl = 1;
1655 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1656 pv_info.kernel_rpl = 0;
1657 #else
1658 pv_info.kernel_rpl = 0;
1659 #endif
1660 /* set the limit of our address space */
1661 xen_reserve_top();
1662
1663 /* PVH: runs at default kernel iopl of 0 */
1664 if (!xen_pvh_domain()) {
1665 /*
1666 * We used to do this in xen_arch_setup, but that is too late
1667 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1668 * early_amd_init which pokes 0xcf8 port.
1669 */
1670 set_iopl.iopl = 1;
1671 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1672 if (rc != 0)
1673 xen_raw_printk("physdev_op failed %d\n", rc);
1674 }
1675
1676 #ifdef CONFIG_X86_32
1677 /* set up basic CPUID stuff */
1678 cpu_detect(&new_cpu_data);
1679 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1680 new_cpu_data.wp_works_ok = 1;
1681 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1682 #endif
1683
1684 if (xen_start_info->mod_start) {
1685 if (xen_start_info->flags & SIF_MOD_START_PFN)
1686 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1687 else
1688 initrd_start = __pa(xen_start_info->mod_start);
1689 }
1690
1691 /* Poke various useful things into boot_params */
1692 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1693 boot_params.hdr.ramdisk_image = initrd_start;
1694 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1695 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1696 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1697
1698 if (!xen_initial_domain()) {
1699 add_preferred_console("xenboot", 0, NULL);
1700 add_preferred_console("tty", 0, NULL);
1701 add_preferred_console("hvc", 0, NULL);
1702 if (pci_xen)
1703 x86_init.pci.arch_init = pci_xen_init;
1704 } else {
1705 const struct dom0_vga_console_info *info =
1706 (void *)((char *)xen_start_info +
1707 xen_start_info->console.dom0.info_off);
1708 struct xen_platform_op op = {
1709 .cmd = XENPF_firmware_info,
1710 .interface_version = XENPF_INTERFACE_VERSION,
1711 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1712 };
1713
1714 x86_platform.set_legacy_features =
1715 xen_dom0_set_legacy_features;
1716 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1717 xen_start_info->console.domU.mfn = 0;
1718 xen_start_info->console.domU.evtchn = 0;
1719
1720 if (HYPERVISOR_platform_op(&op) == 0)
1721 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1722
1723 /* Make sure ACS will be enabled */
1724 pci_request_acs();
1725
1726 xen_acpi_sleep_register();
1727
1728 /* Avoid searching for BIOS MP tables */
1729 x86_init.mpparse.find_smp_config = x86_init_noop;
1730 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1731
1732 xen_boot_params_init_edd();
1733 }
1734 #ifdef CONFIG_PCI
1735 /* PCI BIOS service won't work from a PV guest. */
1736 pci_probe &= ~PCI_PROBE_BIOS;
1737 #endif
1738 xen_raw_console_write("about to get started...\n");
1739
1740 /* Let's presume PV guests always boot on vCPU with id 0. */
1741 per_cpu(xen_vcpu_id, 0) = 0;
1742
1743 xen_setup_runstate_info(0);
1744
1745 xen_efi_init();
1746
1747 /* Start the world */
1748 #ifdef CONFIG_X86_32
1749 i386_start_kernel();
1750 #else
1751 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1752 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1753 #endif
1754 }
1755
1756 void __ref xen_hvm_init_shared_info(void)
1757 {
1758 int cpu;
1759 struct xen_add_to_physmap xatp;
1760 static struct shared_info *shared_info_page = 0;
1761
1762 if (!shared_info_page)
1763 shared_info_page = (struct shared_info *)
1764 extend_brk(PAGE_SIZE, PAGE_SIZE);
1765 xatp.domid = DOMID_SELF;
1766 xatp.idx = 0;
1767 xatp.space = XENMAPSPACE_shared_info;
1768 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1769 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1770 BUG();
1771
1772 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1773
1774 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1775 * page, we use it in the event channel upcall and in some pvclock
1776 * related functions. We don't need the vcpu_info placement
1777 * optimizations because we don't use any pv_mmu or pv_irq op on
1778 * HVM.
