2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
37 #include <linux/kexec.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/features.h>
51 #include <xen/hvc-console.h>
54 #include <asm/paravirt.h>
57 #include <asm/xen/pci.h>
58 #include <asm/xen/hypercall.h>
59 #include <asm/xen/hypervisor.h>
60 #include <asm/xen/cpuid.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
80 #include <linux/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
90 #include "multicalls.h"
93 EXPORT_SYMBOL_GPL(hypercall_page
);
96 * Pointer to the xen_vcpu_info structure or
97 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101 * acknowledge pending events.
102 * Also more subtly it is used by the patched version of irq enable/disable
103 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
105 * The desire to be able to do those mask/unmask operations as a single
106 * instruction by using the per-cpu offset held in %gs is the real reason
107 * vcpu info is in a per-cpu pointer and the original reason for this
111 DEFINE_PER_CPU(struct vcpu_info
*, xen_vcpu
);
114 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115 * hypercall. This can be used both in PV and PVHVM mode. The structure
116 * overrides the default per_cpu(xen_vcpu, cpu) value.
118 DEFINE_PER_CPU(struct vcpu_info
, xen_vcpu_info
);
120 /* Linux <-> Xen vCPU id mapping */
121 DEFINE_PER_CPU(uint32_t, xen_vcpu_id
);
122 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id
);
124 enum xen_domain_type xen_domain_type
= XEN_NATIVE
;
125 EXPORT_SYMBOL_GPL(xen_domain_type
);
127 unsigned long *machine_to_phys_mapping
= (void *)MACH2PHYS_VIRT_START
;
128 EXPORT_SYMBOL(machine_to_phys_mapping
);
129 unsigned long machine_to_phys_nr
;
130 EXPORT_SYMBOL(machine_to_phys_nr
);
132 struct start_info
*xen_start_info
;
133 EXPORT_SYMBOL_GPL(xen_start_info
);
135 struct shared_info xen_dummy_shared_info
;
137 void *xen_initial_gdt
;
139 RESERVE_BRK(shared_info_page_brk
, PAGE_SIZE
);
141 static int xen_cpu_up_prepare(unsigned int cpu
);
142 static int xen_cpu_up_online(unsigned int cpu
);
143 static int xen_cpu_dead(unsigned int cpu
);
146 * Point at some empty memory to start with. We map the real shared_info
147 * page as soon as fixmap is up and running.
149 struct shared_info
*HYPERVISOR_shared_info
= &xen_dummy_shared_info
;
152 * Flag to determine whether vcpu info placement is available on all
153 * VCPUs. We assume it is to start with, and then set it to zero on
154 * the first failure. This is because it can succeed on some VCPUs
155 * and not others, since it can involve hypervisor memory allocation,
156 * or because the guest failed to guarantee all the appropriate
157 * constraints on all VCPUs (ie buffer can't cross a page boundary).
159 * Note that any particular CPU may be using a placed vcpu structure,
160 * but we can only optimise if the all are.
162 * 0: not available, 1: available
164 static int have_vcpu_info_placement
= 1;
167 struct desc_struct desc
[3];
171 * Updating the 3 TLS descriptors in the GDT on every task switch is
172 * surprisingly expensive so we avoid updating them if they haven't
173 * changed. Since Xen writes different descriptors than the one
174 * passed in the update_descriptor hypercall we keep shadow copies to
177 static DEFINE_PER_CPU(struct tls_descs
, shadow_tls_desc
);
179 static void clamp_max_cpus(void)
182 if (setup_max_cpus
> MAX_VIRT_CPUS
)
183 setup_max_cpus
= MAX_VIRT_CPUS
;
187 void xen_vcpu_setup(int cpu
)
189 struct vcpu_register_vcpu_info info
;
191 struct vcpu_info
*vcpup
;
193 BUG_ON(HYPERVISOR_shared_info
== &xen_dummy_shared_info
);
196 * This path is called twice on PVHVM - first during bootup via
197 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
198 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
199 * As we can only do the VCPUOP_register_vcpu_info once lets
200 * not over-write its result.
202 * For PV it is called during restore (xen_vcpu_restore) and bootup
203 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
206 if (xen_hvm_domain()) {
207 if (per_cpu(xen_vcpu
, cpu
) == &per_cpu(xen_vcpu_info
, cpu
))
210 if (xen_vcpu_nr(cpu
) < MAX_VIRT_CPUS
)
211 per_cpu(xen_vcpu
, cpu
) =
212 &HYPERVISOR_shared_info
->vcpu_info
[xen_vcpu_nr(cpu
)];
214 if (!have_vcpu_info_placement
) {
215 if (cpu
>= MAX_VIRT_CPUS
)
220 vcpup
= &per_cpu(xen_vcpu_info
, cpu
);
221 info
.mfn
= arbitrary_virt_to_mfn(vcpup
);
222 info
.offset
= offset_in_page(vcpup
);
224 /* Check to see if the hypervisor will put the vcpu_info
225 structure where we want it, which allows direct access via
227 N.B. This hypercall can _only_ be called once per CPU. Subsequent
228 calls will error out with -EINVAL. This is due to the fact that
229 hypervisor has no unregister variant and this hypercall does not
230 allow to over-write info.mfn and info.offset.
232 err
= HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info
, xen_vcpu_nr(cpu
),
236 printk(KERN_DEBUG
"register_vcpu_info failed: err=%d\n", err
);
237 have_vcpu_info_placement
= 0;
240 /* This cpu is using the registered vcpu info, even if
241 later ones fail to. */
242 per_cpu(xen_vcpu
, cpu
) = vcpup
;
247 * On restore, set the vcpu placement up again.
248 * If it fails, then we're in a bad state, since
249 * we can't back out from using it...
