]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/xen/enlighten.c
xen PVonHVM: use E820_Reserved area for shared_info
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83
84 EXPORT_SYMBOL_GPL(hypercall_page);
85
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
88
89 enum xen_domain_type xen_domain_type = XEN_NATIVE;
90 EXPORT_SYMBOL_GPL(xen_domain_type);
91
92 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
93 EXPORT_SYMBOL(machine_to_phys_mapping);
94 unsigned long machine_to_phys_nr;
95 EXPORT_SYMBOL(machine_to_phys_nr);
96
97 struct start_info *xen_start_info;
98 EXPORT_SYMBOL_GPL(xen_start_info);
99
100 struct shared_info xen_dummy_shared_info;
101
102 void *xen_initial_gdt;
103
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
105 __read_mostly int xen_have_vector_callback;
106 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
107
108 /*
109 * Point at some empty memory to start with. We map the real shared_info
110 * page as soon as fixmap is up and running.
111 */
112 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
113
114 /*
115 * Flag to determine whether vcpu info placement is available on all
116 * VCPUs. We assume it is to start with, and then set it to zero on
117 * the first failure. This is because it can succeed on some VCPUs
118 * and not others, since it can involve hypervisor memory allocation,
119 * or because the guest failed to guarantee all the appropriate
120 * constraints on all VCPUs (ie buffer can't cross a page boundary).
121 *
122 * Note that any particular CPU may be using a placed vcpu structure,
123 * but we can only optimise if the all are.
124 *
125 * 0: not available, 1: available
126 */
127 static int have_vcpu_info_placement = 1;
128
129 struct tls_descs {
130 struct desc_struct desc[3];
131 };
132
133 /*
134 * Updating the 3 TLS descriptors in the GDT on every task switch is
135 * surprisingly expensive so we avoid updating them if they haven't
136 * changed. Since Xen writes different descriptors than the one
137 * passed in the update_descriptor hypercall we keep shadow copies to
138 * compare against.
139 */
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
141
142 static void clamp_max_cpus(void)
143 {
144 #ifdef CONFIG_SMP
145 if (setup_max_cpus > MAX_VIRT_CPUS)
146 setup_max_cpus = MAX_VIRT_CPUS;
147 #endif
148 }
149
150 static void xen_vcpu_setup(int cpu)
151 {
152 struct vcpu_register_vcpu_info info;
153 int err;
154 struct vcpu_info *vcpup;
155
156 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
157
158 if (cpu < MAX_VIRT_CPUS)
159 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
160
161 if (!have_vcpu_info_placement) {
162 if (cpu >= MAX_VIRT_CPUS)
163 clamp_max_cpus();
164 return;
165 }
166
167 vcpup = &per_cpu(xen_vcpu_info, cpu);
168 info.mfn = arbitrary_virt_to_mfn(vcpup);
169 info.offset = offset_in_page(vcpup);
170
171 /* Check to see if the hypervisor will put the vcpu_info
172 structure where we want it, which allows direct access via
173 a percpu-variable. */
174 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
175
176 if (err) {
177 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178 have_vcpu_info_placement = 0;
179 clamp_max_cpus();
180 } else {
181 /* This cpu is using the registered vcpu info, even if
182 later ones fail to. */
183 per_cpu(xen_vcpu, cpu) = vcpup;
184 }
185 }
186
187 /*
188 * On restore, set the vcpu placement up again.
189 * If it fails, then we're in a bad state, since
190 * we can't back out from using it...
191 */
192 void xen_vcpu_restore(void)
193 {
194 int cpu;
195
196 for_each_online_cpu(cpu) {
197 bool other_cpu = (cpu != smp_processor_id());
198
199 if (other_cpu &&
200 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
201 BUG();
202
203 xen_setup_runstate_info(cpu);
204
205 if (have_vcpu_info_placement)
206 xen_vcpu_setup(cpu);
207
208 if (other_cpu &&
209 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
210 BUG();
211 }
212 }
213
214 static void __init xen_banner(void)
215 {
216 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
217 struct xen_extraversion extra;
218 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
219
220 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
221 pv_info.name);
222 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
223 version >> 16, version & 0xffff, extra.extraversion,
224 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
225 }
226
227 #define CPUID_THERM_POWER_LEAF 6
228 #define APERFMPERF_PRESENT 0
229
230 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
231 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
232
233 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
234 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
235 static __read_mostly unsigned int cpuid_leaf5_edx_val;
236
237 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
238 unsigned int *cx, unsigned int *dx)
239 {
240 unsigned maskebx = ~0;
241 unsigned maskecx = ~0;
242 unsigned maskedx = ~0;
243 unsigned setecx = 0;
244 /*
245 * Mask out inconvenient features, to try and disable as many
246 * unsupported kernel subsystems as possible.
