]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/xen/enlighten.c
mm: rewrite vmap layer
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
35 #include <xen/hvc-console.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/apic.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 enum xen_domain_type xen_domain_type = XEN_NATIVE;
61 EXPORT_SYMBOL_GPL(xen_domain_type);
62
63 /*
64 * Identity map, in addition to plain kernel map. This needs to be
65 * large enough to allocate page table pages to allocate the rest.
66 * Each page can map 2MB.
67 */
68 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
69
70 #ifdef CONFIG_X86_64
71 /* l3 pud for userspace vsyscall mapping */
72 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
73 #endif /* CONFIG_X86_64 */
74
75 /*
76 * Note about cr3 (pagetable base) values:
77 *
78 * xen_cr3 contains the current logical cr3 value; it contains the
79 * last set cr3. This may not be the current effective cr3, because
80 * its update may be being lazily deferred. However, a vcpu looking
81 * at its own cr3 can use this value knowing that it everything will
82 * be self-consistent.
83 *
84 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
85 * hypercall to set the vcpu cr3 is complete (so it may be a little
86 * out of date, but it will never be set early). If one vcpu is
87 * looking at another vcpu's cr3 value, it should use this variable.
88 */
89 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
90 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
91
92 struct start_info *xen_start_info;
93 EXPORT_SYMBOL_GPL(xen_start_info);
94
95 struct shared_info xen_dummy_shared_info;
96
97 /*
98 * Point at some empty memory to start with. We map the real shared_info
99 * page as soon as fixmap is up and running.
100 */
101 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
102
103 /*
104 * Flag to determine whether vcpu info placement is available on all
105 * VCPUs. We assume it is to start with, and then set it to zero on
106 * the first failure. This is because it can succeed on some VCPUs
107 * and not others, since it can involve hypervisor memory allocation,
108 * or because the guest failed to guarantee all the appropriate
109 * constraints on all VCPUs (ie buffer can't cross a page boundary).
110 *
111 * Note that any particular CPU may be using a placed vcpu structure,
112 * but we can only optimise if the all are.
113 *
114 * 0: not available, 1: available
115 */
116 static int have_vcpu_info_placement =
117 #ifdef CONFIG_X86_32
118 1
119 #else
120 0
121 #endif
122 ;
123
124
125 static void xen_vcpu_setup(int cpu)
126 {
127 struct vcpu_register_vcpu_info info;
128 int err;
129 struct vcpu_info *vcpup;
130
131 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
132 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134 if (!have_vcpu_info_placement)
135 return; /* already tested, not available */
136
137 vcpup = &per_cpu(xen_vcpu_info, cpu);
138
139 info.mfn = virt_to_mfn(vcpup);
140 info.offset = offset_in_page(vcpup);
141
142 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
143 cpu, vcpup, info.mfn, info.offset);
144
145 /* Check to see if the hypervisor will put the vcpu_info
146 structure where we want it, which allows direct access via
147 a percpu-variable. */
148 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
149
150 if (err) {
151 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
152 have_vcpu_info_placement = 0;
153 } else {
154 /* This cpu is using the registered vcpu info, even if
155 later ones fail to. */
156 per_cpu(xen_vcpu, cpu) = vcpup;
157
158 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
159 cpu, vcpup);
160 }
161 }
162
163 /*
164 * On restore, set the vcpu placement up again.
165 * If it fails, then we're in a bad state, since
166 * we can't back out from using it...
167 */
168 void xen_vcpu_restore(void)
169 {
170 if (have_vcpu_info_placement) {
171 int cpu;
172
173 for_each_online_cpu(cpu) {
174 bool other_cpu = (cpu != smp_processor_id());
175
176 if (other_cpu &&
177 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
178 BUG();
179
180 xen_vcpu_setup(cpu);
181
182 if (other_cpu &&
183 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184 BUG();
185 }
186
187 BUG_ON(!have_vcpu_info_placement);
188 }
189 }
190
191 static void __init xen_banner(void)
192 {
193 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
194 struct xen_extraversion extra;
195 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
196
197 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
198 pv_info.name);
199 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
200 version >> 16, version & 0xffff, extra.extraversion,
201 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
202 }
203
204 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
205 unsigned int *cx, unsigned int *dx)
206 {
207 unsigned maskedx = ~0;
208
209 /*
210 * Mask out inconvenient features, to try and disable as many
211 * unsupported kernel subsystems as possible.
212 */
213 if (*ax == 1)
214 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
215 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
216 (1 << X86_FEATURE_MCE) | /* disable MCE */
217 (1 << X86_FEATURE_MCA) | /* disable MCA */
218 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
219
220 asm(XEN_EMULATE_PREFIX "cpuid"
221 : "=a" (*ax),
222 "=b" (*bx),
223 "=c" (*cx),
224 "=d" (*dx)
225 : "0" (*ax), "2" (*cx));
226 *dx &= maskedx;
227 }
228
229 static void xen_set_debugreg(int reg, unsigned long val)
230 {
231 HYPERVISOR_set_debugreg(reg, val);
232 }
233
234 static unsigned long xen_get_debugreg(int reg)
235 {
236 return HYPERVISOR_get_debugreg(reg);
237 }
238
239 static void xen_leave_lazy(void)
240 {
241 paravirt_leave_lazy(paravirt_get_lazy_mode());
242 xen_mc_flush();
243 }
244
245 static unsigned long xen_store_tr(void)
246 {
247 return 0;
248 }
249
250 /*
251 * Set the page permissions for a particular virtual address. If the
252 * address is a vmalloc mapping (or other non-linear mapping), then
253 * find the linear mapping of the page and also set its protections to
254 * match.
