]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/enlighten.c
x86 reboot quirks: add Dell Precision WorkStation T5400
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48 #include <asm/pgalloc.h>
49
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
53
54 EXPORT_SYMBOL_GPL(hypercall_page);
55
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58
59 /*
60 * Note about cr3 (pagetable base) values:
61 *
62 * xen_cr3 contains the current logical cr3 value; it contains the
63 * last set cr3. This may not be the current effective cr3, because
64 * its update may be being lazily deferred. However, a vcpu looking
65 * at its own cr3 can use this value knowing that it everything will
66 * be self-consistent.
67 *
68 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
69 * hypercall to set the vcpu cr3 is complete (so it may be a little
70 * out of date, but it will never be set early). If one vcpu is
71 * looking at another vcpu's cr3 value, it should use this variable.
72 */
73 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
74 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
75
76 struct start_info *xen_start_info;
77 EXPORT_SYMBOL_GPL(xen_start_info);
78
79 struct shared_info xen_dummy_shared_info;
80
81 /*
82 * Point at some empty memory to start with. We map the real shared_info
83 * page as soon as fixmap is up and running.
84 */
85 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
86
87 /*
88 * Flag to determine whether vcpu info placement is available on all
89 * VCPUs. We assume it is to start with, and then set it to zero on
90 * the first failure. This is because it can succeed on some VCPUs
91 * and not others, since it can involve hypervisor memory allocation,
92 * or because the guest failed to guarantee all the appropriate
93 * constraints on all VCPUs (ie buffer can't cross a page boundary).
94 *
95 * Note that any particular CPU may be using a placed vcpu structure,
96 * but we can only optimise if the all are.
97 *
98 * 0: not available, 1: available
99 */
100 static int have_vcpu_info_placement = 1;
101
102 static void xen_vcpu_setup(int cpu)
103 {
104 struct vcpu_register_vcpu_info info;
105 int err;
106 struct vcpu_info *vcpup;
107
108 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
109 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
110
111 if (!have_vcpu_info_placement)
112 return; /* already tested, not available */
113
114 vcpup = &per_cpu(xen_vcpu_info, cpu);
115
116 info.mfn = virt_to_mfn(vcpup);
117 info.offset = offset_in_page(vcpup);
118
119 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
120 cpu, vcpup, info.mfn, info.offset);
121
122 /* Check to see if the hypervisor will put the vcpu_info
123 structure where we want it, which allows direct access via
124 a percpu-variable. */
125 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
126
127 if (err) {
128 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
129 have_vcpu_info_placement = 0;
130 } else {
131 /* This cpu is using the registered vcpu info, even if
132 later ones fail to. */
133 per_cpu(xen_vcpu, cpu) = vcpup;
134
135 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
136 cpu, vcpup);
137 }
138 }
139
140 /*
141 * On restore, set the vcpu placement up again.
142 * If it fails, then we're in a bad state, since
143 * we can't back out from using it...
144 */
145 void xen_vcpu_restore(void)
146 {
147 if (have_vcpu_info_placement) {
148 int cpu;
149
150 for_each_online_cpu(cpu) {
151 bool other_cpu = (cpu != smp_processor_id());
152
153 if (other_cpu &&
154 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
155 BUG();
156
157 xen_vcpu_setup(cpu);
158
159 if (other_cpu &&
160 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
161 BUG();
162 }
163
164 BUG_ON(!have_vcpu_info_placement);
165 }
166 }
167
168 static void __init xen_banner(void)
169 {
170 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
171 pv_info.name);
172 printk(KERN_INFO "Hypervisor signature: %s%s\n",
173 xen_start_info->magic,
174 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
175 }
176
177 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
178 unsigned int *cx, unsigned int *dx)
179 {
180 unsigned maskedx = ~0;
181
182 /*
183 * Mask out inconvenient features, to try and disable as many
184 * unsupported kernel subsystems as possible.