251 void xen_vcpu_restore(void)
255 for_each_possible_cpu(cpu
) {
256 bool other_cpu
= (cpu
!= smp_processor_id());
257 bool is_up
= HYPERVISOR_vcpu_op(VCPUOP_is_up
, xen_vcpu_nr(cpu
),
260 if (other_cpu
&& is_up
&&
261 HYPERVISOR_vcpu_op(VCPUOP_down
, xen_vcpu_nr(cpu
), NULL
))
264 xen_setup_runstate_info(cpu
);
266 if (have_vcpu_info_placement
)
269 if (other_cpu
&& is_up
&&
270 HYPERVISOR_vcpu_op(VCPUOP_up
, xen_vcpu_nr(cpu
), NULL
))
275 static void __init
xen_banner(void)
277 unsigned version
= HYPERVISOR_xen_version(XENVER_version
, NULL
);
278 struct xen_extraversion extra
;
279 HYPERVISOR_xen_version(XENVER_extraversion
, &extra
);
281 pr_info("Booting paravirtualized kernel %son %s\n",
282 xen_feature(XENFEAT_auto_translated_physmap
) ?
283 "with PVH extensions " : "", pv_info
.name
);
284 printk(KERN_INFO
"Xen version: %d.%d%s%s\n",
285 version
>> 16, version
& 0xffff, extra
.extraversion
,
286 xen_feature(XENFEAT_mmu_pt_update_preserve_ad
) ? " (preserve-AD)" : "");
288 /* Check if running on Xen version (major, minor) or later */
290 xen_running_on_version_or_later(unsigned int major
, unsigned int minor
)
292 unsigned int version
;
297 version
= HYPERVISOR_xen_version(XENVER_version
, NULL
);
298 if ((((version
>> 16) == major
) && ((version
& 0xffff) >= minor
)) ||
299 ((version
>> 16) > major
))
304 #define CPUID_THERM_POWER_LEAF 6
305 #define APERFMPERF_PRESENT 0
307 static __read_mostly
unsigned int cpuid_leaf1_edx_mask
= ~0;
308 static __read_mostly
unsigned int cpuid_leaf1_ecx_mask
= ~0;
310 static __read_mostly
unsigned int cpuid_leaf1_ecx_set_mask
;
311 static __read_mostly
unsigned int cpuid_leaf5_ecx_val
;
312 static __read_mostly
unsigned int cpuid_leaf5_edx_val
;
314 static void xen_cpuid(unsigned int *ax
, unsigned int *bx
,
315 unsigned int *cx
, unsigned int *dx
)
317 unsigned maskebx
= ~0;
318 unsigned maskecx
= ~0;
319 unsigned maskedx
= ~0;
322 * Mask out inconvenient features, to try and disable as many
323 * unsupported kernel subsystems as possible.
327 maskecx
= cpuid_leaf1_ecx_mask
;
328 setecx
= cpuid_leaf1_ecx_set_mask
;
329 maskedx
= cpuid_leaf1_edx_mask
;
332 case CPUID_MWAIT_LEAF
:
333 /* Synthesize the values.. */
336 *cx
= cpuid_leaf5_ecx_val
;
337 *dx
= cpuid_leaf5_edx_val
;
340 case CPUID_THERM_POWER_LEAF
:
341 /* Disabling APERFMPERF for kernel usage */
342 maskecx
= ~(1 << APERFMPERF_PRESENT
);
346 /* Suppress extended topology stuff */
351 asm(XEN_EMULATE_PREFIX
"cpuid"
356 : "0" (*ax
), "2" (*cx
));
363 STACK_FRAME_NON_STANDARD(xen_cpuid
); /* XEN_EMULATE_PREFIX */
365 static bool __init
xen_check_mwait(void)
368 struct xen_platform_op op
= {
369 .cmd
= XENPF_set_processor_pminfo
,
370 .u
.set_pminfo
.id
= -1,
371 .u
.set_pminfo
.type
= XEN_PM_PDC
,
374 unsigned int ax
, bx
, cx
, dx
;
375 unsigned int mwait_mask
;
377 /* We need to determine whether it is OK to expose the MWAIT
378 * capability to the kernel to harvest deeper than C3 states from ACPI
379 * _CST using the processor_harvest_xen.c module. For this to work, we
380 * need to gather the MWAIT_LEAF values (which the cstate.c code
381 * checks against). The hypervisor won't expose the MWAIT flag because
382 * it would break backwards compatibility; so we will find out directly
383 * from the hardware and hypercall.
385 if (!xen_initial_domain())
389 * When running under platform earlier than Xen4.2, do not expose
390 * mwait, to avoid the risk of loading native acpi pad driver
392 if (!xen_running_on_version_or_later(4, 2))
398 native_cpuid(&ax
, &bx
, &cx
, &dx
);
400 mwait_mask
= (1 << (X86_FEATURE_EST
% 32)) |
401 (1 << (X86_FEATURE_MWAIT
% 32));
403 if ((cx
& mwait_mask
) != mwait_mask
)
406 /* We need to emulate the MWAIT_LEAF and for that we need both
407 * ecx and edx. The hypercall provides only partial information.