255 */
256 static void set_aliased_prot(void *v, pgprot_t prot)
257 {
258 int level;
259 pte_t *ptep;
260 pte_t pte;
261 unsigned long pfn;
262 struct page *page;
263
264 ptep = lookup_address((unsigned long)v, &level);
265 BUG_ON(ptep == NULL);
266
267 pfn = pte_pfn(*ptep);
268 page = pfn_to_page(pfn);
269
270 pte = pfn_pte(pfn, prot);
271
272 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
273 BUG();
274
275 if (!PageHighMem(page)) {
276 void *av = __va(PFN_PHYS(pfn));
277
278 if (av != v)
279 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
280 BUG();
281 } else
282 kmap_flush_unused();
283 }
284
285 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
286 {
287 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
288 int i;
289
290 for(i = 0; i < entries; i += entries_per_page)
291 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
292 }
293
294 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
295 {
296 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
297 int i;
298
299 for(i = 0; i < entries; i += entries_per_page)
300 set_aliased_prot(ldt + i, PAGE_KERNEL);
301 }
302
303 static void xen_set_ldt(const void *addr, unsigned entries)
304 {
305 struct mmuext_op *op;
306 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
307
308 op = mcs.args;
309 op->cmd = MMUEXT_SET_LDT;
310 op->arg1.linear_addr = (unsigned long)addr;
311 op->arg2.nr_ents = entries;
312
313 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
314
315 xen_mc_issue(PARAVIRT_LAZY_CPU);
316 }
317
318 static void xen_load_gdt(const struct desc_ptr *dtr)
319 {
320 unsigned long *frames;
321 unsigned long va = dtr->address;
322 unsigned int size = dtr->size + 1;
323 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
324 int f;
325 struct multicall_space mcs;
326
327 /* A GDT can be up to 64k in size, which corresponds to 8192
328 8-byte entries, or 16 4k pages.. */
329
330 BUG_ON(size > 65536);
331 BUG_ON(va & ~PAGE_MASK);
332
333 mcs = xen_mc_entry(sizeof(*frames) * pages);
334 frames = mcs.args;
335
336 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
337 frames[f] = virt_to_mfn(va);
338 make_lowmem_page_readonly((void *)va);
339 }
340
341 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
342
343 xen_mc_issue(PARAVIRT_LAZY_CPU);
344 }
345
346 static void load_TLS_descriptor(struct thread_struct *t,
347 unsigned int cpu, unsigned int i)
348 {
349 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
350 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
351 struct multicall_space mc = __xen_mc_entry(0);
352
353 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
354 }
355
356 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
357 {
358 /*
359 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
360 * it means we're in a context switch, and %gs has just been
361 * saved. This means we can zero it out to prevent faults on
362 * exit from the hypervisor if the next process has no %gs.
363 * Either way, it has been saved, and the new value will get
364 * loaded properly. This will go away as soon as Xen has been
365 * modified to not save/restore %gs for normal hypercalls.
366 *
367 * On x86_64, this hack is not used for %gs, because gs points
368 * to KERNEL_GS_BASE (and uses it for PDA references), so we
369 * must not zero %gs on x86_64
370 *
371 * For x86_64, we need to zero %fs, otherwise we may get an
372 * exception between the new %fs descriptor being loaded and
373 * %fs being effectively cleared at __switch_to().
374 */
375 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
376 #ifdef CONFIG_X86_32
377 loadsegment(gs, 0);
378 #else
379 loadsegment(fs, 0);
380 #endif
381 }
382
383 xen_mc_batch();
384
385 load_TLS_descriptor(t, cpu, 0);
386 load_TLS_descriptor(t, cpu, 1);
387 load_TLS_descriptor(t, cpu, 2);
388
389 xen_mc_issue(PARAVIRT_LAZY_CPU);
390 }
391
392 #ifdef CONFIG_X86_64
393 static void xen_load_gs_index(unsigned int idx)
394 {
395 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
396 BUG();
397 }
398 #endif
399
400 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
401 const void *ptr)
402 {
403 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
404 u64 entry = *(u64 *)ptr;
405
406 preempt_disable();
407
408 xen_mc_flush();
409 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
410 BUG();
411
412 preempt_enable();
413 }
414
415 static int cvt_gate_to_trap(int vector, const gate_desc *val,
416 struct trap_info *info)
417 {
418 if (val->type != 0xf && val->type != 0xe)
419 return 0;
420
421 info->vector = vector;
422 info->address = gate_offset(*val);
423 info->cs = gate_segment(*val);
424 info->flags = val->dpl;
425 /* interrupt gates clear IF */
426 if (val->type == 0xe)
427 info->flags |= 4;
428
429 return 1;
430 }
431
432 /* Locations of each CPU's IDT */
433 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
434
435 /* Set an IDT entry. If the entry is part of the current IDT, then
436 also update Xen. */
437 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
438 {
439 unsigned long p = (unsigned long)&dt[entrynum];
440 unsigned long start, end;
441
442 preempt_disable();
443
444 start = __get_cpu_var(idt_desc).address;
445 end = start + __get_cpu_var(idt_desc).size + 1;
446
447 xen_mc_flush();
448
449 native_write_idt_entry(dt, entrynum, g);
450