185 */
186 if (*ax == 1)
187 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
188 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
189 (1 << X86_FEATURE_MCE) | /* disable MCE */
190 (1 << X86_FEATURE_MCA) | /* disable MCA */
191 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
192
193 asm(XEN_EMULATE_PREFIX "cpuid"
194 : "=a" (*ax),
195 "=b" (*bx),
196 "=c" (*cx),
197 "=d" (*dx)
198 : "0" (*ax), "2" (*cx));
199 *dx &= maskedx;
200 }
201
202 static void xen_set_debugreg(int reg, unsigned long val)
203 {
204 HYPERVISOR_set_debugreg(reg, val);
205 }
206
207 static unsigned long xen_get_debugreg(int reg)
208 {
209 return HYPERVISOR_get_debugreg(reg);
210 }
211
212 static unsigned long xen_save_fl(void)
213 {
214 struct vcpu_info *vcpu;
215 unsigned long flags;
216
217 vcpu = x86_read_percpu(xen_vcpu);
218
219 /* flag has opposite sense of mask */
220 flags = !vcpu->evtchn_upcall_mask;
221
222 /* convert to IF type flag
223 -0 -> 0x00000000
224 -1 -> 0xffffffff
225 */
226 return (-flags) & X86_EFLAGS_IF;
227 }
228
229 static void xen_restore_fl(unsigned long flags)
230 {
231 struct vcpu_info *vcpu;
232
233 /* convert from IF type flag */
234 flags = !(flags & X86_EFLAGS_IF);
235
236 /* There's a one instruction preempt window here. We need to
237 make sure we're don't switch CPUs between getting the vcpu
238 pointer and updating the mask. */
239 preempt_disable();
240 vcpu = x86_read_percpu(xen_vcpu);
241 vcpu->evtchn_upcall_mask = flags;
242 preempt_enable_no_resched();
243
244 /* Doesn't matter if we get preempted here, because any
245 pending event will get dealt with anyway. */
246
247 if (flags == 0) {
248 preempt_check_resched();
249 barrier(); /* unmask then check (avoid races) */
250 if (unlikely(vcpu->evtchn_upcall_pending))
251 force_evtchn_callback();
252 }
253 }
254
255 static void xen_irq_disable(void)
256 {
257 /* There's a one instruction preempt window here. We need to
258 make sure we're don't switch CPUs between getting the vcpu
259 pointer and updating the mask. */
260 preempt_disable();
261 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
262 preempt_enable_no_resched();
263 }
264
265 static void xen_irq_enable(void)
266 {
267 struct vcpu_info *vcpu;
268
269 /* We don't need to worry about being preempted here, since
270 either a) interrupts are disabled, so no preemption, or b)
271 the caller is confused and is trying to re-enable interrupts
272 on an indeterminate processor. */
273
274 vcpu = x86_read_percpu(xen_vcpu);
275 vcpu->evtchn_upcall_mask = 0;
276
277 /* Doesn't matter if we get preempted here, because any
278 pending event will get dealt with anyway. */
279
280 barrier(); /* unmask then check (avoid races) */
281 if (unlikely(vcpu->evtchn_upcall_pending))
282 force_evtchn_callback();
283 }
284
285 static void xen_safe_halt(void)
286 {
287 /* Blocking includes an implicit local_irq_enable(). */
288 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
289 BUG();
290 }
291
292 static void xen_halt(void)
293 {
294 if (irqs_disabled())
295 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
296 else
297 xen_safe_halt();
298 }
299
300 static void xen_leave_lazy(void)
301 {
302 paravirt_leave_lazy(paravirt_get_lazy_mode());
303 xen_mc_flush();
304 }
305
306 static unsigned long xen_store_tr(void)
307 {
308 return 0;
309 }
310
311 static void xen_set_ldt(const void *addr, unsigned entries)
312 {
313 struct mmuext_op *op;
314 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
315
316 op = mcs.args;
317 op->cmd = MMUEXT_SET_LDT;
318 op->arg1.linear_addr = (unsigned long)addr;
319 op->arg2.nr_ents = entries;
320
321 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
322
323 xen_mc_issue(PARAVIRT_LAZY_CPU);
324 }
325
326 static void xen_load_gdt(const struct desc_ptr *dtr)
327 {
328 unsigned long *frames;
329 unsigned long va = dtr->address;
330 unsigned int size = dtr->size + 1;
331 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
332 int f;
333 struct multicall_space mcs;
334
335 /* A GDT can be up to 64k in size, which corresponds to 8192
336 8-byte entries, or 16 4k pages.. */
337
338 BUG_ON(size > 65536);
339 BUG_ON(va & ~PAGE_MASK);
340
341 mcs = xen_mc_entry(sizeof(*frames) * pages);
342 frames = mcs.args;
343
344 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
345 frames[f] = virt_to_mfn(va);
346 make_lowmem_page_readonly((void *)va);
347 }
348
349 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
350
351 xen_mc_issue(PARAVIRT_LAZY_CPU);
352 }
353
354 static void load_TLS_descriptor(struct thread_struct *t,
355 unsigned int cpu, unsigned int i)
356 {
357 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
358 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
359 struct multicall_space mc = __xen_mc_entry(0);
360
361 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
362 }
363
364 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
365 {
366 xen_mc_batch();
367
368 load_TLS_descriptor(t, cpu, 0);
369 load_TLS_descriptor(t, cpu, 1);
370 load_TLS_descriptor(t, cpu, 2);
371
372 xen_mc_issue(PARAVIRT_LAZY_CPU);
373
374 /*
375 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
376 * it means we're in a context switch, and %gs has just been
377 * saved. This means we can zero it out to prevent faults on
378 * exit from the hypervisor if the next process has no %gs.
379 * Either way, it has been saved, and the new value will get
380 * loaded properly. This will go away as soon as Xen has been
381 * modified to not save/restore %gs for normal hypercalls.