247 */
248 switch (*ax) {
249 case 1:
250 maskecx = cpuid_leaf1_ecx_mask;
251 setecx = cpuid_leaf1_ecx_set_mask;
252 maskedx = cpuid_leaf1_edx_mask;
253 break;
254
255 case CPUID_MWAIT_LEAF:
256 /* Synthesize the values.. */
257 *ax = 0;
258 *bx = 0;
259 *cx = cpuid_leaf5_ecx_val;
260 *dx = cpuid_leaf5_edx_val;
261 return;
262
263 case CPUID_THERM_POWER_LEAF:
264 /* Disabling APERFMPERF for kernel usage */
265 maskecx = ~(1 << APERFMPERF_PRESENT);
266 break;
267
268 case 0xb:
269 /* Suppress extended topology stuff */
270 maskebx = 0;
271 break;
272 }
273
274 asm(XEN_EMULATE_PREFIX "cpuid"
275 : "=a" (*ax),
276 "=b" (*bx),
277 "=c" (*cx),
278 "=d" (*dx)
279 : "0" (*ax), "2" (*cx));
280
281 *bx &= maskebx;
282 *cx &= maskecx;
283 *cx |= setecx;
284 *dx &= maskedx;
285
286 }
287
288 static bool __init xen_check_mwait(void)
289 {
290 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
291 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
292 struct xen_platform_op op = {
293 .cmd = XENPF_set_processor_pminfo,
294 .u.set_pminfo.id = -1,
295 .u.set_pminfo.type = XEN_PM_PDC,
296 };
297 uint32_t buf[3];
298 unsigned int ax, bx, cx, dx;
299 unsigned int mwait_mask;
300
301 /* We need to determine whether it is OK to expose the MWAIT
302 * capability to the kernel to harvest deeper than C3 states from ACPI
303 * _CST using the processor_harvest_xen.c module. For this to work, we
304 * need to gather the MWAIT_LEAF values (which the cstate.c code
305 * checks against). The hypervisor won't expose the MWAIT flag because
306 * it would break backwards compatibility; so we will find out directly
307 * from the hardware and hypercall.
308 */
309 if (!xen_initial_domain())
310 return false;
311
312 ax = 1;
313 cx = 0;
314
315 native_cpuid(&ax, &bx, &cx, &dx);
316
317 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
318 (1 << (X86_FEATURE_MWAIT % 32));
319
320 if ((cx & mwait_mask) != mwait_mask)
321 return false;
322
323 /* We need to emulate the MWAIT_LEAF and for that we need both
324 * ecx and edx. The hypercall provides only partial information.
325 */
326
327 ax = CPUID_MWAIT_LEAF;
328 bx = 0;
329 cx = 0;
330 dx = 0;
331
332 native_cpuid(&ax, &bx, &cx, &dx);
333
334 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
335 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
336 */
337 buf[0] = ACPI_PDC_REVISION_ID;
338 buf[1] = 1;
339 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
340
341 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
342
343 if ((HYPERVISOR_dom0_op(&op) == 0) &&
344 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
345 cpuid_leaf5_ecx_val = cx;
346 cpuid_leaf5_edx_val = dx;
347 }
348 return true;
349 #else
350 return false;
351 #endif
352 }
353 static void __init xen_init_cpuid_mask(void)
354 {
355 unsigned int ax, bx, cx, dx;
356 unsigned int xsave_mask;
357
358 cpuid_leaf1_edx_mask =
359 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
360 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
361
362 if (!xen_initial_domain())
363 cpuid_leaf1_edx_mask &=
364 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
365 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
366 ax = 1;
367 cx = 0;
368 xen_cpuid(&ax, &bx, &cx, &dx);
369
370 xsave_mask =
371 (1 << (X86_FEATURE_XSAVE % 32)) |
372 (1 << (X86_FEATURE_OSXSAVE % 32));
373
374 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
375 if ((cx & xsave_mask) != xsave_mask)
376 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
377 if (xen_check_mwait())
378 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
379 }
380
381 static void xen_set_debugreg(int reg, unsigned long val)
382 {
383 HYPERVISOR_set_debugreg(reg, val);
384 }
385
386 static unsigned long xen_get_debugreg(int reg)
387 {
388 return HYPERVISOR_get_debugreg(reg);
389 }
390
391 static void xen_end_context_switch(struct task_struct *next)
392 {
393 xen_mc_flush();
394 paravirt_end_context_switch(next);
395 }
396
397 static unsigned long xen_store_tr(void)
398 {
399 return 0;
400 }
401
402 /*
403 * Set the page permissions for a particular virtual address. If the
404 * address is a vmalloc mapping (or other non-linear mapping), then
405 * find the linear mapping of the page and also set its protections to
406 * match.
407 */
408 static void set_aliased_prot(void *v, pgprot_t prot)
409 {
410 int level;
411 pte_t *ptep;
412 pte_t pte;
413 unsigned long pfn;
414 struct page *page;
415
416 ptep = lookup_address((unsigned long)v, &level);
417 BUG_ON(ptep == NULL);
418
419 pfn = pte_pfn(*ptep);
420 page = pfn_to_page(pfn);
421
422 pte = pfn_pte(pfn, prot);
423
424 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
425 BUG();
426
427 if (!PageHighMem(page)) {
428 void *av = __va(PFN_PHYS(pfn));
429
430 if (av != v)
431 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
432 BUG();
433 } else
434 kmap_flush_unused();
435 }
436
437 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
438 {
439 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
440 int i;
441
442 for(i = 0; i < entries; i += entries_per_page)
443 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
444 }
445
446 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
447 {
448 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
449 int i;
450
451 for(i = 0; i < entries; i += entries_per_page)
452 set_aliased_prot(ldt + i, PAGE_KERNEL);
453 }
454
455 static void xen_set_ldt(const void *addr, unsigned entries)
456 {
457 struct mmuext_op *op;
458 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
459
460 trace_xen_cpu_set_ldt(addr, entries);
461
462 op = mcs.args;
463 op->cmd = MMUEXT_SET_LDT;
464 op->arg1.linear_addr = (unsigned long)addr;
465 op->arg2.nr_ents = entries;
466
467 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
468
469 xen_mc_issue(PARAVIRT_LAZY_CPU);
470 }
471
472 static void xen_load_gdt(const struct desc_ptr *dtr)
473 {
474 unsigned long va = dtr->address;
475 unsigned int size = dtr->size + 1;
476 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
477 unsigned long frames[pages];
478 int f;
479
480 /*
481 * A GDT can be up to 64k in size, which corresponds to 8192
482 * 8-byte entries, or 16 4k pages..