451 if (p >= start && (p + 8) <= end) {
452 struct trap_info info[2];
453
454 info[1].address = 0;
455
456 if (cvt_gate_to_trap(entrynum, g, &info[0]))
457 if (HYPERVISOR_set_trap_table(info))
458 BUG();
459 }
460
461 preempt_enable();
462 }
463
464 static void xen_convert_trap_info(const struct desc_ptr *desc,
465 struct trap_info *traps)
466 {
467 unsigned in, out, count;
468
469 count = (desc->size+1) / sizeof(gate_desc);
470 BUG_ON(count > 256);
471
472 for (in = out = 0; in < count; in++) {
473 gate_desc *entry = (gate_desc*)(desc->address) + in;
474
475 if (cvt_gate_to_trap(in, entry, &traps[out]))
476 out++;
477 }
478 traps[out].address = 0;
479 }
480
481 void xen_copy_trap_info(struct trap_info *traps)
482 {
483 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
484
485 xen_convert_trap_info(desc, traps);
486 }
487
488 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
489 hold a spinlock to protect the static traps[] array (static because
490 it avoids allocation, and saves stack space). */
491 static void xen_load_idt(const struct desc_ptr *desc)
492 {
493 static DEFINE_SPINLOCK(lock);
494 static struct trap_info traps[257];
495
496 spin_lock(&lock);
497
498 __get_cpu_var(idt_desc) = *desc;
499
500 xen_convert_trap_info(desc, traps);
501
502 xen_mc_flush();
503 if (HYPERVISOR_set_trap_table(traps))
504 BUG();
505
506 spin_unlock(&lock);
507 }
508
509 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
510 they're handled differently. */
511 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
512 const void *desc, int type)
513 {
514 preempt_disable();
515
516 switch (type) {
517 case DESC_LDT:
518 case DESC_TSS:
519 /* ignore */
520 break;
521
522 default: {
523 xmaddr_t maddr = virt_to_machine(&dt[entry]);
524
525 xen_mc_flush();
526 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
527 BUG();
528 }
529
530 }
531
532 preempt_enable();
533 }
534
535 static void xen_load_sp0(struct tss_struct *tss,
536 struct thread_struct *thread)
537 {
538 struct multicall_space mcs = xen_mc_entry(0);
539 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
540 xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542
543 static void xen_set_iopl_mask(unsigned mask)
544 {
545 struct physdev_set_iopl set_iopl;
546
547 /* Force the change at ring 0. */
548 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
549 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
550 }
551
552 static void xen_io_delay(void)
553 {
554 }
555
556 #ifdef CONFIG_X86_LOCAL_APIC
557 static u32 xen_apic_read(u32 reg)
558 {
559 return 0;
560 }
561
562 static void xen_apic_write(u32 reg, u32 val)
563 {
564 /* Warn to see if there's any stray references */
565 WARN_ON(1);
566 }
567
568 static u64 xen_apic_icr_read(void)
569 {
570 return 0;
571 }
572
573 static void xen_apic_icr_write(u32 low, u32 id)
574 {
575 /* Warn to see if there's any stray references */
576 WARN_ON(1);
577 }
578
579 static void xen_apic_wait_icr_idle(void)
580 {
581 return;
582 }
583
584 static u32 xen_safe_apic_wait_icr_idle(void)
585 {
586 return 0;
587 }
588
589 static struct apic_ops xen_basic_apic_ops = {
590 .read = xen_apic_read,
591 .write = xen_apic_write,
592 .icr_read = xen_apic_icr_read,
593 .icr_write = xen_apic_icr_write,
594 .wait_icr_idle = xen_apic_wait_icr_idle,
595 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
596 };
597
598 #endif
599
600 static void xen_flush_tlb(void)
601 {
602 struct mmuext_op *op;
603 struct multicall_space mcs;
604
605 preempt_disable();
606
607 mcs = xen_mc_entry(sizeof(*op));
608
609 op = mcs.args;
610 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
611 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
612
613 xen_mc_issue(PARAVIRT_LAZY_MMU);
614
615 preempt_enable();
616 }
617
618 static void xen_flush_tlb_single(unsigned long addr)
619 {
620 struct mmuext_op *op;
621 struct multicall_space mcs;
622
623 preempt_disable();
624
625 mcs = xen_mc_entry(sizeof(*op));
626 op = mcs.args;
627 op->cmd = MMUEXT_INVLPG_LOCAL;
628 op->arg1.linear_addr = addr & PAGE_MASK;
629 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
630
631 xen_mc_issue(PARAVIRT_LAZY_MMU);
632
633 preempt_enable();
634 }
635
636 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
637 unsigned long va)
638 {
639 struct {
640 struct mmuext_op op;
641 cpumask_t mask;
642 } *args;
643 cpumask_t cpumask = *cpus;
644 struct multicall_space mcs;
645
646 /*
647 * A couple of (to be removed) sanity checks:
648 *
649 * - current CPU must not be in mask
650 * - mask must exist :)
651 */
652 BUG_ON(cpus_empty(cpumask));
653 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
654 BUG_ON(!mm);
655
656 /* If a CPU which we ran on has gone down, OK. */
657 cpus_and(cpumask, cpumask, cpu_online_map);
658 if (cpus_empty(cpumask))
659 return;
660
661 mcs = xen_mc_entry(sizeof(*args));
662 args = mcs.args;
663 args->mask = cpumask;
664 args->op.arg2.vcpumask = &args->mask;
665
666 if (va == TLB_FLUSH_ALL) {
667 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
668 } else {
669 args->op.cmd = MMUEXT_INVLPG_MULTI;
670 args->op.arg1.linear_addr = va;
671 }
672
673 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
674
675 xen_mc_issue(PARAVIRT_LAZY_MMU);
676 }
677
678 static void xen_clts(void)
679 {
680 struct multicall_space mcs;
681