382 */
383 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
384 loadsegment(gs, 0);
385 }
386
387 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
388 const void *ptr)
389 {
390 unsigned long lp = (unsigned long)&dt[entrynum];
391 xmaddr_t mach_lp = virt_to_machine(lp);
392 u64 entry = *(u64 *)ptr;
393
394 preempt_disable();
395
396 xen_mc_flush();
397 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
398 BUG();
399
400 preempt_enable();
401 }
402
403 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
404 struct trap_info *info)
405 {
406 u8 type, dpl;
407
408 type = (high >> 8) & 0x1f;
409 dpl = (high >> 13) & 3;
410
411 if (type != 0xf && type != 0xe)
412 return 0;
413
414 info->vector = vector;
415 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
416 info->cs = low >> 16;
417 info->flags = dpl;
418 /* interrupt gates clear IF */
419 if (type == 0xe)
420 info->flags |= 4;
421
422 return 1;
423 }
424
425 /* Locations of each CPU's IDT */
426 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
427
428 /* Set an IDT entry. If the entry is part of the current IDT, then
429 also update Xen. */
430 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
431 {
432 unsigned long p = (unsigned long)&dt[entrynum];
433 unsigned long start, end;
434
435 preempt_disable();
436
437 start = __get_cpu_var(idt_desc).address;
438 end = start + __get_cpu_var(idt_desc).size + 1;
439
440 xen_mc_flush();
441
442 native_write_idt_entry(dt, entrynum, g);
443
444 if (p >= start && (p + 8) <= end) {
445 struct trap_info info[2];
446 u32 *desc = (u32 *)g;
447
448 info[1].address = 0;
449
450 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
451 if (HYPERVISOR_set_trap_table(info))
452 BUG();
453 }
454
455 preempt_enable();
456 }
457
458 static void xen_convert_trap_info(const struct desc_ptr *desc,
459 struct trap_info *traps)
460 {
461 unsigned in, out, count;
462
463 count = (desc->size+1) / 8;
464 BUG_ON(count > 256);
465
466 for (in = out = 0; in < count; in++) {
467 const u32 *entry = (u32 *)(desc->address + in * 8);
468
469 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
470 out++;
471 }
472 traps[out].address = 0;
473 }
474
475 void xen_copy_trap_info(struct trap_info *traps)
476 {
477 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
478
479 xen_convert_trap_info(desc, traps);
480 }
481
482 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
483 hold a spinlock to protect the static traps[] array (static because
484 it avoids allocation, and saves stack space). */
485 static void xen_load_idt(const struct desc_ptr *desc)
486 {
487 static DEFINE_SPINLOCK(lock);
488 static struct trap_info traps[257];
489
490 spin_lock(&lock);
491
492 __get_cpu_var(idt_desc) = *desc;
493
494 xen_convert_trap_info(desc, traps);
495
496 xen_mc_flush();
497 if (HYPERVISOR_set_trap_table(traps))
498 BUG();
499
500 spin_unlock(&lock);
501 }
502
503 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
504 they're handled differently. */
505 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
506 const void *desc, int type)
507 {
508 preempt_disable();
509
510 switch (type) {
511 case DESC_LDT:
512 case DESC_TSS:
513 /* ignore */
514 break;
515
516 default: {
517 xmaddr_t maddr = virt_to_machine(&dt[entry]);
518
519 xen_mc_flush();
520 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
521 BUG();
522 }
523
524 }
525
526 preempt_enable();
527 }
528
529 static void xen_load_sp0(struct tss_struct *tss,
530 struct thread_struct *thread)
531 {
532 struct multicall_space mcs = xen_mc_entry(0);
533 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
534 xen_mc_issue(PARAVIRT_LAZY_CPU);
535 }
536
537 static void xen_set_iopl_mask(unsigned mask)
538 {
539 struct physdev_set_iopl set_iopl;
540
541 /* Force the change at ring 0. */
542 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
543 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
544 }
545
546 static void xen_io_delay(void)
547 {
548 }
549
550 #ifdef CONFIG_X86_LOCAL_APIC
551 static u32 xen_apic_read(unsigned long reg)
552 {
553 return 0;
554 }
555
556 static void xen_apic_write(unsigned long reg, u32 val)
557 {
558 /* Warn to see if there's any stray references */
559 WARN_ON(1);
560 }
561 #endif
562
563 static void xen_flush_tlb(void)
564 {
565 struct mmuext_op *op;
566 struct multicall_space mcs;
567
568 preempt_disable();
569