483 */
484
485 BUG_ON(size > 65536);
486 BUG_ON(va & ~PAGE_MASK);
487
488 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
489 int level;
490 pte_t *ptep;
491 unsigned long pfn, mfn;
492 void *virt;
493
494 /*
495 * The GDT is per-cpu and is in the percpu data area.
496 * That can be virtually mapped, so we need to do a
497 * page-walk to get the underlying MFN for the
498 * hypercall. The page can also be in the kernel's
499 * linear range, so we need to RO that mapping too.
500 */
501 ptep = lookup_address(va, &level);
502 BUG_ON(ptep == NULL);
503
504 pfn = pte_pfn(*ptep);
505 mfn = pfn_to_mfn(pfn);
506 virt = __va(PFN_PHYS(pfn));
507
508 frames[f] = mfn;
509
510 make_lowmem_page_readonly((void *)va);
511 make_lowmem_page_readonly(virt);
512 }
513
514 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
515 BUG();
516 }
517
518 /*
519 * load_gdt for early boot, when the gdt is only mapped once
520 */
521 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
522 {
523 unsigned long va = dtr->address;
524 unsigned int size = dtr->size + 1;
525 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
526 unsigned long frames[pages];
527 int f;
528
529 /*
530 * A GDT can be up to 64k in size, which corresponds to 8192
531 * 8-byte entries, or 16 4k pages..
532 */
533
534 BUG_ON(size > 65536);
535 BUG_ON(va & ~PAGE_MASK);
536
537 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
538 pte_t pte;
539 unsigned long pfn, mfn;
540
541 pfn = virt_to_pfn(va);
542 mfn = pfn_to_mfn(pfn);
543
544 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
545
546 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
547 BUG();
548
549 frames[f] = mfn;
550 }
551
552 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
553 BUG();
554 }
555
556 static inline bool desc_equal(const struct desc_struct *d1,
557 const struct desc_struct *d2)
558 {
559 return d1->a == d2->a && d1->b == d2->b;
560 }
561
562 static void load_TLS_descriptor(struct thread_struct *t,
563 unsigned int cpu, unsigned int i)
564 {
565 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
566 struct desc_struct *gdt;
567 xmaddr_t maddr;
568 struct multicall_space mc;
569
570 if (desc_equal(shadow, &t->tls_array[i]))
571 return;
572
573 *shadow = t->tls_array[i];
574
575 gdt = get_cpu_gdt_table(cpu);
576 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
577 mc = __xen_mc_entry(0);
578
579 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
580 }
581
582 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
583 {
584 /*
585 * XXX sleazy hack: If we're being called in a lazy-cpu zone
586 * and lazy gs handling is enabled, it means we're in a
587 * context switch, and %gs has just been saved. This means we
588 * can zero it out to prevent faults on exit from the
589 * hypervisor if the next process has no %gs. Either way, it
590 * has been saved, and the new value will get loaded properly.
591 * This will go away as soon as Xen has been modified to not
592 * save/restore %gs for normal hypercalls.
593 *
594 * On x86_64, this hack is not used for %gs, because gs points
595 * to KERNEL_GS_BASE (and uses it for PDA references), so we
596 * must not zero %gs on x86_64
597 *
598 * For x86_64, we need to zero %fs, otherwise we may get an
599 * exception between the new %fs descriptor being loaded and
600 * %fs being effectively cleared at __switch_to().
601 */
602 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
603 #ifdef CONFIG_X86_32
604 lazy_load_gs(0);
605 #else
606 loadsegment(fs, 0);
607 #endif
608 }
609
610 xen_mc_batch();
611
612 load_TLS_descriptor(t, cpu, 0);
613 load_TLS_descriptor(t, cpu, 1);
614 load_TLS_descriptor(t, cpu, 2);
615
616 xen_mc_issue(PARAVIRT_LAZY_CPU);
617 }
618
619 #ifdef CONFIG_X86_64
620 static void xen_load_gs_index(unsigned int idx)
621 {
622 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
623 BUG();
624 }
625 #endif
626
627 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
628 const void *ptr)
629 {
630 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
631 u64 entry = *(u64 *)ptr;
632
633 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
634
635 preempt_disable();
636
637 xen_mc_flush();
638 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
639 BUG();
640
641 preempt_enable();
642 }
643
644 static int cvt_gate_to_trap(int vector, const gate_desc *val,
645 struct trap_info *info)
646 {
647 unsigned long addr;
648
649 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
650 return 0;
651
652 info->vector = vector;
653
654 addr = gate_offset(*val);
655 #ifdef CONFIG_X86_64
656 /*
657 * Look for known traps using IST, and substitute them
658 * appropriately. The debugger ones are the only ones we care
659 * about. Xen will handle faults like double_fault,
660 * so we should never see them. Warn if
661 * there's an unexpected IST-using fault handler.