410 ax
= CPUID_MWAIT_LEAF
;
415 native_cpuid(&ax
, &bx
, &cx
, &dx
);
417 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
418 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
420 buf
[0] = ACPI_PDC_REVISION_ID
;
422 buf
[2] = (ACPI_PDC_C_CAPABILITY_SMP
| ACPI_PDC_EST_CAPABILITY_SWSMP
);
424 set_xen_guest_handle(op
.u
.set_pminfo
.pdc
, buf
);
426 if ((HYPERVISOR_platform_op(&op
) == 0) &&
427 (buf
[2] & (ACPI_PDC_C_C1_FFH
| ACPI_PDC_C_C2C3_FFH
))) {
428 cpuid_leaf5_ecx_val
= cx
;
429 cpuid_leaf5_edx_val
= dx
;
436 static void __init
xen_init_cpuid_mask(void)
438 unsigned int ax
, bx
, cx
, dx
;
439 unsigned int xsave_mask
;
441 cpuid_leaf1_edx_mask
=
442 ~((1 << X86_FEATURE_MTRR
) | /* disable MTRR */
443 (1 << X86_FEATURE_ACC
)); /* thermal monitoring */
445 if (!xen_initial_domain())
446 cpuid_leaf1_edx_mask
&=
447 ~((1 << X86_FEATURE_ACPI
)); /* disable ACPI */
449 cpuid_leaf1_ecx_mask
&= ~(1 << (X86_FEATURE_X2APIC
% 32));
453 cpuid(1, &ax
, &bx
, &cx
, &dx
);
456 (1 << (X86_FEATURE_XSAVE
% 32)) |
457 (1 << (X86_FEATURE_OSXSAVE
% 32));
459 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
460 if ((cx
& xsave_mask
) != xsave_mask
)
461 cpuid_leaf1_ecx_mask
&= ~xsave_mask
; /* disable XSAVE & OSXSAVE */
462 if (xen_check_mwait())
463 cpuid_leaf1_ecx_set_mask
= (1 << (X86_FEATURE_MWAIT
% 32));
466 static void xen_set_debugreg(int reg
, unsigned long val
)
468 HYPERVISOR_set_debugreg(reg
, val
);
471 static unsigned long xen_get_debugreg(int reg
)
473 return HYPERVISOR_get_debugreg(reg
);
476 static void xen_end_context_switch(struct task_struct
*next
)
479 paravirt_end_context_switch(next
);
482 static unsigned long xen_store_tr(void)
488 * Set the page permissions for a particular virtual address. If the
489 * address is a vmalloc mapping (or other non-linear mapping), then
490 * find the linear mapping of the page and also set its protections to
493 static void set_aliased_prot(void *v
, pgprot_t prot
)
502 ptep
= lookup_address((unsigned long)v
, &level
);
503 BUG_ON(ptep
== NULL
);
505 pfn
= pte_pfn(*ptep
);
506 page
= pfn_to_page(pfn
);
508 pte
= pfn_pte(pfn
, prot
);
511 * Careful: update_va_mapping() will fail if the virtual address
512 * we're poking isn't populated in the page tables. We don't
513 * need to worry about the direct map (that's always in the page
514 * tables), but we need to be careful about vmap space. In
515 * particular, the top level page table can lazily propagate
516 * entries between processes, so if we've switched mms since we
517 * vmapped the target in the first place, we might not have the
518 * top-level page table entry populated.
520 * We disable preemption because we want the same mm active when
521 * we probe the target and when we issue the hypercall. We'll
522 * have the same nominal mm, but if we're a kernel thread, lazy
523 * mm dropping could change our pgd.
525 * Out of an abundance of caution, this uses __get_user() to fault
526 * in the target address just in case there's some obscure case
527 * in which the target address isn't readable.
532 probe_kernel_read(&dummy
, v
, 1);
534 if (HYPERVISOR_update_va_mapping((unsigned long)v
, pte
, 0))
537 if (!PageHighMem(page
)) {
538 void *av
= __va(PFN_PHYS(pfn
));
541 if (HYPERVISOR_update_va_mapping((unsigned long)av
, pte
, 0))
549 static void xen_alloc_ldt(struct desc_struct
*ldt
, unsigned entries
)
551 const unsigned entries_per_page
= PAGE_SIZE
/ LDT_ENTRY_SIZE
;
555 * We need to mark the all aliases of the LDT pages RO. We
556 * don't need to call vm_flush_aliases(), though, since that's
557 * only responsible for flushing aliases out the TLBs, not the
558 * page tables, and Xen will flush the TLB for us if needed.
560 * To avoid confusing future readers: none of this is necessary
561 * to load the LDT. The hypervisor only checks this when the
562 * LDT is faulted in due to subsequent descriptor access.
565 for(i
= 0; i
< entries
; i
+= entries_per_page
)
566 set_aliased_prot(ldt
+ i
, PAGE_KERNEL_RO
);
569 static void xen_free_ldt(struct desc_struct
*ldt
, unsigned entries
)
571 const unsigned entries_per_page
= PAGE_SIZE
/ LDT_ENTRY_SIZE
;
574 for(i
= 0; i
< entries
; i
+= entries_per_page
)
575 set_aliased_prot(ldt
+ i
, PAGE_KERNEL
);
578 static void xen_set_ldt(const void *addr
, unsigned entries
)
580 struct mmuext_op
*op
;
581 struct multicall_space mcs
= xen_mc_entry(sizeof(*op
));
583 trace_xen_cpu_set_ldt(addr
, entries
);
586 op
->cmd
= MMUEXT_SET_LDT
;
587 op
->arg1
.linear_addr
= (unsigned long)addr
;
588 op
->arg2
.nr_ents
= entries
;
590 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
592 xen_mc_issue(PARAVIRT_LAZY_CPU
);
595 static void xen_load_gdt(const struct desc_ptr
*dtr
)
597 unsigned long va
= dtr
->address
;
598 unsigned int size
= dtr
->size
+ 1;
599 unsigned pages
= DIV_ROUND_UP(size
, PAGE_SIZE
);
600 unsigned long frames
[pages
];
604 * A GDT can be up to 64k in size, which corresponds to 8192
605 * 8-byte entries, or 16 4k pages..