570 mcs = xen_mc_entry(sizeof(*op));
571
572 op = mcs.args;
573 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
574 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
575
576 xen_mc_issue(PARAVIRT_LAZY_MMU);
577
578 preempt_enable();
579 }
580
581 static void xen_flush_tlb_single(unsigned long addr)
582 {
583 struct mmuext_op *op;
584 struct multicall_space mcs;
585
586 preempt_disable();
587
588 mcs = xen_mc_entry(sizeof(*op));
589 op = mcs.args;
590 op->cmd = MMUEXT_INVLPG_LOCAL;
591 op->arg1.linear_addr = addr & PAGE_MASK;
592 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
593
594 xen_mc_issue(PARAVIRT_LAZY_MMU);
595
596 preempt_enable();
597 }
598
599 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
600 unsigned long va)
601 {
602 struct {
603 struct mmuext_op op;
604 cpumask_t mask;
605 } *args;
606 cpumask_t cpumask = *cpus;
607 struct multicall_space mcs;
608
609 /*
610 * A couple of (to be removed) sanity checks:
611 *
612 * - current CPU must not be in mask
613 * - mask must exist :)
614 */
615 BUG_ON(cpus_empty(cpumask));
616 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
617 BUG_ON(!mm);
618
619 /* If a CPU which we ran on has gone down, OK. */
620 cpus_and(cpumask, cpumask, cpu_online_map);
621 if (cpus_empty(cpumask))
622 return;
623
624 mcs = xen_mc_entry(sizeof(*args));
625 args = mcs.args;
626 args->mask = cpumask;
627 args->op.arg2.vcpumask = &args->mask;
628
629 if (va == TLB_FLUSH_ALL) {
630 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
631 } else {
632 args->op.cmd = MMUEXT_INVLPG_MULTI;
633 args->op.arg1.linear_addr = va;
634 }
635
636 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
637
638 xen_mc_issue(PARAVIRT_LAZY_MMU);
639 }
640
641 static void xen_clts(void)
642 {
643 struct multicall_space mcs;
644
645 mcs = xen_mc_entry(0);
646
647 MULTI_fpu_taskswitch(mcs.mc, 0);
648
649 xen_mc_issue(PARAVIRT_LAZY_CPU);
650 }
651
652 static void xen_write_cr0(unsigned long cr0)
653 {
654 struct multicall_space mcs;
655
656 /* Only pay attention to cr0.TS; everything else is
657 ignored. */
658 mcs = xen_mc_entry(0);
659
660 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
661
662 xen_mc_issue(PARAVIRT_LAZY_CPU);
663 }
664
665 static void xen_write_cr2(unsigned long cr2)
666 {
667 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
668 }
669
670 static unsigned long xen_read_cr2(void)
671 {
672 return x86_read_percpu(xen_vcpu)->arch.cr2;
673 }
674
675 static unsigned long xen_read_cr2_direct(void)
676 {
677 return x86_read_percpu(xen_vcpu_info.arch.cr2);
678 }
679
680 static void xen_write_cr4(unsigned long cr4)
681 {
682 cr4 &= ~X86_CR4_PGE;
683 cr4 &= ~X86_CR4_PSE;
684
685 native_write_cr4(cr4);
686 }
687
688 static unsigned long xen_read_cr3(void)
689 {
690 return x86_read_percpu(xen_cr3);
691 }
692
693 static void set_current_cr3(void *v)
694 {
695 x86_write_percpu(xen_current_cr3, (unsigned long)v);
696 }
697
698 static void xen_write_cr3(unsigned long cr3)
699 {
700 struct mmuext_op *op;
701 struct multicall_space mcs;
702 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
703
704 BUG_ON(preemptible());
705
706 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
707
708 /* Update while interrupts are disabled, so its atomic with
709 respect to ipis */
710 x86_write_percpu(xen_cr3, cr3);
711
712 op = mcs.args;
713 op->cmd = MMUEXT_NEW_BASEPTR;
714 op->arg1.mfn = mfn;
715
716 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
717
718 /* Update xen_update_cr3 once the batch has actually
719 been submitted. */
720 xen_mc_callback(set_current_cr3, (void *)cr3);
721
722 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
723 }
724
725 /* Early in boot, while setting up the initial pagetable, assume
726 everything is pinned. */
727 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
728 {
729 #ifdef CONFIG_FLATMEM
730 BUG_ON(mem_map); /* should only be used early */
731 #endif
732 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
733 }
734
735 /* Early release_pte assumes that all pts are pinned, since there's
736 only init_mm and anything attached to that is pinned. */
737 static void xen_release_pte_init(u32 pfn)
738 {
739 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
740 }
741
742 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
743 {
744 struct mmuext_op op;
745 op.cmd = cmd;
746 op.arg1.mfn = pfn_to_mfn(pfn);