662 */
663 if (addr == (unsigned long)debug)
664 addr = (unsigned long)xen_debug;
665 else if (addr == (unsigned long)int3)
666 addr = (unsigned long)xen_int3;
667 else if (addr == (unsigned long)stack_segment)
668 addr = (unsigned long)xen_stack_segment;
669 else if (addr == (unsigned long)double_fault ||
670 addr == (unsigned long)nmi) {
671 /* Don't need to handle these */
672 return 0;
673 #ifdef CONFIG_X86_MCE
674 } else if (addr == (unsigned long)machine_check) {
675 /*
676 * when xen hypervisor inject vMCE to guest,
677 * use native mce handler to handle it
678 */
679 ;
680 #endif
681 } else {
682 /* Some other trap using IST? */
683 if (WARN_ON(val->ist != 0))
684 return 0;
685 }
686 #endif /* CONFIG_X86_64 */
687 info->address = addr;
688
689 info->cs = gate_segment(*val);
690 info->flags = val->dpl;
691 /* interrupt gates clear IF */
692 if (val->type == GATE_INTERRUPT)
693 info->flags |= 1 << 2;
694
695 return 1;
696 }
697
698 /* Locations of each CPU's IDT */
699 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
700
701 /* Set an IDT entry. If the entry is part of the current IDT, then
702 also update Xen. */
703 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
704 {
705 unsigned long p = (unsigned long)&dt[entrynum];
706 unsigned long start, end;
707
708 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
709
710 preempt_disable();
711
712 start = __this_cpu_read(idt_desc.address);
713 end = start + __this_cpu_read(idt_desc.size) + 1;
714
715 xen_mc_flush();
716
717 native_write_idt_entry(dt, entrynum, g);
718
719 if (p >= start && (p + 8) <= end) {
720 struct trap_info info[2];
721
722 info[1].address = 0;
723
724 if (cvt_gate_to_trap(entrynum, g, &info[0]))
725 if (HYPERVISOR_set_trap_table(info))
726 BUG();
727 }
728
729 preempt_enable();
730 }
731
732 static void xen_convert_trap_info(const struct desc_ptr *desc,
733 struct trap_info *traps)
734 {
735 unsigned in, out, count;
736
737 count = (desc->size+1) / sizeof(gate_desc);
738 BUG_ON(count > 256);
739
740 for (in = out = 0; in < count; in++) {
741 gate_desc *entry = (gate_desc*)(desc->address) + in;
742
743 if (cvt_gate_to_trap(in, entry, &traps[out]))
744 out++;
745 }
746 traps[out].address = 0;
747 }
748
749 void xen_copy_trap_info(struct trap_info *traps)
750 {
751 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
752
753 xen_convert_trap_info(desc, traps);
754 }
755
756 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
757 hold a spinlock to protect the static traps[] array (static because
758 it avoids allocation, and saves stack space). */
759 static void xen_load_idt(const struct desc_ptr *desc)
760 {
761 static DEFINE_SPINLOCK(lock);
762 static struct trap_info traps[257];
763
764 trace_xen_cpu_load_idt(desc);
765
766 spin_lock(&lock);
767
768 __get_cpu_var(idt_desc) = *desc;
769
770 xen_convert_trap_info(desc, traps);
771
772 xen_mc_flush();
773 if (HYPERVISOR_set_trap_table(traps))
774 BUG();
775
776 spin_unlock(&lock);
777 }
778
779 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
780 they're handled differently. */
781 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
782 const void *desc, int type)
783 {
784 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
785
786 preempt_disable();
787
788 switch (type) {
789 case DESC_LDT:
790 case DESC_TSS:
791 /* ignore */
792 break;
793
794 default: {
795 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
796
797 xen_mc_flush();
798 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
799 BUG();
800 }
801
802 }
803
804 preempt_enable();
805 }
806
807 /*
808 * Version of write_gdt_entry for use at early boot-time needed to
809 * update an entry as simply as possible.
810 */
811 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
812 const void *desc, int type)
813 {
814 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
815
816 switch (type) {
817 case DESC_LDT:
818 case DESC_TSS:
819 /* ignore */
820 break;
821
822 default: {
823 xmaddr_t maddr = virt_to_machine(&dt[entry]);
824
825 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
826 dt[entry] = *(struct desc_struct *)desc;
827 }
828
829 }
830 }
831
832 static void xen_load_sp0(struct tss_struct *tss,
833 struct thread_struct *thread)
834 {
835 struct multicall_space mcs;
836
837 mcs = xen_mc_entry(0);
838 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
839 xen_mc_issue(PARAVIRT_LAZY_CPU);
840 }
841
842 static void xen_set_iopl_mask(unsigned mask)
843 {
844 struct physdev_set_iopl set_iopl;
845
846 /* Force the change at ring 0. */
847 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
848 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
849 }
850
851 static void xen_io_delay(void)
852 {
853 }
854
855 #ifdef CONFIG_X86_LOCAL_APIC
856 static unsigned long xen_set_apic_id(unsigned int x)
857 {
858 WARN_ON(1);
859 return x;
860 }
861 static unsigned int xen_get_apic_id(unsigned long x)
862 {
863 return ((x)>>24) & 0xFFu;
864 }
865 static u32 xen_apic_read(u32 reg)
866 {
867 struct xen_platform_op op = {
868 .cmd = XENPF_get_cpuinfo,
869 .interface_version = XENPF_INTERFACE_VERSION,
870 .u.pcpu_info.xen_cpuid = 0,
871 };
872 int ret = 0;
873