608 BUG_ON(size
> 65536);
609 BUG_ON(va
& ~PAGE_MASK
);
611 for (f
= 0; va
< dtr
->address
+ size
; va
+= PAGE_SIZE
, f
++) {
614 unsigned long pfn
, mfn
;
618 * The GDT is per-cpu and is in the percpu data area.
619 * That can be virtually mapped, so we need to do a
620 * page-walk to get the underlying MFN for the
621 * hypercall. The page can also be in the kernel's
622 * linear range, so we need to RO that mapping too.
624 ptep
= lookup_address(va
, &level
);
625 BUG_ON(ptep
== NULL
);
627 pfn
= pte_pfn(*ptep
);
628 mfn
= pfn_to_mfn(pfn
);
629 virt
= __va(PFN_PHYS(pfn
));
633 make_lowmem_page_readonly((void *)va
);
634 make_lowmem_page_readonly(virt
);
637 if (HYPERVISOR_set_gdt(frames
, size
/ sizeof(struct desc_struct
)))
642 * load_gdt for early boot, when the gdt is only mapped once
644 static void __init
xen_load_gdt_boot(const struct desc_ptr
*dtr
)
646 unsigned long va
= dtr
->address
;
647 unsigned int size
= dtr
->size
+ 1;
648 unsigned pages
= DIV_ROUND_UP(size
, PAGE_SIZE
);
649 unsigned long frames
[pages
];
653 * A GDT can be up to 64k in size, which corresponds to 8192
654 * 8-byte entries, or 16 4k pages..
657 BUG_ON(size
> 65536);
658 BUG_ON(va
& ~PAGE_MASK
);
660 for (f
= 0; va
< dtr
->address
+ size
; va
+= PAGE_SIZE
, f
++) {
662 unsigned long pfn
, mfn
;
664 pfn
= virt_to_pfn(va
);
665 mfn
= pfn_to_mfn(pfn
);
667 pte
= pfn_pte(pfn
, PAGE_KERNEL_RO
);
669 if (HYPERVISOR_update_va_mapping((unsigned long)va
, pte
, 0))
675 if (HYPERVISOR_set_gdt(frames
, size
/ sizeof(struct desc_struct
)))
679 static inline bool desc_equal(const struct desc_struct
*d1
,
680 const struct desc_struct
*d2
)
682 return d1
->a
== d2
->a
&& d1
->b
== d2
->b
;
685 static void load_TLS_descriptor(struct thread_struct
*t
,
686 unsigned int cpu
, unsigned int i
)
688 struct desc_struct
*shadow
= &per_cpu(shadow_tls_desc
, cpu
).desc
[i
];
689 struct desc_struct
*gdt
;
691 struct multicall_space mc
;
693 if (desc_equal(shadow
, &t
->tls_array
[i
]))
696 *shadow
= t
->tls_array
[i
];
698 gdt
= get_cpu_gdt_table(cpu
);
699 maddr
= arbitrary_virt_to_machine(&gdt
[GDT_ENTRY_TLS_MIN
+i
]);
700 mc
= __xen_mc_entry(0);
702 MULTI_update_descriptor(mc
.mc
, maddr
.maddr
, t
->tls_array
[i
]);
705 static void xen_load_tls(struct thread_struct
*t
, unsigned int cpu
)
708 * XXX sleazy hack: If we're being called in a lazy-cpu zone
709 * and lazy gs handling is enabled, it means we're in a
710 * context switch, and %gs has just been saved. This means we
711 * can zero it out to prevent faults on exit from the
712 * hypervisor if the next process has no %gs. Either way, it
713 * has been saved, and the new value will get loaded properly.
714 * This will go away as soon as Xen has been modified to not
715 * save/restore %gs for normal hypercalls.
717 * On x86_64, this hack is not used for %gs, because gs points
718 * to KERNEL_GS_BASE (and uses it for PDA references), so we
719 * must not zero %gs on x86_64
721 * For x86_64, we need to zero %fs, otherwise we may get an
722 * exception between the new %fs descriptor being loaded and
723 * %fs being effectively cleared at __switch_to().
725 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU
) {
735 load_TLS_descriptor(t
, cpu
, 0);
736 load_TLS_descriptor(t
, cpu
, 1);
737 load_TLS_descriptor(t
, cpu
, 2);
739 xen_mc_issue(PARAVIRT_LAZY_CPU
);
743 static void xen_load_gs_index(unsigned int idx
)
745 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL
, idx
))
750 static void xen_write_ldt_entry(struct desc_struct
*dt
, int entrynum
,
753 xmaddr_t mach_lp
= arbitrary_virt_to_machine(&dt
[entrynum
]);
754 u64 entry
= *(u64
*)ptr
;
756 trace_xen_cpu_write_ldt_entry(dt
, entrynum
, entry
);
761 if (HYPERVISOR_update_descriptor(mach_lp
.maddr
, entry
))
767 static int cvt_gate_to_trap(int vector
, const gate_desc
*val
,
768 struct trap_info
*info
)
772 if (val
->type
!= GATE_TRAP
&& val
->type
!= GATE_INTERRUPT
)
775 info
->vector
= vector
;
777 addr
= gate_offset(*val
);
780 * Look for known traps using IST, and substitute them
781 * appropriately. The debugger ones are the only ones we care
782 * about. Xen will handle faults like double_fault,
783 * so we should never see them. Warn if
784 * there's an unexpected IST-using fault handler.