747 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
748 BUG();
749 }
750
751 /* This needs to make sure the new pte page is pinned iff its being
752 attached to a pinned pagetable. */
753 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
754 {
755 struct page *page = pfn_to_page(pfn);
756
757 if (PagePinned(virt_to_page(mm->pgd))) {
758 SetPagePinned(page);
759
760 if (!PageHighMem(page)) {
761 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
762 if (level == PT_PTE)
763 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
764 } else
765 /* make sure there are no stray mappings of
766 this page */
767 kmap_flush_unused();
768 }
769 }
770
771 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
772 {
773 xen_alloc_ptpage(mm, pfn, PT_PTE);
774 }
775
776 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
777 {
778 xen_alloc_ptpage(mm, pfn, PT_PMD);
779 }
780
781 /* This should never happen until we're OK to use struct page */
782 static void xen_release_ptpage(u32 pfn, unsigned level)
783 {
784 struct page *page = pfn_to_page(pfn);
785
786 if (PagePinned(page)) {
787 if (!PageHighMem(page)) {
788 if (level == PT_PTE)
789 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
790 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
791 }
792 ClearPagePinned(page);
793 }
794 }
795
796 static void xen_release_pte(u32 pfn)
797 {
798 xen_release_ptpage(pfn, PT_PTE);
799 }
800
801 static void xen_release_pmd(u32 pfn)
802 {
803 xen_release_ptpage(pfn, PT_PMD);
804 }
805
806 #ifdef CONFIG_HIGHPTE
807 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
808 {
809 pgprot_t prot = PAGE_KERNEL;
810
811 if (PagePinned(page))
812 prot = PAGE_KERNEL_RO;
813
814 if (0 && PageHighMem(page))
815 printk("mapping highpte %lx type %d prot %s\n",
816 page_to_pfn(page), type,
817 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
818
819 return kmap_atomic_prot(page, type, prot);
820 }
821 #endif
822
823 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
824 {
825 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
826 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
827 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
828 pte_val_ma(pte));
829
830 return pte;
831 }
832
833 /* Init-time set_pte while constructing initial pagetables, which
834 doesn't allow RO pagetable pages to be remapped RW */
835 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
836 {
837 pte = mask_rw_pte(ptep, pte);
838
839 xen_set_pte(ptep, pte);
840 }
841
842 static __init void xen_pagetable_setup_start(pgd_t *base)
843 {
844 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
845 int i;
846
847 /* special set_pte for pagetable initialization */
848 pv_mmu_ops.set_pte = xen_set_pte_init;
849
850 init_mm.pgd = base;
851 /*
852 * copy top-level of Xen-supplied pagetable into place. This
853 * is a stand-in while we copy the pmd pages.
854 */
855 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
856
857 /*
858 * For PAE, need to allocate new pmds, rather than
859 * share Xen's, since Xen doesn't like pmd's being
860 * shared between address spaces.
861 */
862 for (i = 0; i < PTRS_PER_PGD; i++) {
863 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
864 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
865
866 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
867 PAGE_SIZE);
868
869 make_lowmem_page_readonly(pmd);
870
871 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
872 } else
873 pgd_clear(&base[i]);
874 }
875
876 /* make sure zero_page is mapped RO so we can use it in pagetables */
877 make_lowmem_page_readonly(empty_zero_page);
878 make_lowmem_page_readonly(base);
879 /*
880 * Switch to new pagetable. This is done before
881 * pagetable_init has done anything so that the new pages
882 * added to the table can be prepared properly for Xen.
883 */
884 xen_write_cr3(__pa(base));
885
886 /* Unpin initial Xen pagetable */
887 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
888 PFN_DOWN(__pa(xen_start_info->pt_base)));
889 }
890
891 void xen_setup_shared_info(void)
892 {
893 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
894 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
895
896 /*
897 * Create a mapping for the shared info page.
898 * Should be set_fixmap(), but shared_info is a machine
899 * address with no corresponding pseudo-phys address.