874 /* Shouldn't need this as APIC is turned off for PV, and we only
875 * get called on the bootup processor. But just in case. */
876 if (!xen_initial_domain() || smp_processor_id())
877 return 0;
878
879 if (reg == APIC_LVR)
880 return 0x10;
881
882 if (reg != APIC_ID)
883 return 0;
884
885 ret = HYPERVISOR_dom0_op(&op);
886 if (ret)
887 return 0;
888
889 return op.u.pcpu_info.apic_id << 24;
890 }
891
892 static void xen_apic_write(u32 reg, u32 val)
893 {
894 /* Warn to see if there's any stray references */
895 WARN_ON(1);
896 }
897
898 static u64 xen_apic_icr_read(void)
899 {
900 return 0;
901 }
902
903 static void xen_apic_icr_write(u32 low, u32 id)
904 {
905 /* Warn to see if there's any stray references */
906 WARN_ON(1);
907 }
908
909 static void xen_apic_wait_icr_idle(void)
910 {
911 return;
912 }
913
914 static u32 xen_safe_apic_wait_icr_idle(void)
915 {
916 return 0;
917 }
918
919 static void set_xen_basic_apic_ops(void)
920 {
921 apic->read = xen_apic_read;
922 apic->write = xen_apic_write;
923 apic->icr_read = xen_apic_icr_read;
924 apic->icr_write = xen_apic_icr_write;
925 apic->wait_icr_idle = xen_apic_wait_icr_idle;
926 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
927 apic->set_apic_id = xen_set_apic_id;
928 apic->get_apic_id = xen_get_apic_id;
929
930 #ifdef CONFIG_SMP
931 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
932 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
933 apic->send_IPI_mask = xen_send_IPI_mask;
934 apic->send_IPI_all = xen_send_IPI_all;
935 apic->send_IPI_self = xen_send_IPI_self;
936 #endif
937 }
938
939 #endif
940
941 static void xen_clts(void)
942 {
943 struct multicall_space mcs;
944
945 mcs = xen_mc_entry(0);
946
947 MULTI_fpu_taskswitch(mcs.mc, 0);
948
949 xen_mc_issue(PARAVIRT_LAZY_CPU);
950 }
951
952 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
953
954 static unsigned long xen_read_cr0(void)
955 {
956 unsigned long cr0 = this_cpu_read(xen_cr0_value);
957
958 if (unlikely(cr0 == 0)) {
959 cr0 = native_read_cr0();
960 this_cpu_write(xen_cr0_value, cr0);
961 }
962
963 return cr0;
964 }
965
966 static void xen_write_cr0(unsigned long cr0)
967 {
968 struct multicall_space mcs;
969
970 this_cpu_write(xen_cr0_value, cr0);
971
972 /* Only pay attention to cr0.TS; everything else is
973 ignored. */
974 mcs = xen_mc_entry(0);
975
976 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
977
978 xen_mc_issue(PARAVIRT_LAZY_CPU);
979 }
980
981 static void xen_write_cr4(unsigned long cr4)
982 {
983 cr4 &= ~X86_CR4_PGE;
984 cr4 &= ~X86_CR4_PSE;
985
986 native_write_cr4(cr4);
987 }
988 #ifdef CONFIG_X86_64
989 static inline unsigned long xen_read_cr8(void)
990 {
991 return 0;
992 }
993 static inline void xen_write_cr8(unsigned long val)
994 {
995 BUG_ON(val);
996 }
997 #endif
998 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
999 {
1000 int ret;
1001
1002 ret = 0;
1003
1004 switch (msr) {
1005 #ifdef CONFIG_X86_64
1006 unsigned which;
1007 u64 base;
1008
1009 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1010 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1011 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1012
1013 set:
1014 base = ((u64)high << 32) | low;
1015 if (HYPERVISOR_set_segment_base(which, base) != 0)
1016 ret = -EIO;
1017 break;
1018 #endif
1019
1020 case MSR_STAR:
1021 case MSR_CSTAR:
1022 case MSR_LSTAR:
1023 case MSR_SYSCALL_MASK:
1024 case MSR_IA32_SYSENTER_CS:
1025 case MSR_IA32_SYSENTER_ESP:
1026 case MSR_IA32_SYSENTER_EIP:
1027 /* Fast syscall setup is all done in hypercalls, so
1028 these are all ignored. Stub them out here to stop
1029 Xen console noise. */
1030 break;
1031
1032 case MSR_IA32_CR_PAT:
1033 if (smp_processor_id() == 0)
1034 xen_set_pat(((u64)high << 32) | low);
1035 break;
1036
1037 default:
1038 ret = native_write_msr_safe(msr, low, high);
1039 }
1040
1041 return ret;
1042 }
1043
1044 void xen_setup_shared_info(void)
1045 {
1046 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1047 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1048 xen_start_info->shared_info);
1049
1050 HYPERVISOR_shared_info =
1051 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1052 } else
1053 HYPERVISOR_shared_info =
1054 (struct shared_info *)__va(xen_start_info->shared_info);
1055
1056 #ifndef CONFIG_SMP
1057 /* In UP this is as good a place as any to set up shared info */
1058 xen_setup_vcpu_info_placement();
1059 #endif
1060
1061 xen_setup_mfn_list_list();
1062 }
1063
1064 /* This is called once we have the cpu_possible_mask */
1065 void xen_setup_vcpu_info_placement(void)
1066 {
1067 int cpu;
1068
1069 for_each_possible_cpu(cpu)
1070 xen_vcpu_setup(cpu);
1071
1072 /* xen_vcpu_setup managed to place the vcpu_info within the
1073 percpu area for all cpus, so make use of it */
1074 if (have_vcpu_info_placement) {
1075 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1076 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1077 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1078 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1079 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1080 }
1081 }
1082
1083 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1084 unsigned long addr, unsigned len)