682 mcs = xen_mc_entry(0);
683
684 MULTI_fpu_taskswitch(mcs.mc, 0);
685
686 xen_mc_issue(PARAVIRT_LAZY_CPU);
687 }
688
689 static void xen_write_cr0(unsigned long cr0)
690 {
691 struct multicall_space mcs;
692
693 /* Only pay attention to cr0.TS; everything else is
694 ignored. */
695 mcs = xen_mc_entry(0);
696
697 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
698
699 xen_mc_issue(PARAVIRT_LAZY_CPU);
700 }
701
702 static void xen_write_cr2(unsigned long cr2)
703 {
704 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
705 }
706
707 static unsigned long xen_read_cr2(void)
708 {
709 return x86_read_percpu(xen_vcpu)->arch.cr2;
710 }
711
712 static unsigned long xen_read_cr2_direct(void)
713 {
714 return x86_read_percpu(xen_vcpu_info.arch.cr2);
715 }
716
717 static void xen_write_cr4(unsigned long cr4)
718 {
719 cr4 &= ~X86_CR4_PGE;
720 cr4 &= ~X86_CR4_PSE;
721
722 native_write_cr4(cr4);
723 }
724
725 static unsigned long xen_read_cr3(void)
726 {
727 return x86_read_percpu(xen_cr3);
728 }
729
730 static void set_current_cr3(void *v)
731 {
732 x86_write_percpu(xen_current_cr3, (unsigned long)v);
733 }
734
735 static void __xen_write_cr3(bool kernel, unsigned long cr3)
736 {
737 struct mmuext_op *op;
738 struct multicall_space mcs;
739 unsigned long mfn;
740
741 if (cr3)
742 mfn = pfn_to_mfn(PFN_DOWN(cr3));
743 else
744 mfn = 0;
745
746 WARN_ON(mfn == 0 && kernel);
747
748 mcs = __xen_mc_entry(sizeof(*op));
749
750 op = mcs.args;
751 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
752 op->arg1.mfn = mfn;
753
754 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
755
756 if (kernel) {
757 x86_write_percpu(xen_cr3, cr3);
758
759 /* Update xen_current_cr3 once the batch has actually
760 been submitted. */
761 xen_mc_callback(set_current_cr3, (void *)cr3);
762 }
763 }
764
765 static void xen_write_cr3(unsigned long cr3)
766 {
767 BUG_ON(preemptible());
768
769 xen_mc_batch(); /* disables interrupts */
770
771 /* Update while interrupts are disabled, so its atomic with
772 respect to ipis */
773 x86_write_percpu(xen_cr3, cr3);
774
775 __xen_write_cr3(true, cr3);
776
777 #ifdef CONFIG_X86_64
778 {
779 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
780 if (user_pgd)
781 __xen_write_cr3(false, __pa(user_pgd));
782 else
783 __xen_write_cr3(false, 0);
784 }
785 #endif
786
787 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
788 }
789
790 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
791 {
792 int ret;
793
794 ret = 0;
795
796 switch(msr) {
797 #ifdef CONFIG_X86_64
798 unsigned which;
799 u64 base;
800
801 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
802 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
803 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
804
805 set:
806 base = ((u64)high << 32) | low;
807 if (HYPERVISOR_set_segment_base(which, base) != 0)
808 ret = -EFAULT;
809 break;
810 #endif
811
812 case MSR_STAR:
813 case MSR_CSTAR:
814 case MSR_LSTAR:
815 case MSR_SYSCALL_MASK:
816 case MSR_IA32_SYSENTER_CS:
817 case MSR_IA32_SYSENTER_ESP:
818 case MSR_IA32_SYSENTER_EIP:
819 /* Fast syscall setup is all done in hypercalls, so
820 these are all ignored. Stub them out here to stop
821 Xen console noise. */
822 break;
823
824 default:
825 ret = native_write_msr_safe(msr, low, high);
826 }
827
828 return ret;
829 }
830
831 /* Early in boot, while setting up the initial pagetable, assume
832 everything is pinned. */
833 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
834 {
835 #ifdef CONFIG_FLATMEM
836 BUG_ON(mem_map); /* should only be used early */
837 #endif
838 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
839 }
840
841 /* Early release_pte assumes that all pts are pinned, since there's
842 only init_mm and anything attached to that is pinned. */
843 static void xen_release_pte_init(unsigned long pfn)
844 {
845 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
846 }
847
848 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
849 {
850 struct mmuext_op op;
851 op.cmd = cmd;
852 op.arg1.mfn = pfn_to_mfn(pfn);
853 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
854 BUG();
855 }
856
857 /* This needs to make sure the new pte page is pinned iff its being
858 attached to a pinned pagetable. */
859 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
860 {
861 struct page *page = pfn_to_page(pfn);
862
863 if (PagePinned(virt_to_page(mm->pgd))) {
864 SetPagePinned(page);
865
866 if (!PageHighMem(page)) {
867 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
868 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
869 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
870 } else
871 /* make sure there are no stray mappings of
872 this page */
873 kmap_flush_unused();
874 vm_unmap_aliases();
875 }
876 }
877
878 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
879 {
880 xen_alloc_ptpage(mm, pfn, PT_PTE);
881 }
882
883 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
884 {
885 xen_alloc_ptpage(mm, pfn, PT_PMD);
886 }
887
888 static int xen_pgd_alloc(struct mm_struct *mm)
889 {
890 pgd_t *pgd = mm->pgd;
891 int ret = 0;
892
893 BUG_ON(PagePinned(virt_to_page(pgd)));
894
895 #ifdef CONFIG_X86_64
896 {
897 struct page *page = virt_to_page(pgd);
898 pgd_t *user_pgd;
899
900 BUG_ON(page->private != 0);
901
902 ret = -ENOMEM;
903