786 if (addr
== (unsigned long)debug
)
787 addr
= (unsigned long)xen_debug
;
788 else if (addr
== (unsigned long)int3
)
789 addr
= (unsigned long)xen_int3
;
790 else if (addr
== (unsigned long)stack_segment
)
791 addr
= (unsigned long)xen_stack_segment
;
792 else if (addr
== (unsigned long)double_fault
) {
793 /* Don't need to handle these */
795 #ifdef CONFIG_X86_MCE
796 } else if (addr
== (unsigned long)machine_check
) {
798 * when xen hypervisor inject vMCE to guest,
799 * use native mce handler to handle it
803 } else if (addr
== (unsigned long)nmi
)
805 * Use the native version as well.
809 /* Some other trap using IST? */
810 if (WARN_ON(val
->ist
!= 0))
813 #endif /* CONFIG_X86_64 */
814 info
->address
= addr
;
816 info
->cs
= gate_segment(*val
);
817 info
->flags
= val
->dpl
;
818 /* interrupt gates clear IF */
819 if (val
->type
== GATE_INTERRUPT
)
820 info
->flags
|= 1 << 2;
825 /* Locations of each CPU's IDT */
826 static DEFINE_PER_CPU(struct desc_ptr
, idt_desc
);
828 /* Set an IDT entry. If the entry is part of the current IDT, then
830 static void xen_write_idt_entry(gate_desc
*dt
, int entrynum
, const gate_desc
*g
)
832 unsigned long p
= (unsigned long)&dt
[entrynum
];
833 unsigned long start
, end
;
835 trace_xen_cpu_write_idt_entry(dt
, entrynum
, g
);
839 start
= __this_cpu_read(idt_desc
.address
);
840 end
= start
+ __this_cpu_read(idt_desc
.size
) + 1;
844 native_write_idt_entry(dt
, entrynum
, g
);
846 if (p
>= start
&& (p
+ 8) <= end
) {
847 struct trap_info info
[2];
851 if (cvt_gate_to_trap(entrynum
, g
, &info
[0]))
852 if (HYPERVISOR_set_trap_table(info
))
859 static void xen_convert_trap_info(const struct desc_ptr
*desc
,
860 struct trap_info
*traps
)
862 unsigned in
, out
, count
;
864 count
= (desc
->size
+1) / sizeof(gate_desc
);
867 for (in
= out
= 0; in
< count
; in
++) {
868 gate_desc
*entry
= (gate_desc
*)(desc
->address
) + in
;
870 if (cvt_gate_to_trap(in
, entry
, &traps
[out
]))
873 traps
[out
].address
= 0;
876 void xen_copy_trap_info(struct trap_info
*traps
)
878 const struct desc_ptr
*desc
= this_cpu_ptr(&idt_desc
);
880 xen_convert_trap_info(desc
, traps
);
883 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
884 hold a spinlock to protect the static traps[] array (static because
885 it avoids allocation, and saves stack space). */
886 static void xen_load_idt(const struct desc_ptr
*desc
)
888 static DEFINE_SPINLOCK(lock
);
889 static struct trap_info traps
[257];
891 trace_xen_cpu_load_idt(desc
);
895 memcpy(this_cpu_ptr(&idt_desc
), desc
, sizeof(idt_desc
));
897 xen_convert_trap_info(desc
, traps
);
900 if (HYPERVISOR_set_trap_table(traps
))
906 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
907 they're handled differently. */
908 static void xen_write_gdt_entry(struct desc_struct
*dt
, int entry
,
909 const void *desc
, int type
)
911 trace_xen_cpu_write_gdt_entry(dt
, entry
, desc
, type
);
922 xmaddr_t maddr
= arbitrary_virt_to_machine(&dt
[entry
]);
925 if (HYPERVISOR_update_descriptor(maddr
.maddr
, *(u64
*)desc
))
935 * Version of write_gdt_entry for use at early boot-time needed to
936 * update an entry as simply as possible.
938 static void __init
xen_write_gdt_entry_boot(struct desc_struct
*dt
, int entry
,
939 const void *desc
, int type
)
941 trace_xen_cpu_write_gdt_entry(dt
, entry
, desc
, type
);
950 xmaddr_t maddr
= virt_to_machine(&dt
[entry
]);
952 if (HYPERVISOR_update_descriptor(maddr
.maddr
, *(u64
*)desc
))
953 dt
[entry
] = *(struct desc_struct
*)desc
;
959 static void xen_load_sp0(struct tss_struct
*tss
,
960 struct thread_struct
*thread
)
962 struct multicall_space mcs
;
964 mcs
= xen_mc_entry(0);
965 MULTI_stack_switch(mcs
.mc
, __KERNEL_DS
, thread
->sp0
);
966 xen_mc_issue(PARAVIRT_LAZY_CPU
);
967 tss
->x86_tss
.sp0
= thread
->sp0
;
970 void xen_set_iopl_mask(unsigned mask
)
972 struct physdev_set_iopl set_iopl
;
974 /* Force the change at ring 0. */
975 set_iopl
.iopl
= (mask
== 0) ? 1 : (mask
>> 12) & 3;
976 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl
, &set_iopl
);
979 static void xen_io_delay(void)
983 static void xen_clts(void)
985 struct multicall_space mcs
;
987 mcs
= xen_mc_entry(0);
989 MULTI_fpu_taskswitch(mcs
.mc
, 0);
991 xen_mc_issue(PARAVIRT_LAZY_CPU
);
994 static DEFINE_PER_CPU(unsigned long, xen_cr0_value
);
996 static unsigned long xen_read_cr0(void)
998 unsigned long cr0
= this_cpu_read(xen_cr0_value
);
1000 if (unlikely(cr0
== 0)) {
1001 cr0
= native_read_cr0();
1002 this_cpu_write(xen_cr0_value
, cr0
);
1008 static void xen_write_cr0(unsigned long cr0
)