1085 {
1086 char *start, *end, *reloc;
1087 unsigned ret;
1088
1089 start = end = reloc = NULL;
1090
1091 #define SITE(op, x) \
1092 case PARAVIRT_PATCH(op.x): \
1093 if (have_vcpu_info_placement) { \
1094 start = (char *)xen_##x##_direct; \
1095 end = xen_##x##_direct_end; \
1096 reloc = xen_##x##_direct_reloc; \
1097 } \
1098 goto patch_site
1099
1100 switch (type) {
1101 SITE(pv_irq_ops, irq_enable);
1102 SITE(pv_irq_ops, irq_disable);
1103 SITE(pv_irq_ops, save_fl);
1104 SITE(pv_irq_ops, restore_fl);
1105 #undef SITE
1106
1107 patch_site:
1108 if (start == NULL || (end-start) > len)
1109 goto default_patch;
1110
1111 ret = paravirt_patch_insns(insnbuf, len, start, end);
1112
1113 /* Note: because reloc is assigned from something that
1114 appears to be an array, gcc assumes it's non-null,
1115 but doesn't know its relationship with start and
1116 end. */
1117 if (reloc > start && reloc < end) {
1118 int reloc_off = reloc - start;
1119 long *relocp = (long *)(insnbuf + reloc_off);
1120 long delta = start - (char *)addr;
1121
1122 *relocp += delta;
1123 }
1124 break;
1125
1126 default_patch:
1127 default:
1128 ret = paravirt_patch_default(type, clobbers, insnbuf,
1129 addr, len);
1130 break;
1131 }
1132
1133 return ret;
1134 }
1135
1136 static const struct pv_info xen_info __initconst = {
1137 .paravirt_enabled = 1,
1138 .shared_kernel_pmd = 0,
1139
1140 #ifdef CONFIG_X86_64
1141 .extra_user_64bit_cs = FLAT_USER_CS64,
1142 #endif
1143
1144 .name = "Xen",
1145 };
1146
1147 static const struct pv_init_ops xen_init_ops __initconst = {
1148 .patch = xen_patch,
1149 };
1150
1151 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1152 .cpuid = xen_cpuid,
1153
1154 .set_debugreg = xen_set_debugreg,
1155 .get_debugreg = xen_get_debugreg,
1156
1157 .clts = xen_clts,
1158
1159 .read_cr0 = xen_read_cr0,
1160 .write_cr0 = xen_write_cr0,
1161
1162 .read_cr4 = native_read_cr4,
1163 .read_cr4_safe = native_read_cr4_safe,
1164 .write_cr4 = xen_write_cr4,
1165
1166 #ifdef CONFIG_X86_64
1167 .read_cr8 = xen_read_cr8,
1168 .write_cr8 = xen_write_cr8,
1169 #endif
1170
1171 .wbinvd = native_wbinvd,
1172
1173 .read_msr = native_read_msr_safe,
1174 .write_msr = xen_write_msr_safe,
1175
1176 .read_tsc = native_read_tsc,
1177 .read_pmc = native_read_pmc,
1178
1179 .read_tscp = native_read_tscp,
1180
1181 .iret = xen_iret,
1182 .irq_enable_sysexit = xen_sysexit,
1183 #ifdef CONFIG_X86_64
1184 .usergs_sysret32 = xen_sysret32,
1185 .usergs_sysret64 = xen_sysret64,
1186 #endif
1187
1188 .load_tr_desc = paravirt_nop,
1189 .set_ldt = xen_set_ldt,
1190 .load_gdt = xen_load_gdt,
1191 .load_idt = xen_load_idt,
1192 .load_tls = xen_load_tls,
1193 #ifdef CONFIG_X86_64
1194 .load_gs_index = xen_load_gs_index,
1195 #endif
1196
1197 .alloc_ldt = xen_alloc_ldt,
1198 .free_ldt = xen_free_ldt,
1199
1200 .store_gdt = native_store_gdt,
1201 .store_idt = native_store_idt,
1202 .store_tr = xen_store_tr,
1203
1204 .write_ldt_entry = xen_write_ldt_entry,
1205 .write_gdt_entry = xen_write_gdt_entry,
1206 .write_idt_entry = xen_write_idt_entry,
1207 .load_sp0 = xen_load_sp0,
1208
1209 .set_iopl_mask = xen_set_iopl_mask,
1210 .io_delay = xen_io_delay,
1211
1212 /* Xen takes care of %gs when switching to usermode for us */
1213 .swapgs = paravirt_nop,
1214
1215 .start_context_switch = paravirt_start_context_switch,
1216 .end_context_switch = xen_end_context_switch,
1217 };
1218
1219 static const struct pv_apic_ops xen_apic_ops __initconst = {
1220 #ifdef CONFIG_X86_LOCAL_APIC
1221 .startup_ipi_hook = paravirt_nop,
1222 #endif
1223 };
1224
1225 static void xen_reboot(int reason)
1226 {
1227 struct sched_shutdown r = { .reason = reason };
1228
1229 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1230 BUG();
1231 }
1232
1233 static void xen_restart(char *msg)
1234 {
1235 xen_reboot(SHUTDOWN_reboot);
1236 }
1237
1238 static void xen_emergency_restart(void)
1239 {
1240 xen_reboot(SHUTDOWN_reboot);
1241 }
1242
1243 static void xen_machine_halt(void)
1244 {
1245 xen_reboot(SHUTDOWN_poweroff);
1246 }
1247
1248 static void xen_machine_power_off(void)
1249 {
1250 if (pm_power_off)
1251 pm_power_off();
1252 xen_reboot(SHUTDOWN_poweroff);
1253 }
1254
1255 static void xen_crash_shutdown(struct pt_regs *regs)
1256 {
1257 xen_reboot(SHUTDOWN_crash);
1258 }
1259
1260 static int
1261 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1262 {
1263 xen_reboot(SHUTDOWN_crash);
1264 return NOTIFY_DONE;
1265 }
1266
1267 static struct notifier_block xen_panic_block = {
1268 .notifier_call= xen_panic_event,
1269 };
1270
1271 int xen_panic_handler_init(void)
1272 {
1273 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1274 return 0;
1275 }
1276
1277 static const struct machine_ops xen_machine_ops __initconst = {
1278 .restart = xen_restart,
1279 .halt = xen_machine_halt,
1280 .power_off = xen_machine_power_off,
1281 .shutdown = xen_machine_halt,
1282 .crash_shutdown = xen_crash_shutdown,
1283 .emergency_restart = xen_emergency_restart,
1284 };
1285
1286 /*
1287 * Set up the GDT and segment registers for -fstack-protector. Until
1288 * we do this, we have to be careful not to call any stack-protected
1289 * function, which is most of the kernel.