904 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
905 page->private = (unsigned long)user_pgd;
906
907 if (user_pgd != NULL) {
908 user_pgd[pgd_index(VSYSCALL_START)] =
909 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
910 ret = 0;
911 }
912
913 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
914 }
915 #endif
916
917 return ret;
918 }
919
920 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
921 {
922 #ifdef CONFIG_X86_64
923 pgd_t *user_pgd = xen_get_user_pgd(pgd);
924
925 if (user_pgd)
926 free_page((unsigned long)user_pgd);
927 #endif
928 }
929
930 /* This should never happen until we're OK to use struct page */
931 static void xen_release_ptpage(unsigned long pfn, unsigned level)
932 {
933 struct page *page = pfn_to_page(pfn);
934
935 if (PagePinned(page)) {
936 if (!PageHighMem(page)) {
937 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
938 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
939 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
940 }
941 ClearPagePinned(page);
942 }
943 }
944
945 static void xen_release_pte(unsigned long pfn)
946 {
947 xen_release_ptpage(pfn, PT_PTE);
948 }
949
950 static void xen_release_pmd(unsigned long pfn)
951 {
952 xen_release_ptpage(pfn, PT_PMD);
953 }
954
955 #if PAGETABLE_LEVELS == 4
956 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
957 {
958 xen_alloc_ptpage(mm, pfn, PT_PUD);
959 }
960
961 static void xen_release_pud(unsigned long pfn)
962 {
963 xen_release_ptpage(pfn, PT_PUD);
964 }
965 #endif
966
967 #ifdef CONFIG_HIGHPTE
968 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
969 {
970 pgprot_t prot = PAGE_KERNEL;
971
972 if (PagePinned(page))
973 prot = PAGE_KERNEL_RO;
974
975 if (0 && PageHighMem(page))
976 printk("mapping highpte %lx type %d prot %s\n",
977 page_to_pfn(page), type,
978 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
979
980 return kmap_atomic_prot(page, type, prot);
981 }
982 #endif
983
984 #ifdef CONFIG_X86_32
985 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
986 {
987 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
988 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
989 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
990 pte_val_ma(pte));
991
992 return pte;
993 }
994
995 /* Init-time set_pte while constructing initial pagetables, which
996 doesn't allow RO pagetable pages to be remapped RW */
997 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
998 {
999 pte = mask_rw_pte(ptep, pte);
1000
1001 xen_set_pte(ptep, pte);
1002 }
1003 #endif
1004
1005 static __init void xen_pagetable_setup_start(pgd_t *base)
1006 {
1007 }
1008
1009 void xen_setup_shared_info(void)
1010 {
1011 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1012 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1013 xen_start_info->shared_info);
1014
1015 HYPERVISOR_shared_info =
1016 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1017 } else
1018 HYPERVISOR_shared_info =
1019 (struct shared_info *)__va(xen_start_info->shared_info);
1020
1021 #ifndef CONFIG_SMP
1022 /* In UP this is as good a place as any to set up shared info */
1023 xen_setup_vcpu_info_placement();
1024 #endif
1025
1026 xen_setup_mfn_list_list();
1027 }
1028
1029 static __init void xen_pagetable_setup_done(pgd_t *base)
1030 {
1031 xen_setup_shared_info();
1032 }
1033
1034 static __init void xen_post_allocator_init(void)
1035 {
1036 pv_mmu_ops.set_pte = xen_set_pte;
1037 pv_mmu_ops.set_pmd = xen_set_pmd;
1038 pv_mmu_ops.set_pud = xen_set_pud;
1039 #if PAGETABLE_LEVELS == 4
1040 pv_mmu_ops.set_pgd = xen_set_pgd;
1041 #endif
1042
1043 /* This will work as long as patching hasn't happened yet
1044 (which it hasn't) */
1045 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1046 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1047 pv_mmu_ops.release_pte = xen_release_pte;
1048 pv_mmu_ops.release_pmd = xen_release_pmd;
1049 #if PAGETABLE_LEVELS == 4
1050 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1051 pv_mmu_ops.release_pud = xen_release_pud;
1052 #endif
1053
1054 #ifdef CONFIG_X86_64
1055 SetPagePinned(virt_to_page(level3_user_vsyscall));
1056 #endif
1057 xen_mark_init_mm_pinned();
1058 }
1059
1060 /* This is called once we have the cpu_possible_map */
1061 void xen_setup_vcpu_info_placement(void)
1062 {
1063 int cpu;
1064
1065 for_each_possible_cpu(cpu)
1066 xen_vcpu_setup(cpu);
1067
1068 /* xen_vcpu_setup managed to place the vcpu_info within the
1069 percpu area for all cpus, so make use of it */
1070 if (have_vcpu_info_placement) {
1071 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1072
1073 pv_irq_ops.save_fl = xen_save_fl_direct;
1074 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1075 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1076 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1077 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1078 }
1079 }
1080
1081 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1082 unsigned long addr, unsigned len)
1083 {
1084 char *start, *end, *reloc;
1085 unsigned ret;
1086
1087 start = end = reloc = NULL;
1088
1089 #define SITE(op, x) \
1090 case PARAVIRT_PATCH(op.x): \
1091 if (have_vcpu_info_placement) { \
1092 start = (char *)xen_##x##_direct; \
1093 end = xen_##x##_direct_end; \
1094 reloc = xen_##x##_direct_reloc; \