900 */
901 set_pte_mfn(addr,
902 PFN_DOWN(xen_start_info->shared_info),
903 PAGE_KERNEL);
904
905 HYPERVISOR_shared_info = (struct shared_info *)addr;
906 } else
907 HYPERVISOR_shared_info =
908 (struct shared_info *)__va(xen_start_info->shared_info);
909
910 #ifndef CONFIG_SMP
911 /* In UP this is as good a place as any to set up shared info */
912 xen_setup_vcpu_info_placement();
913 #endif
914
915 xen_setup_mfn_list_list();
916 }
917
918 static __init void xen_pagetable_setup_done(pgd_t *base)
919 {
920 /* This will work as long as patching hasn't happened yet
921 (which it hasn't) */
922 pv_mmu_ops.alloc_pte = xen_alloc_pte;
923 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
924 pv_mmu_ops.release_pte = xen_release_pte;
925 pv_mmu_ops.release_pmd = xen_release_pmd;
926 pv_mmu_ops.set_pte = xen_set_pte;
927
928 xen_setup_shared_info();
929
930 /* Actually pin the pagetable down, but we can't set PG_pinned
931 yet because the page structures don't exist yet. */
932 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
933 }
934
935 static __init void xen_post_allocator_init(void)
936 {
937 pv_mmu_ops.set_pmd = xen_set_pmd;
938 pv_mmu_ops.set_pud = xen_set_pud;
939
940 xen_mark_init_mm_pinned();
941 }
942
943 /* This is called once we have the cpu_possible_map */
944 void xen_setup_vcpu_info_placement(void)
945 {
946 int cpu;
947
948 for_each_possible_cpu(cpu)
949 xen_vcpu_setup(cpu);
950
951 /* xen_vcpu_setup managed to place the vcpu_info within the
952 percpu area for all cpus, so make use of it */
953 if (have_vcpu_info_placement) {
954 printk(KERN_INFO "Xen: using vcpu_info placement\n");
955
956 pv_irq_ops.save_fl = xen_save_fl_direct;
957 pv_irq_ops.restore_fl = xen_restore_fl_direct;
958 pv_irq_ops.irq_disable = xen_irq_disable_direct;
959 pv_irq_ops.irq_enable = xen_irq_enable_direct;
960 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
961 }
962 }
963
964 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
965 unsigned long addr, unsigned len)
966 {
967 char *start, *end, *reloc;
968 unsigned ret;
969
970 start = end = reloc = NULL;
971
972 #define SITE(op, x) \
973 case PARAVIRT_PATCH(op.x): \
974 if (have_vcpu_info_placement) { \
975 start = (char *)xen_##x##_direct; \
976 end = xen_##x##_direct_end; \
977 reloc = xen_##x##_direct_reloc; \
978 } \
979 goto patch_site
980
981 switch (type) {
982 SITE(pv_irq_ops, irq_enable);
983 SITE(pv_irq_ops, irq_disable);
984 SITE(pv_irq_ops, save_fl);
985 SITE(pv_irq_ops, restore_fl);
986 #undef SITE
987
988 patch_site:
989 if (start == NULL || (end-start) > len)
990 goto default_patch;
991
992 ret = paravirt_patch_insns(insnbuf, len, start, end);
993
994 /* Note: because reloc is assigned from something that
995 appears to be an array, gcc assumes it's non-null,
996 but doesn't know its relationship with start and
997 end. */
998 if (reloc > start && reloc < end) {
999 int reloc_off = reloc - start;
1000 long *relocp = (long *)(insnbuf + reloc_off);
1001 long delta = start - (char *)addr;
1002
1003 *relocp += delta;
1004 }
1005 break;
1006
1007 default_patch:
1008 default:
1009 ret = paravirt_patch_default(type, clobbers, insnbuf,
1010 addr, len);
1011 break;
1012 }
1013
1014 return ret;
1015 }
1016
1017 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1018 {
1019 pte_t pte;
1020
1021 phys >>= PAGE_SHIFT;
1022
1023 switch (idx) {
1024 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1025 #ifdef CONFIG_X86_F00F_BUG
1026 case FIX_F00F_IDT:
1027 #endif
1028 case FIX_WP_TEST:
1029 case FIX_VDSO:
1030 #ifdef CONFIG_X86_LOCAL_APIC
1031 case FIX_APIC_BASE: /* maps dummy local APIC */
1032 #endif
1033 pte = pfn_pte(phys, prot);
1034 break;
1035
1036 default:
1037 pte = mfn_pte(phys, prot);
1038 break;
1039 }
1040
1041 __native_set_fixmap(idx, pte);
1042 }
1043
1044 static const struct pv_info xen_info __initdata = {
1045 .paravirt_enabled = 1,
1046 .shared_kernel_pmd = 0,
1047
1048 .name = "Xen",
1049 };
1050
1051 static const struct pv_init_ops xen_init_ops __initdata = {
1052 .patch = xen_patch,
1053
1054 .banner = xen_banner,
1055 .memory_setup = xen_memory_setup,
1056 .arch_setup = xen_arch_setup,
1057 .post_allocator_init = xen_post_allocator_init,
1058 };
1059
1060 static const struct pv_time_ops xen_time_ops __initdata = {