1290 */
1291 static void __init xen_setup_stackprotector(void)
1292 {
1293 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1294 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1295
1296 setup_stack_canary_segment(0);
1297 switch_to_new_gdt(0);
1298
1299 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1300 pv_cpu_ops.load_gdt = xen_load_gdt;
1301 }
1302
1303 /* First C function to be called on Xen boot */
1304 asmlinkage void __init xen_start_kernel(void)
1305 {
1306 struct physdev_set_iopl set_iopl;
1307 int rc;
1308
1309 if (!xen_start_info)
1310 return;
1311
1312 xen_domain_type = XEN_PV_DOMAIN;
1313
1314 xen_setup_machphys_mapping();
1315
1316 /* Install Xen paravirt ops */
1317 pv_info = xen_info;
1318 pv_init_ops = xen_init_ops;
1319 pv_cpu_ops = xen_cpu_ops;
1320 pv_apic_ops = xen_apic_ops;
1321
1322 x86_init.resources.memory_setup = xen_memory_setup;
1323 x86_init.oem.arch_setup = xen_arch_setup;
1324 x86_init.oem.banner = xen_banner;
1325
1326 xen_init_time_ops();
1327
1328 /*
1329 * Set up some pagetable state before starting to set any ptes.
1330 */
1331
1332 xen_init_mmu_ops();
1333
1334 /* Prevent unwanted bits from being set in PTEs. */
1335 __supported_pte_mask &= ~_PAGE_GLOBAL;
1336 #if 0
1337 if (!xen_initial_domain())
1338 #endif
1339 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1340
1341 __supported_pte_mask |= _PAGE_IOMAP;
1342
1343 /*
1344 * Prevent page tables from being allocated in highmem, even
1345 * if CONFIG_HIGHPTE is enabled.
1346 */
1347 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1348
1349 /* Work out if we support NX */
1350 x86_configure_nx();
1351
1352 xen_setup_features();
1353
1354 /* Get mfn list */
1355 if (!xen_feature(XENFEAT_auto_translated_physmap))
1356 xen_build_dynamic_phys_to_machine();
1357
1358 /*
1359 * Set up kernel GDT and segment registers, mainly so that
1360 * -fstack-protector code can be executed.
1361 */
1362 xen_setup_stackprotector();
1363
1364 xen_init_irq_ops();
1365 xen_init_cpuid_mask();
1366
1367 #ifdef CONFIG_X86_LOCAL_APIC
1368 /*
1369 * set up the basic apic ops.
1370 */
1371 set_xen_basic_apic_ops();
1372 #endif
1373
1374 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1375 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1376 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1377 }
1378
1379 machine_ops = xen_machine_ops;
1380
1381 /*
1382 * The only reliable way to retain the initial address of the
1383 * percpu gdt_page is to remember it here, so we can go and
1384 * mark it RW later, when the initial percpu area is freed.
1385 */
1386 xen_initial_gdt = &per_cpu(gdt_page, 0);
1387
1388 xen_smp_init();
1389
1390 #ifdef CONFIG_ACPI_NUMA
1391 /*
1392 * The pages we from Xen are not related to machine pages, so
1393 * any NUMA information the kernel tries to get from ACPI will
1394 * be meaningless. Prevent it from trying.
1395 */
1396 acpi_numa = -1;
1397 #endif
1398
1399 /* Don't do the full vcpu_info placement stuff until we have a
1400 possible map and a non-dummy shared_info. */
1401 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1402
1403 local_irq_disable();
1404 early_boot_irqs_disabled = true;
1405
1406 xen_raw_console_write("mapping kernel into physical memory\n");
1407 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1408
1409 /* Allocate and initialize top and mid mfn levels for p2m structure */
1410 xen_build_mfn_list_list();
1411
1412 /* keep using Xen gdt for now; no urgent need to change it */
1413
1414 #ifdef CONFIG_X86_32
1415 pv_info.kernel_rpl = 1;
1416 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1417 pv_info.kernel_rpl = 0;
1418 #else
1419 pv_info.kernel_rpl = 0;
1420 #endif
1421 /* set the limit of our address space */
1422 xen_reserve_top();
1423
1424 /* We used to do this in xen_arch_setup, but that is too late on AMD
1425 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1426 * which pokes 0xcf8 port.