1095 } \
1096 goto patch_site
1097
1098 switch (type) {
1099 SITE(pv_irq_ops, irq_enable);
1100 SITE(pv_irq_ops, irq_disable);
1101 SITE(pv_irq_ops, save_fl);
1102 SITE(pv_irq_ops, restore_fl);
1103 #undef SITE
1104
1105 patch_site:
1106 if (start == NULL || (end-start) > len)
1107 goto default_patch;
1108
1109 ret = paravirt_patch_insns(insnbuf, len, start, end);
1110
1111 /* Note: because reloc is assigned from something that
1112 appears to be an array, gcc assumes it's non-null,
1113 but doesn't know its relationship with start and
1114 end. */
1115 if (reloc > start && reloc < end) {
1116 int reloc_off = reloc - start;
1117 long *relocp = (long *)(insnbuf + reloc_off);
1118 long delta = start - (char *)addr;
1119
1120 *relocp += delta;
1121 }
1122 break;
1123
1124 default_patch:
1125 default:
1126 ret = paravirt_patch_default(type, clobbers, insnbuf,
1127 addr, len);
1128 break;
1129 }
1130
1131 return ret;
1132 }
1133
1134 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1135 {
1136 pte_t pte;
1137
1138 phys >>= PAGE_SHIFT;
1139
1140 switch (idx) {
1141 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1142 #ifdef CONFIG_X86_F00F_BUG
1143 case FIX_F00F_IDT:
1144 #endif
1145 #ifdef CONFIG_X86_32
1146 case FIX_WP_TEST:
1147 case FIX_VDSO:
1148 # ifdef CONFIG_HIGHMEM
1149 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1150 # endif
1151 #else
1152 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1153 #endif
1154 #ifdef CONFIG_X86_LOCAL_APIC
1155 case FIX_APIC_BASE: /* maps dummy local APIC */
1156 #endif
1157 pte = pfn_pte(phys, prot);
1158 break;
1159
1160 default:
1161 pte = mfn_pte(phys, prot);
1162 break;
1163 }
1164
1165 __native_set_fixmap(idx, pte);
1166
1167 #ifdef CONFIG_X86_64
1168 /* Replicate changes to map the vsyscall page into the user
1169 pagetable vsyscall mapping. */
1170 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1171 unsigned long vaddr = __fix_to_virt(idx);
1172 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1173 }
1174 #endif
1175 }
1176
1177 static const struct pv_info xen_info __initdata = {
1178 .paravirt_enabled = 1,
1179 .shared_kernel_pmd = 0,
1180
1181 .name = "Xen",
1182 };
1183
1184 static const struct pv_init_ops xen_init_ops __initdata = {
1185 .patch = xen_patch,
1186
1187 .banner = xen_banner,
1188 .memory_setup = xen_memory_setup,
1189 .arch_setup = xen_arch_setup,
1190 .post_allocator_init = xen_post_allocator_init,
1191 };
1192
1193 static const struct pv_time_ops xen_time_ops __initdata = {
1194 .time_init = xen_time_init,
1195
1196 .set_wallclock = xen_set_wallclock,
1197 .get_wallclock = xen_get_wallclock,
1198 .get_tsc_khz = xen_tsc_khz,
1199 .sched_clock = xen_sched_clock,
1200 };
1201
1202 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1203 .cpuid = xen_cpuid,
1204
1205 .set_debugreg = xen_set_debugreg,
1206 .get_debugreg = xen_get_debugreg,
1207
1208 .clts = xen_clts,
1209
1210 .read_cr0 = native_read_cr0,
1211 .write_cr0 = xen_write_cr0,
1212
1213 .read_cr4 = native_read_cr4,
1214 .read_cr4_safe = native_read_cr4_safe,
1215 .write_cr4 = xen_write_cr4,
1216
1217 .wbinvd = native_wbinvd,
1218
1219 .read_msr = native_read_msr_safe,
1220 .write_msr = xen_write_msr_safe,
1221 .read_tsc = native_read_tsc,
1222 .read_pmc = native_read_pmc,
1223
1224 .iret = xen_iret,
1225 .irq_enable_sysexit = xen_sysexit,
1226 #ifdef CONFIG_X86_64
1227 .usergs_sysret32 = xen_sysret32,
1228 .usergs_sysret64 = xen_sysret64,
1229 #endif
1230
1231 .load_tr_desc = paravirt_nop,
1232 .set_ldt = xen_set_ldt,
1233 .load_gdt = xen_load_gdt,
1234 .load_idt = xen_load_idt,
1235 .load_tls = xen_load_tls,
1236 #ifdef CONFIG_X86_64
1237 .load_gs_index = xen_load_gs_index,
1238 #endif
1239
1240 .alloc_ldt = xen_alloc_ldt,
1241 .free_ldt = xen_free_ldt,
1242
1243 .store_gdt = native_store_gdt,
1244 .store_idt = native_store_idt,
1245 .store_tr = xen_store_tr,
1246
1247 .write_ldt_entry = xen_write_ldt_entry,
1248 .write_gdt_entry = xen_write_gdt_entry,
1249 .write_idt_entry = xen_write_idt_entry,
1250 .load_sp0 = xen_load_sp0,
1251
1252 .set_iopl_mask = xen_set_iopl_mask,
1253 .io_delay = xen_io_delay,
1254
1255 /* Xen takes care of %gs when switching to usermode for us */
1256 .swapgs = paravirt_nop,
1257
1258 .lazy_mode = {
1259 .enter = paravirt_enter_lazy_cpu,
1260 .leave = xen_leave_lazy,
1261 },
1262 };
1263
1264 static const struct pv_apic_ops xen_apic_ops __initdata = {
1265 #ifdef CONFIG_X86_LOCAL_APIC
1266 .setup_boot_clock = paravirt_nop,
1267 .setup_secondary_clock = paravirt_nop,
1268 .startup_ipi_hook = paravirt_nop,
1269 #endif
1270 };
1271
1272 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1273 .pagetable_setup_start = xen_pagetable_setup_start,
1274 .pagetable_setup_done = xen_pagetable_setup_done,
1275
1276 .read_cr2 = xen_read_cr2,
1277 .write_cr2 = xen_write_cr2,
1278
1279 .read_cr3 = xen_read_cr3,
1280 .write_cr3 = xen_write_cr3,
1281
1282 .flush_tlb_user = xen_flush_tlb,
1283 .flush_tlb_kernel = xen_flush_tlb,
1284 .flush_tlb_single = xen_flush_tlb_single,
1285 .flush_tlb_others = xen_flush_tlb_others,
1286
1287 .pte_update = paravirt_nop,
1288 .pte_update_defer = paravirt_nop,
1289
1290 .pgd_alloc = xen_pgd_alloc,
1291 .pgd_free = xen_pgd_free,
1292
1293 .alloc_pte = xen_alloc_pte_init,
1294 .release_pte = xen_release_pte_init,