1779 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1780 * online but xen_hvm_init_shared_info is run at resume time too and
1781 * in that case multiple vcpus might be online. */
1782 for_each_online_cpu(cpu) {
1783 /* Leave it to be NULL. */
1784 if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1785 continue;
1786 per_cpu(xen_vcpu, cpu) =
1787 &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1788 }
1789 }
1790
1791 #ifdef CONFIG_XEN_PVHVM
1792 static void __init init_hvm_pv_info(void)
1793 {
1794 int major, minor;
1795 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1796 u64 pfn;
1797
1798 base = xen_cpuid_base();
1799 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1800
1801 major = eax >> 16;
1802 minor = eax & 0xffff;
1803 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1804
1805 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1806
1807 pfn = __pa(hypercall_page);
1808 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1809
1810 xen_setup_features();
1811
1812 cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1813 if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1814 this_cpu_write(xen_vcpu_id, ebx);
1815 else
1816 this_cpu_write(xen_vcpu_id, smp_processor_id());
1817
1818 pv_info.name = "Xen HVM";
1819
1820 xen_domain_type = XEN_HVM_DOMAIN;
1821 }
1822
1823 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1824 void *hcpu)
1825 {
1826 int cpu = (long)hcpu;
1827 switch (action) {
1828 case CPU_UP_PREPARE:
1829 if (cpu_acpi_id(cpu) != U32_MAX)
1830 per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1831 else
1832 per_cpu(xen_vcpu_id, cpu) = cpu;
1833 xen_vcpu_setup(cpu);
1834 if (xen_have_vector_callback) {
1835 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1836 xen_setup_timer(cpu);
1837 }
1838 break;
1839 default:
1840 break;
1841 }
1842 return NOTIFY_OK;
1843 }
1844
1845 static struct notifier_block xen_hvm_cpu_notifier = {
1846 .notifier_call = xen_hvm_cpu_notify,
1847 };
1848
1849 #ifdef CONFIG_KEXEC_CORE
1850 static void xen_hvm_shutdown(void)
1851 {
1852 native_machine_shutdown();
1853 if (kexec_in_progress)
1854 xen_reboot(SHUTDOWN_soft_reset);
1855 }
1856
1857 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1858 {
1859 native_machine_crash_shutdown(regs);
1860 xen_reboot(SHUTDOWN_soft_reset);
1861 }
1862 #endif
1863
1864 static void __init xen_hvm_guest_init(void)
1865 {
1866 if (xen_pv_domain())
1867 return;
1868
1869 init_hvm_pv_info();
1870
1871 xen_hvm_init_shared_info();
1872
1873 xen_panic_handler_init();
1874
1875 if (xen_feature(XENFEAT_hvm_callback_vector))
1876 xen_have_vector_callback = 1;
1877 xen_hvm_smp_init();
1878 register_cpu_notifier(&xen_hvm_cpu_notifier);
1879 xen_unplug_emulated_devices();
1880 x86_init.irqs.intr_init = xen_init_IRQ;
1881 xen_hvm_init_time_ops();
1882 xen_hvm_init_mmu_ops();
1883 #ifdef CONFIG_KEXEC_CORE
1884 machine_ops.shutdown = xen_hvm_shutdown;
1885 machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1886 #endif
1887 }
1888 #endif
1889
1890 static bool xen_nopv = false;
1891 static __init int xen_parse_nopv(char *arg)
1892 {
1893 xen_nopv = true;
1894 return 0;
1895 }
1896 early_param("xen_nopv", xen_parse_nopv);
1897
1898 static uint32_t __init xen_platform(void)
1899 {
1900 if (xen_nopv)
1901 return 0;
1902
1903 return xen_cpuid_base();
1904 }
1905
1906 bool xen_hvm_need_lapic(void)
1907 {
1908 if (xen_nopv)
1909 return false;
1910 if (xen_pv_domain())
1911 return false;
1912 if (!xen_hvm_domain())
1913 return false;
1914 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1915 return false;
1916 return true;
1917 }
1918 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1919
1920 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1921 {
1922 if (xen_pv_domain()) {
1923 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1924 set_cpu_cap(c, X86_FEATURE_XENPV);
1925 }
1926 }
1927
1928 const struct hypervisor_x86 x86_hyper_xen = {
1929 .name = "Xen",
1930 .detect = xen_platform,
1931 #ifdef CONFIG_XEN_PVHVM
1932 .init_platform = xen_hvm_guest_init,
1933 #endif
1934 .x2apic_available = xen_x2apic_para_available,
1935 .set_cpu_features = xen_set_cpu_features,
1936 };
1937 EXPORT_SYMBOL(x86_hyper_xen);
1938
1939 #ifdef CONFIG_HOTPLUG_CPU
1940 void xen_arch_register_cpu(int num)
1941 {
1942 arch_register_cpu(num);
1943 }
1944 EXPORT_SYMBOL(xen_arch_register_cpu);
1945
1946 void xen_arch_unregister_cpu(int num)
1947 {
1948 arch_unregister_cpu(num);
1949 }
1950 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1951 #endif