1427 */
1428 set_iopl.iopl = 1;
1429 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1430 if (rc != 0)
1431 xen_raw_printk("physdev_op failed %d\n", rc);
1432
1433 #ifdef CONFIG_X86_32
1434 /* set up basic CPUID stuff */
1435 cpu_detect(&new_cpu_data);
1436 new_cpu_data.hard_math = 1;
1437 new_cpu_data.wp_works_ok = 1;
1438 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1439 #endif
1440
1441 /* Poke various useful things into boot_params */
1442 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1443 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1444 ? __pa(xen_start_info->mod_start) : 0;
1445 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1446 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1447
1448 if (!xen_initial_domain()) {
1449 add_preferred_console("xenboot", 0, NULL);
1450 add_preferred_console("tty", 0, NULL);
1451 add_preferred_console("hvc", 0, NULL);
1452 if (pci_xen)
1453 x86_init.pci.arch_init = pci_xen_init;
1454 } else {
1455 const struct dom0_vga_console_info *info =
1456 (void *)((char *)xen_start_info +
1457 xen_start_info->console.dom0.info_off);
1458 struct xen_platform_op op = {
1459 .cmd = XENPF_firmware_info,
1460 .interface_version = XENPF_INTERFACE_VERSION,
1461 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1462 };
1463
1464 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1465 xen_start_info->console.domU.mfn = 0;
1466 xen_start_info->console.domU.evtchn = 0;
1467
1468 if (HYPERVISOR_dom0_op(&op) == 0)
1469 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1470
1471 xen_init_apic();
1472
1473 /* Make sure ACS will be enabled */
1474 pci_request_acs();
1475
1476 xen_acpi_sleep_register();
1477
1478 /* Avoid searching for BIOS MP tables */
1479 x86_init.mpparse.find_smp_config = x86_init_noop;
1480 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1481 }
1482 #ifdef CONFIG_PCI
1483 /* PCI BIOS service won't work from a PV guest. */
1484 pci_probe &= ~PCI_PROBE_BIOS;
1485 #endif
1486 xen_raw_console_write("about to get started...\n");
1487
1488 xen_setup_runstate_info(0);
1489
1490 /* Start the world */
1491 #ifdef CONFIG_X86_32
1492 i386_start_kernel();
1493 #else
1494 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1495 #endif
1496 }
1497
1498 #ifdef CONFIG_XEN_PVHVM
1499 #define HVM_SHARED_INFO_ADDR 0xFE700000UL
1500 static struct shared_info *xen_hvm_shared_info;
1501 static unsigned long xen_hvm_sip_phys;
1502 static int xen_major, xen_minor;
1503
1504 static void xen_hvm_connect_shared_info(unsigned long pfn)
1505 {
1506 struct xen_add_to_physmap xatp;
1507
1508 xatp.domid = DOMID_SELF;
1509 xatp.idx = 0;
1510 xatp.space = XENMAPSPACE_shared_info;
1511 xatp.gpfn = pfn;
1512 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1513 BUG();
1514
1515 }
1516 static void __init xen_hvm_set_shared_info(struct shared_info *sip)
1517 {
1518 int cpu;
1519
1520 HYPERVISOR_shared_info = sip;
1521
1522 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1523 * page, we use it in the event channel upcall and in some pvclock
1524 * related functions. We don't need the vcpu_info placement
1525 * optimizations because we don't use any pv_mmu or pv_irq op on
1526 * HVM. */
1527 for_each_online_cpu(cpu)
1528 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1529 }
1530
1531 /* Reconnect the shared_info pfn to a (new) mfn */
1532 void xen_hvm_resume_shared_info(void)
1533 {
1534 xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1535 }
1536
1537 /* Xen tools prior to Xen 4 do not provide a E820_Reserved area for guest usage.
1538 * On these old tools the shared info page will be placed in E820_Ram.
1539 * Xen 4 provides a E820_Reserved area at 0xFC000000, and this code expects
1540 * that nothing is mapped up to HVM_SHARED_INFO_ADDR.
1541 * Xen 4.3+ provides an explicit 1MB area at HVM_SHARED_INFO_ADDR which is used
1542 * here for the shared info page. */
1543 static void __init xen_hvm_init_shared_info(void)
1544 {
1545 if (xen_major < 4) {
1546 xen_hvm_shared_info = extend_brk(PAGE_SIZE, PAGE_SIZE);
1547 xen_hvm_sip_phys = __pa(xen_hvm_shared_info);
1548 } else {
1549 xen_hvm_sip_phys = HVM_SHARED_INFO_ADDR;
1550 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_hvm_sip_phys);
1551 xen_hvm_shared_info =
1552 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1553 }
1554 xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1555 xen_hvm_set_shared_info(xen_hvm_shared_info);
1556 }
1557
1558 static void __init init_hvm_pv_info(void)
1559 {
1560 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1561 u64 pfn;
1562
1563 base = xen_cpuid_base();
1564 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1565
1566 pfn = __pa(hypercall_page);
1567 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1568
1569 xen_setup_features();
1570
1571 pv_info.name = "Xen HVM";
1572
1573 xen_domain_type = XEN_HVM_DOMAIN;
1574 }
1575
1576 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1577 unsigned long action, void *hcpu)
1578 {
1579 int cpu = (long)hcpu;
1580 switch (action) {
1581 case CPU_UP_PREPARE:
1582 xen_vcpu_setup(cpu);
1583 if (xen_have_vector_callback)
1584 xen_init_lock_cpu(cpu);
1585 break;
1586 default:
1587 break;
1588 }
1589 return NOTIFY_OK;
1590 }
1591
1592 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1593 .notifier_call = xen_hvm_cpu_notify,
1594 };
1595
1596 static void __init xen_hvm_guest_init(void)
1597 {
1598 init_hvm_pv_info();
1599
1600 xen_hvm_init_shared_info();
1601
1602 if (xen_feature(XENFEAT_hvm_callback_vector))
1603 xen_have_vector_callback = 1;
1604 xen_hvm_smp_init();
1605 register_cpu_notifier(&xen_hvm_cpu_notifier);
1606 xen_unplug_emulated_devices();
1607 x86_init.irqs.intr_init = xen_init_IRQ;
1608 xen_hvm_init_time_ops();
1609 xen_hvm_init_mmu_ops();
1610 }
1611
1612 static bool __init xen_hvm_platform(void)
1613 {
1614 uint32_t eax, ebx, ecx, edx, base;
1615
1616 if (xen_pv_domain())
1617 return false;
1618
1619 base = xen_cpuid_base();
1620 if (!base)
1621 return false;
1622
1623 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1624
1625 xen_major = eax >> 16;
1626 xen_minor = eax & 0xffff;
1627
1628 printk(KERN_INFO "Xen version %d.%d.\n", xen_major, xen_minor);
1629
1630 return true;
1631 }
1632
1633 bool xen_hvm_need_lapic(void)
1634 {
1635 if (xen_pv_domain())
1636 return false;
1637 if (!xen_hvm_domain())
1638 return false;
1639 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1640 return false;
1641 return true;
1642 }
1643 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1644
1645 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1646 .name = "Xen HVM",
1647 .detect = xen_hvm_platform,
1648 .init_platform = xen_hvm_guest_init,
1649 };
1650 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1651 #endif