1010 struct multicall_space mcs
;
1012 this_cpu_write(xen_cr0_value
, cr0
);
1014 /* Only pay attention to cr0.TS; everything else is
1016 mcs
= xen_mc_entry(0);
1018 MULTI_fpu_taskswitch(mcs
.mc
, (cr0
& X86_CR0_TS
) != 0);
1020 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1023 static void xen_write_cr4(unsigned long cr4
)
1025 cr4
&= ~(X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PCE
);
1027 native_write_cr4(cr4
);
1029 #ifdef CONFIG_X86_64
1030 static inline unsigned long xen_read_cr8(void)
1034 static inline void xen_write_cr8(unsigned long val
)
1040 static u64
xen_read_msr_safe(unsigned int msr
, int *err
)
1044 if (pmu_msr_read(msr
, &val
, err
))
1047 val
= native_read_msr_safe(msr
, err
);
1049 case MSR_IA32_APICBASE
:
1050 #ifdef CONFIG_X86_X2APIC
1051 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC
& 31))))
1053 val
&= ~X2APIC_ENABLE
;
1059 static int xen_write_msr_safe(unsigned int msr
, unsigned low
, unsigned high
)
1066 #ifdef CONFIG_X86_64
1070 case MSR_FS_BASE
: which
= SEGBASE_FS
; goto set
;
1071 case MSR_KERNEL_GS_BASE
: which
= SEGBASE_GS_USER
; goto set
;
1072 case MSR_GS_BASE
: which
= SEGBASE_GS_KERNEL
; goto set
;
1075 base
= ((u64
)high
<< 32) | low
;
1076 if (HYPERVISOR_set_segment_base(which
, base
) != 0)
1084 case MSR_SYSCALL_MASK
:
1085 case MSR_IA32_SYSENTER_CS
:
1086 case MSR_IA32_SYSENTER_ESP
:
1087 case MSR_IA32_SYSENTER_EIP
:
1088 /* Fast syscall setup is all done in hypercalls, so
1089 these are all ignored. Stub them out here to stop
1090 Xen console noise. */
1094 if (!pmu_msr_write(msr
, low
, high
, &ret
))
1095 ret
= native_write_msr_safe(msr
, low
, high
);
1101 static u64
xen_read_msr(unsigned int msr
)
1104 * This will silently swallow a #GP from RDMSR. It may be worth
1109 return xen_read_msr_safe(msr
, &err
);
1112 static void xen_write_msr(unsigned int msr
, unsigned low
, unsigned high
)
1115 * This will silently swallow a #GP from WRMSR. It may be worth
1118 xen_write_msr_safe(msr
, low
, high
);
1121 void xen_setup_shared_info(void)
1123 if (!xen_feature(XENFEAT_auto_translated_physmap
)) {
1124 set_fixmap(FIX_PARAVIRT_BOOTMAP
,
1125 xen_start_info
->shared_info
);
1127 HYPERVISOR_shared_info
=
1128 (struct shared_info
*)fix_to_virt(FIX_PARAVIRT_BOOTMAP
);
1130 HYPERVISOR_shared_info
=
1131 (struct shared_info
*)__va(xen_start_info
->shared_info
);
1134 /* In UP this is as good a place as any to set up shared info */
1135 xen_setup_vcpu_info_placement();
1138 xen_setup_mfn_list_list();
1141 /* This is called once we have the cpu_possible_mask */
1142 void xen_setup_vcpu_info_placement(void)
1146 for_each_possible_cpu(cpu
) {
1147 /* Set up direct vCPU id mapping for PV guests. */
1148 per_cpu(xen_vcpu_id
, cpu
) = cpu
;
1149 xen_vcpu_setup(cpu
);
1152 /* xen_vcpu_setup managed to place the vcpu_info within the
1153 * percpu area for all cpus, so make use of it. Note that for
1154 * PVH we want to use native IRQ mechanism. */
1155 if (have_vcpu_info_placement
&& !xen_pvh_domain()) {
1156 pv_irq_ops
.save_fl
= __PV_IS_CALLEE_SAVE(xen_save_fl_direct
);
1157 pv_irq_ops
.restore_fl
= __PV_IS_CALLEE_SAVE(xen_restore_fl_direct
);
1158 pv_irq_ops
.irq_disable
= __PV_IS_CALLEE_SAVE(xen_irq_disable_direct
);
1159 pv_irq_ops
.irq_enable
= __PV_IS_CALLEE_SAVE(xen_irq_enable_direct
);
1160 pv_mmu_ops
.read_cr2
= xen_read_cr2_direct
;
1164 static unsigned xen_patch(u8 type
, u16 clobbers
, void *insnbuf
,
1165 unsigned long addr
, unsigned len
)
1167 char *start
, *end
, *reloc
;
1170 start
= end
= reloc
= NULL
;
1172 #define SITE(op, x) \
1173 case PARAVIRT_PATCH(op.x): \
1174 if (have_vcpu_info_placement) { \
1175 start = (char *)xen_##x##_direct; \
1176 end = xen_##x##_direct_end; \
1177 reloc = xen_##x##_direct_reloc; \
1182 SITE(pv_irq_ops
, irq_enable
);
1183 SITE(pv_irq_ops
, irq_disable
);
1184 SITE(pv_irq_ops
, save_fl
);
1185 SITE(pv_irq_ops
, restore_fl
);
1189 if (start
== NULL
|| (end
-start
) > len
)
1192 ret
= paravirt_patch_insns(insnbuf
, len
, start
, end
);
1194 /* Note: because reloc is assigned from something that
1195 appears to be an array, gcc assumes it's non-null,
1196 but doesn't know its relationship with start and
1198 if (reloc
> start
&& reloc
< end
) {
1199 int reloc_off
= reloc
- start
;
1200 long *relocp
= (long *)(insnbuf
+ reloc_off
);
1201 long delta
= start
- (char *)addr
;
1209 ret
= paravirt_patch_default(type
, clobbers
, insnbuf
,
1217 static const struct pv_info xen_info __initconst
= {
1218 .shared_kernel_pmd
= 0,
1220 #ifdef CONFIG_X86_64
1221 .extra_user_64bit_cs
= FLAT_USER_CS64
,