1295 .alloc_pmd = xen_alloc_pte_init,
1296 .alloc_pmd_clone = paravirt_nop,
1297 .release_pmd = xen_release_pte_init,
1298
1299 #ifdef CONFIG_HIGHPTE
1300 .kmap_atomic_pte = xen_kmap_atomic_pte,
1301 #endif
1302
1303 #ifdef CONFIG_X86_64
1304 .set_pte = xen_set_pte,
1305 #else
1306 .set_pte = xen_set_pte_init,
1307 #endif
1308 .set_pte_at = xen_set_pte_at,
1309 .set_pmd = xen_set_pmd_hyper,
1310
1311 .ptep_modify_prot_start = __ptep_modify_prot_start,
1312 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1313
1314 .pte_val = xen_pte_val,
1315 .pte_flags = native_pte_flags,
1316 .pgd_val = xen_pgd_val,
1317
1318 .make_pte = xen_make_pte,
1319 .make_pgd = xen_make_pgd,
1320
1321 #ifdef CONFIG_X86_PAE
1322 .set_pte_atomic = xen_set_pte_atomic,
1323 .set_pte_present = xen_set_pte_at,
1324 .pte_clear = xen_pte_clear,
1325 .pmd_clear = xen_pmd_clear,
1326 #endif /* CONFIG_X86_PAE */
1327 .set_pud = xen_set_pud_hyper,
1328
1329 .make_pmd = xen_make_pmd,
1330 .pmd_val = xen_pmd_val,
1331
1332 #if PAGETABLE_LEVELS == 4
1333 .pud_val = xen_pud_val,
1334 .make_pud = xen_make_pud,
1335 .set_pgd = xen_set_pgd_hyper,
1336
1337 .alloc_pud = xen_alloc_pte_init,
1338 .release_pud = xen_release_pte_init,
1339 #endif /* PAGETABLE_LEVELS == 4 */
1340
1341 .activate_mm = xen_activate_mm,
1342 .dup_mmap = xen_dup_mmap,
1343 .exit_mmap = xen_exit_mmap,
1344
1345 .lazy_mode = {
1346 .enter = paravirt_enter_lazy_mmu,
1347 .leave = xen_leave_lazy,
1348 },
1349
1350 .set_fixmap = xen_set_fixmap,
1351 };
1352
1353 static void xen_reboot(int reason)
1354 {
1355 struct sched_shutdown r = { .reason = reason };
1356
1357 #ifdef CONFIG_SMP
1358 smp_send_stop();
1359 #endif
1360
1361 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1362 BUG();
1363 }
1364
1365 static void xen_restart(char *msg)
1366 {
1367 xen_reboot(SHUTDOWN_reboot);
1368 }
1369
1370 static void xen_emergency_restart(void)
1371 {
1372 xen_reboot(SHUTDOWN_reboot);
1373 }
1374
1375 static void xen_machine_halt(void)
1376 {
1377 xen_reboot(SHUTDOWN_poweroff);
1378 }
1379
1380 static void xen_crash_shutdown(struct pt_regs *regs)
1381 {
1382 xen_reboot(SHUTDOWN_crash);
1383 }
1384
1385 static const struct machine_ops __initdata xen_machine_ops = {
1386 .restart = xen_restart,
1387 .halt = xen_machine_halt,
1388 .power_off = xen_machine_halt,
1389 .shutdown = xen_machine_halt,
1390 .crash_shutdown = xen_crash_shutdown,
1391 .emergency_restart = xen_emergency_restart,
1392 };
1393
1394
1395 static void __init xen_reserve_top(void)
1396 {
1397 #ifdef CONFIG_X86_32
1398 unsigned long top = HYPERVISOR_VIRT_START;
1399 struct xen_platform_parameters pp;
1400
1401 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1402 top = pp.virt_start;
1403
1404 reserve_top_address(-top);
1405 #endif /* CONFIG_X86_32 */
1406 }
1407
1408 /*
1409 * Like __va(), but returns address in the kernel mapping (which is
1410 * all we have until the physical memory mapping has been set up.
1411 */
1412 static void *__ka(phys_addr_t paddr)
1413 {
1414 #ifdef CONFIG_X86_64
1415 return (void *)(paddr + __START_KERNEL_map);
1416 #else
1417 return __va(paddr);
1418 #endif
1419 }
1420
1421 /* Convert a machine address to physical address */
1422 static unsigned long m2p(phys_addr_t maddr)
1423 {
1424 phys_addr_t paddr;
1425
1426 maddr &= PTE_PFN_MASK;
1427 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1428
1429 return paddr;
1430 }
1431
1432 /* Convert a machine address to kernel virtual */
1433 static void *m2v(phys_addr_t maddr)
1434 {
1435 return __ka(m2p(maddr));
1436 }
1437
1438 static void set_page_prot(void *addr, pgprot_t prot)
1439 {
1440 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1441 pte_t pte = pfn_pte(pfn, prot);
1442
1443 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1444 BUG();
1445 }
1446
1447 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1448 {
1449 unsigned pmdidx, pteidx;
1450 unsigned ident_pte;
1451 unsigned long pfn;
1452
1453 ident_pte = 0;
1454 pfn = 0;
1455 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1456 pte_t *pte_page;
1457
1458 /* Reuse or allocate a page of ptes */
1459 if (pmd_present(pmd[pmdidx]))
1460 pte_page = m2v(pmd[pmdidx].pmd);
1461 else {
1462 /* Check for free pte pages */
1463 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1464 break;
1465
1466 pte_page = &level1_ident_pgt[ident_pte];
1467 ident_pte += PTRS_PER_PTE;
1468
1469 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1470 }
1471
1472 /* Install mappings */
1473 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1474 pte_t pte;
1475
1476 if (pfn > max_pfn_mapped)
1477 max_pfn_mapped = pfn;
1478
1479 if (!pte_none(pte_page[pteidx]))
1480 continue;
1481
1482 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1483 pte_page[pteidx] = pte;
1484 }
1485 }
1486
1487 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1488 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1489
1490 set_page_prot(pmd, PAGE_KERNEL_RO);
1491 }
1492
1493 #ifdef CONFIG_X86_64
1494 static void convert_pfn_mfn(void *v)
1495 {
1496 pte_t *pte = v;
1497 int i;
1498
1499 /* All levels are converted the same way, so just treat them
1500 as ptes. */
1501 for(i = 0; i < PTRS_PER_PTE; i++)
1502 pte[i] = xen_make_pte(pte[i].pte);
1503 }
1504
1505 /*
1506 * Set up the inital kernel pagetable.