1061 .time_init = xen_time_init,
1062
1063 .set_wallclock = xen_set_wallclock,
1064 .get_wallclock = xen_get_wallclock,
1065 .get_tsc_khz = xen_tsc_khz,
1066 .sched_clock = xen_sched_clock,
1067 };
1068
1069 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1070 .cpuid = xen_cpuid,
1071
1072 .set_debugreg = xen_set_debugreg,
1073 .get_debugreg = xen_get_debugreg,
1074
1075 .clts = xen_clts,
1076
1077 .read_cr0 = native_read_cr0,
1078 .write_cr0 = xen_write_cr0,
1079
1080 .read_cr4 = native_read_cr4,
1081 .read_cr4_safe = native_read_cr4_safe,
1082 .write_cr4 = xen_write_cr4,
1083
1084 .wbinvd = native_wbinvd,
1085
1086 .read_msr = native_read_msr_safe,
1087 .write_msr = native_write_msr_safe,
1088 .read_tsc = native_read_tsc,
1089 .read_pmc = native_read_pmc,
1090
1091 .iret = xen_iret,
1092 .irq_enable_sysexit = xen_sysexit,
1093
1094 .load_tr_desc = paravirt_nop,
1095 .set_ldt = xen_set_ldt,
1096 .load_gdt = xen_load_gdt,
1097 .load_idt = xen_load_idt,
1098 .load_tls = xen_load_tls,
1099
1100 .store_gdt = native_store_gdt,
1101 .store_idt = native_store_idt,
1102 .store_tr = xen_store_tr,
1103
1104 .write_ldt_entry = xen_write_ldt_entry,
1105 .write_gdt_entry = xen_write_gdt_entry,
1106 .write_idt_entry = xen_write_idt_entry,
1107 .load_sp0 = xen_load_sp0,
1108
1109 .set_iopl_mask = xen_set_iopl_mask,
1110 .io_delay = xen_io_delay,
1111
1112 .lazy_mode = {
1113 .enter = paravirt_enter_lazy_cpu,
1114 .leave = xen_leave_lazy,
1115 },
1116 };
1117
1118 static const struct pv_irq_ops xen_irq_ops __initdata = {
1119 .init_IRQ = xen_init_IRQ,
1120 .save_fl = xen_save_fl,
1121 .restore_fl = xen_restore_fl,
1122 .irq_disable = xen_irq_disable,
1123 .irq_enable = xen_irq_enable,
1124 .safe_halt = xen_safe_halt,
1125 .halt = xen_halt,
1126 #ifdef CONFIG_X86_64
1127 .adjust_exception_frame = paravirt_nop,
1128 #endif
1129 };
1130
1131 static const struct pv_apic_ops xen_apic_ops __initdata = {
1132 #ifdef CONFIG_X86_LOCAL_APIC
1133 .apic_write = xen_apic_write,
1134 .apic_write_atomic = xen_apic_write,
1135 .apic_read = xen_apic_read,
1136 .setup_boot_clock = paravirt_nop,
1137 .setup_secondary_clock = paravirt_nop,
1138 .startup_ipi_hook = paravirt_nop,
1139 #endif
1140 };
1141
1142 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1143 .pagetable_setup_start = xen_pagetable_setup_start,
1144 .pagetable_setup_done = xen_pagetable_setup_done,
1145
1146 .read_cr2 = xen_read_cr2,
1147 .write_cr2 = xen_write_cr2,
1148
1149 .read_cr3 = xen_read_cr3,
1150 .write_cr3 = xen_write_cr3,
1151
1152 .flush_tlb_user = xen_flush_tlb,
1153 .flush_tlb_kernel = xen_flush_tlb,
1154 .flush_tlb_single = xen_flush_tlb_single,
1155 .flush_tlb_others = xen_flush_tlb_others,
1156
1157 .pte_update = paravirt_nop,
1158 .pte_update_defer = paravirt_nop,
1159
1160 .pgd_alloc = __paravirt_pgd_alloc,
1161 .pgd_free = paravirt_nop,
1162
1163 .alloc_pte = xen_alloc_pte_init,
1164 .release_pte = xen_release_pte_init,
1165 .alloc_pmd = xen_alloc_pte_init,
1166 .alloc_pmd_clone = paravirt_nop,
1167 .release_pmd = xen_release_pte_init,
1168
1169 #ifdef CONFIG_HIGHPTE
1170 .kmap_atomic_pte = xen_kmap_atomic_pte,
1171 #endif
1172
1173 .set_pte = NULL, /* see xen_pagetable_setup_* */
1174 .set_pte_at = xen_set_pte_at,
1175 .set_pmd = xen_set_pmd_hyper,
1176
1177 .ptep_modify_prot_start = __ptep_modify_prot_start,
1178 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1179
1180 .pte_val = xen_pte_val,
1181 .pte_flags = native_pte_val,
1182 .pgd_val = xen_pgd_val,
1183
1184 .make_pte = xen_make_pte,
1185 .make_pgd = xen_make_pgd,
1186
1187 .set_pte_atomic = xen_set_pte_atomic,
1188 .set_pte_present = xen_set_pte_at,
1189 .set_pud = xen_set_pud_hyper,
1190 .pte_clear = xen_pte_clear,
1191 .pmd_clear = xen_pmd_clear,
1192
1193 .make_pmd = xen_make_pmd,
1194 .pmd_val = xen_pmd_val,
1195
1196 .activate_mm = xen_activate_mm,
1197 .dup_mmap = xen_dup_mmap,
1198 .exit_mmap = xen_exit_mmap,
1199
1200 .lazy_mode = {
1201 .enter = paravirt_enter_lazy_mmu,
1202 .leave = xen_leave_lazy,
1203 },
1204
1205 .set_fixmap = xen_set_fixmap,
1206 };
1207
1208 #ifdef CONFIG_SMP
1209 static const struct smp_ops xen_smp_ops __initdata = {
1210 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1211 .smp_prepare_cpus = xen_smp_prepare_cpus,