1226 static const struct pv_init_ops xen_init_ops __initconst
= {
1230 static const struct pv_cpu_ops xen_cpu_ops __initconst
= {
1233 .set_debugreg
= xen_set_debugreg
,
1234 .get_debugreg
= xen_get_debugreg
,
1238 .read_cr0
= xen_read_cr0
,
1239 .write_cr0
= xen_write_cr0
,
1241 .read_cr4
= native_read_cr4
,
1242 .write_cr4
= xen_write_cr4
,
1244 #ifdef CONFIG_X86_64
1245 .read_cr8
= xen_read_cr8
,
1246 .write_cr8
= xen_write_cr8
,
1249 .wbinvd
= native_wbinvd
,
1251 .read_msr
= xen_read_msr
,
1252 .write_msr
= xen_write_msr
,
1254 .read_msr_safe
= xen_read_msr_safe
,
1255 .write_msr_safe
= xen_write_msr_safe
,
1257 .read_pmc
= xen_read_pmc
,
1260 #ifdef CONFIG_X86_64
1261 .usergs_sysret64
= xen_sysret64
,
1264 .load_tr_desc
= paravirt_nop
,
1265 .set_ldt
= xen_set_ldt
,
1266 .load_gdt
= xen_load_gdt
,
1267 .load_idt
= xen_load_idt
,
1268 .load_tls
= xen_load_tls
,
1269 #ifdef CONFIG_X86_64
1270 .load_gs_index
= xen_load_gs_index
,
1273 .alloc_ldt
= xen_alloc_ldt
,
1274 .free_ldt
= xen_free_ldt
,
1276 .store_idt
= native_store_idt
,
1277 .store_tr
= xen_store_tr
,
1279 .write_ldt_entry
= xen_write_ldt_entry
,
1280 .write_gdt_entry
= xen_write_gdt_entry
,
1281 .write_idt_entry
= xen_write_idt_entry
,
1282 .load_sp0
= xen_load_sp0
,
1284 .set_iopl_mask
= xen_set_iopl_mask
,
1285 .io_delay
= xen_io_delay
,
1287 /* Xen takes care of %gs when switching to usermode for us */
1288 .swapgs
= paravirt_nop
,
1290 .start_context_switch
= paravirt_start_context_switch
,
1291 .end_context_switch
= xen_end_context_switch
,
1294 static void xen_reboot(int reason
)
1296 struct sched_shutdown r
= { .reason
= reason
};
1299 for_each_online_cpu(cpu
)
1300 xen_pmu_finish(cpu
);
1302 if (HYPERVISOR_sched_op(SCHEDOP_shutdown
, &r
))
1306 static void xen_restart(char *msg
)
1308 xen_reboot(SHUTDOWN_reboot
);
1311 static void xen_emergency_restart(void)
1313 xen_reboot(SHUTDOWN_reboot
);
1316 static void xen_machine_halt(void)
1318 xen_reboot(SHUTDOWN_poweroff
);
1321 static void xen_machine_power_off(void)
1325 xen_reboot(SHUTDOWN_poweroff
);
1328 static void xen_crash_shutdown(struct pt_regs
*regs
)
1330 xen_reboot(SHUTDOWN_crash
);
1334 xen_panic_event(struct notifier_block
*this, unsigned long event
, void *ptr
)
1336 if (!kexec_crash_loaded())
1337 xen_reboot(SHUTDOWN_crash
);
1341 static struct notifier_block xen_panic_block
= {
1342 .notifier_call
= xen_panic_event
,
1346 int xen_panic_handler_init(void)
1348 atomic_notifier_chain_register(&panic_notifier_list
, &xen_panic_block
);
1352 static const struct machine_ops xen_machine_ops __initconst
= {
1353 .restart
= xen_restart
,
1354 .halt
= xen_machine_halt
,
1355 .power_off
= xen_machine_power_off
,
1356 .shutdown
= xen_machine_halt
,
1357 .crash_shutdown
= xen_crash_shutdown
,
1358 .emergency_restart
= xen_emergency_restart
,
1361 static unsigned char xen_get_nmi_reason(void)
1363 unsigned char reason
= 0;
1365 /* Construct a value which looks like it came from port 0x61. */
1366 if (test_bit(_XEN_NMIREASON_io_error
,
1367 &HYPERVISOR_shared_info
->arch
.nmi_reason
))
1368 reason
|= NMI_REASON_IOCHK
;
1369 if (test_bit(_XEN_NMIREASON_pci_serr
,
1370 &HYPERVISOR_shared_info
->arch
.nmi_reason
))
1371 reason
|= NMI_REASON_SERR
;
1376 static void __init
xen_boot_params_init_edd(void)
1378 #if IS_ENABLED(CONFIG_EDD)
1379 struct xen_platform_op op
;
1380 struct edd_info
*edd_info
;
1385 edd_info
= boot_params
.eddbuf
;
1386 mbr_signature
= boot_params
.edd_mbr_sig_buffer
;
1388 op
.cmd
= XENPF_firmware_info
;
1390 op
.u
.firmware_info
.type
= XEN_FW_DISK_INFO
;
1391 for (nr
= 0; nr
< EDDMAXNR
; nr
++) {
1392 struct edd_info
*info
= edd_info
+ nr
;
1394 op
.u
.firmware_info
.index
= nr
;
1395 info
->params
.length
= sizeof(info
->params
);
1396 set_xen_guest_handle(op
.u
.firmware_info
.u
.disk_info
.edd_params
,
1398 ret
= HYPERVISOR_platform_op(&op
);
1402 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1405 C(interface_support
);
1406 C(legacy_max_cylinder
);
1408 C(legacy_sectors_per_track
);
1411 boot_params
.eddbuf_entries
= nr
;
1413 op
.u
.firmware_info
.type
= XEN_FW_DISK_MBR_SIGNATURE
;
1414 for (nr
= 0; nr
< EDD_MBR_SIG_MAX
; nr
++) {
1415 op
.u
.firmware_info
.index
= nr
;
1416 ret
= HYPERVISOR_platform_op(&op
);
1419 mbr_signature
[nr
] = op
.u
.firmware_info
.u
.disk_mbr_signature
.mbr_signature
;
1421 boot_params
.edd_mbr_sig_buf_entries
= nr
;
1426 * Set up the GDT and segment registers for -fstack-protector. Until
1427 * we do this, we have to be careful not to call any stack-protected
1428 * function, which is most of the kernel.