1507 *
1508 * We can construct this by grafting the Xen provided pagetable into
1509 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1510 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1511 * means that only the kernel has a physical mapping to start with -
1512 * but that's enough to get __va working. We need to fill in the rest
1513 * of the physical mapping once some sort of allocator has been set
1514 * up.
1515 */
1516 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1517 {
1518 pud_t *l3;
1519 pmd_t *l2;
1520
1521 /* Zap identity mapping */
1522 init_level4_pgt[0] = __pgd(0);
1523
1524 /* Pre-constructed entries are in pfn, so convert to mfn */
1525 convert_pfn_mfn(init_level4_pgt);
1526 convert_pfn_mfn(level3_ident_pgt);
1527 convert_pfn_mfn(level3_kernel_pgt);
1528
1529 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1530 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1531
1532 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1533 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1534
1535 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1536 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1537 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1538
1539 /* Set up identity map */
1540 xen_map_identity_early(level2_ident_pgt, max_pfn);
1541
1542 /* Make pagetable pieces RO */
1543 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1544 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1545 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1546 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1547 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1548 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1549
1550 /* Pin down new L4 */
1551 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1552 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1553
1554 /* Unpin Xen-provided one */
1555 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1556
1557 /* Switch over */
1558 pgd = init_level4_pgt;
1559
1560 /*
1561 * At this stage there can be no user pgd, and no page
1562 * structure to attach it to, so make sure we just set kernel
1563 * pgd.
1564 */
1565 xen_mc_batch();
1566 __xen_write_cr3(true, __pa(pgd));
1567 xen_mc_issue(PARAVIRT_LAZY_CPU);
1568
1569 reserve_early(__pa(xen_start_info->pt_base),
1570 __pa(xen_start_info->pt_base +
1571 xen_start_info->nr_pt_frames * PAGE_SIZE),
1572 "XEN PAGETABLES");
1573
1574 return pgd;
1575 }
1576 #else /* !CONFIG_X86_64 */
1577 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1578
1579 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1580 {
1581 pmd_t *kernel_pmd;
1582
1583 init_pg_tables_start = __pa(pgd);
1584 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1585 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1586
1587 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1588 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1589
1590 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1591
1592 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1593 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1594 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1595
1596 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1597 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1598 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1599
1600 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1601
1602 xen_write_cr3(__pa(swapper_pg_dir));
1603
1604 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1605
1606 return swapper_pg_dir;
1607 }
1608 #endif /* CONFIG_X86_64 */
1609
1610 /* First C function to be called on Xen boot */
1611 asmlinkage void __init xen_start_kernel(void)
1612 {
1613 pgd_t *pgd;
1614
1615 if (!xen_start_info)
1616 return;
1617
1618 xen_domain_type = XEN_PV_DOMAIN;
1619
1620 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1621
1622 xen_setup_features();
1623
1624 /* Install Xen paravirt ops */
1625 pv_info = xen_info;
1626 pv_init_ops = xen_init_ops;
1627 pv_time_ops = xen_time_ops;
1628 pv_cpu_ops = xen_cpu_ops;
1629 pv_apic_ops = xen_apic_ops;
1630 pv_mmu_ops = xen_mmu_ops;
1631
1632 xen_init_irq_ops();
1633
1634 #ifdef CONFIG_X86_LOCAL_APIC
1635 /*
1636 * set up the basic apic ops.
1637 */
1638 apic_ops = &xen_basic_apic_ops;
1639 #endif
1640
1641 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1642 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1643 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1644 }
1645
1646 machine_ops = xen_machine_ops;
1647
1648 #ifdef CONFIG_X86_64
1649 /* Disable until direct per-cpu data access. */
1650 have_vcpu_info_placement = 0;
1651 x86_64_init_pda();
1652 #endif
1653
1654 xen_smp_init();
1655
1656 /* Get mfn list */
1657 if (!xen_feature(XENFEAT_auto_translated_physmap))
1658 xen_build_dynamic_phys_to_machine();
1659
1660 pgd = (pgd_t *)xen_start_info->pt_base;
1661
1662 /* Prevent unwanted bits from being set in PTEs. */
1663 __supported_pte_mask &= ~_PAGE_GLOBAL;
1664 if (!xen_initial_domain())
1665 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1666
1667 /* Don't do the full vcpu_info placement stuff until we have a
1668 possible map and a non-dummy shared_info. */
1669 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1670
1671 xen_raw_console_write("mapping kernel into physical memory\n");
1672 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1673
1674 init_mm.pgd = pgd;
1675
1676 /* keep using Xen gdt for now; no urgent need to change it */
1677
1678 pv_info.kernel_rpl = 1;
1679 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1680 pv_info.kernel_rpl = 0;
1681
1682 /* set the limit of our address space */
1683 xen_reserve_top();
1684
1685 #ifdef CONFIG_X86_32
1686 /* set up basic CPUID stuff */
1687 cpu_detect(&new_cpu_data);
1688 new_cpu_data.hard_math = 1;
1689 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1690 #endif
1691
1692 /* Poke various useful things into boot_params */
1693 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1694 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1695 ? __pa(xen_start_info->mod_start) : 0;
1696 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1697 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1698
1699 if (!xen_initial_domain()) {
1700 add_preferred_console("xenboot", 0, NULL);
1701 add_preferred_console("tty", 0, NULL);
1702 add_preferred_console("hvc", 0, NULL);
1703 }
1704
1705 xen_raw_console_write("about to get started...\n");
1706
1707 /* Start the world */
1708 #ifdef CONFIG_X86_32
1709 i386_start_kernel();
1710 #else
1711 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1712 #endif
1713 }