1212 .cpu_up = xen_cpu_up,
1213 .smp_cpus_done = xen_smp_cpus_done,
1214
1215 .smp_send_stop = xen_smp_send_stop,
1216 .smp_send_reschedule = xen_smp_send_reschedule,
1217
1218 .send_call_func_ipi = xen_smp_send_call_function_ipi,
1219 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
1220 };
1221 #endif /* CONFIG_SMP */
1222
1223 static void xen_reboot(int reason)
1224 {
1225 struct sched_shutdown r = { .reason = reason };
1226
1227 #ifdef CONFIG_SMP
1228 smp_send_stop();
1229 #endif
1230
1231 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1232 BUG();
1233 }
1234
1235 static void xen_restart(char *msg)
1236 {
1237 xen_reboot(SHUTDOWN_reboot);
1238 }
1239
1240 static void xen_emergency_restart(void)
1241 {
1242 xen_reboot(SHUTDOWN_reboot);
1243 }
1244
1245 static void xen_machine_halt(void)
1246 {
1247 xen_reboot(SHUTDOWN_poweroff);
1248 }
1249
1250 static void xen_crash_shutdown(struct pt_regs *regs)
1251 {
1252 xen_reboot(SHUTDOWN_crash);
1253 }
1254
1255 static const struct machine_ops __initdata xen_machine_ops = {
1256 .restart = xen_restart,
1257 .halt = xen_machine_halt,
1258 .power_off = xen_machine_halt,
1259 .shutdown = xen_machine_halt,
1260 .crash_shutdown = xen_crash_shutdown,
1261 .emergency_restart = xen_emergency_restart,
1262 };
1263
1264
1265 static void __init xen_reserve_top(void)
1266 {
1267 unsigned long top = HYPERVISOR_VIRT_START;
1268 struct xen_platform_parameters pp;
1269
1270 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1271 top = pp.virt_start;
1272
1273 reserve_top_address(-top + 2 * PAGE_SIZE);
1274 }
1275
1276 /* First C function to be called on Xen boot */
1277 asmlinkage void __init xen_start_kernel(void)
1278 {
1279 pgd_t *pgd;
1280
1281 if (!xen_start_info)
1282 return;
1283
1284 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1285
1286 xen_setup_features();
1287
1288 /* Install Xen paravirt ops */
1289 pv_info = xen_info;
1290 pv_init_ops = xen_init_ops;
1291 pv_time_ops = xen_time_ops;
1292 pv_cpu_ops = xen_cpu_ops;
1293 pv_irq_ops = xen_irq_ops;
1294 pv_apic_ops = xen_apic_ops;
1295 pv_mmu_ops = xen_mmu_ops;
1296
1297 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1298 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1299 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1300 }
1301
1302 machine_ops = xen_machine_ops;
1303
1304 #ifdef CONFIG_SMP
1305 smp_ops = xen_smp_ops;
1306 #endif
1307
1308 /* Get mfn list */
1309 if (!xen_feature(XENFEAT_auto_translated_physmap))
1310 xen_build_dynamic_phys_to_machine();
1311
1312 pgd = (pgd_t *)xen_start_info->pt_base;
1313
1314 init_pg_tables_start = __pa(pgd);
1315 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1316 max_pfn_mapped = (init_pg_tables_end + 512*1024) >> PAGE_SHIFT;
1317
1318 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1319
1320 /* keep using Xen gdt for now; no urgent need to change it */
1321
1322 x86_write_percpu(xen_cr3, __pa(pgd));
1323 x86_write_percpu(xen_current_cr3, __pa(pgd));
1324
1325 /* Don't do the full vcpu_info placement stuff until we have a
1326 possible map and a non-dummy shared_info. */
1327 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1328
1329 pv_info.kernel_rpl = 1;
1330 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1331 pv_info.kernel_rpl = 0;
1332
1333 /* Prevent unwanted bits from being set in PTEs. */
1334 __supported_pte_mask &= ~_PAGE_GLOBAL;
1335 if (!is_initial_xendomain())
1336 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1337
1338 /* set the limit of our address space */
1339 xen_reserve_top();
1340
1341 /* set up basic CPUID stuff */
1342 cpu_detect(&new_cpu_data);
1343 new_cpu_data.hard_math = 1;
1344 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1345
1346 /* Poke various useful things into boot_params */
1347 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1348 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1349 ? __pa(xen_start_info->mod_start) : 0;
1350 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1351
1352 if (!is_initial_xendomain()) {
1353 add_preferred_console("xenboot", 0, NULL);
1354 add_preferred_console("tty", 0, NULL);
1355 add_preferred_console("hvc", 0, NULL);
1356 }
1357
1358 /* Start the world */
1359 i386_start_kernel();
1360 }