1430 * Note, that it is __ref because the only caller of this after init
1431 * is PVH which is not going to use xen_load_gdt_boot or other
1434 static void __ref
xen_setup_gdt(int cpu
)
1436 if (xen_feature(XENFEAT_auto_translated_physmap
)) {
1437 #ifdef CONFIG_X86_64
1438 unsigned long dummy
;
1440 load_percpu_segment(cpu
); /* We need to access per-cpu area */
1441 switch_to_new_gdt(cpu
); /* GDT and GS set */
1443 /* We are switching of the Xen provided GDT to our HVM mode
1444 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1445 * and we are jumping to reload it.
1447 asm volatile ("pushq %0\n"
1448 "leaq 1f(%%rip),%0\n"
1452 : "=&r" (dummy
) : "0" (__KERNEL_CS
));
1455 * While not needed, we also set the %es, %ds, and %fs
1456 * to zero. We don't care about %ss as it is NULL.
1457 * Strictly speaking this is not needed as Xen zeros those
1458 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1460 * Linux zeros them in cpu_init() and in secondary_startup_64
1467 /* PVH: TODO Implement. */
1470 return; /* PVH does not need any PV GDT ops. */
1472 pv_cpu_ops
.write_gdt_entry
= xen_write_gdt_entry_boot
;
1473 pv_cpu_ops
.load_gdt
= xen_load_gdt_boot
;
1475 setup_stack_canary_segment(0);
1476 switch_to_new_gdt(0);
1478 pv_cpu_ops
.write_gdt_entry
= xen_write_gdt_entry
;
1479 pv_cpu_ops
.load_gdt
= xen_load_gdt
;
1482 #ifdef CONFIG_XEN_PVH
1484 * A PV guest starts with default flags that are not set for PVH, set them
1487 static void xen_pvh_set_cr_flags(int cpu
)
1490 /* Some of these are setup in 'secondary_startup_64'. The others:
1491 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1492 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1493 write_cr0(read_cr0() | X86_CR0_MP
| X86_CR0_NE
| X86_CR0_WP
| X86_CR0_AM
);
1498 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1499 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1501 if (boot_cpu_has(X86_FEATURE_PSE
))
1502 cr4_set_bits_and_update_boot(X86_CR4_PSE
);
1504 if (boot_cpu_has(X86_FEATURE_PGE
))
1505 cr4_set_bits_and_update_boot(X86_CR4_PGE
);
1509 * Note, that it is ref - because the only caller of this after init
1510 * is PVH which is not going to use xen_load_gdt_boot or other
1513 void __ref
xen_pvh_secondary_vcpu_init(int cpu
)
1516 xen_pvh_set_cr_flags(cpu
);
1519 static void __init
xen_pvh_early_guest_init(void)
1521 if (!xen_feature(XENFEAT_auto_translated_physmap
))
1524 BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector
));
1526 xen_pvh_early_cpu_init(0, false);
1527 xen_pvh_set_cr_flags(0);
1529 #ifdef CONFIG_X86_32
1530 BUG(); /* PVH: Implement proper support. */
1533 #endif /* CONFIG_XEN_PVH */
1535 static void __init
xen_dom0_set_legacy_features(void)
1537 x86_platform
.legacy
.rtc
= 1;
1540 static int xen_cpuhp_setup(void)
1544 rc
= cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE
,
1545 "XEN_HVM_GUEST_PREPARE",
1546 xen_cpu_up_prepare
, xen_cpu_dead
);
1548 rc
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
1549 "XEN_HVM_GUEST_ONLINE",
1550 xen_cpu_up_online
, NULL
);
1552 cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE
);
1555 return rc
>= 0 ? 0 : rc
;
1558 /* First C function to be called on Xen boot */
1559 asmlinkage __visible
void __init
xen_start_kernel(void)
1561 struct physdev_set_iopl set_iopl
;
1562 unsigned long initrd_start
= 0;
1565 if (!xen_start_info
)
1568 xen_domain_type
= XEN_PV_DOMAIN
;
1570 xen_setup_features();
1571 #ifdef CONFIG_XEN_PVH
1572 xen_pvh_early_guest_init();
1574 xen_setup_machphys_mapping();
1576 /* Install Xen paravirt ops */
1578 pv_init_ops
= xen_init_ops
;
1579 if (!xen_pvh_domain()) {
1580 pv_cpu_ops
= xen_cpu_ops
;
1582 x86_platform
.get_nmi_reason
= xen_get_nmi_reason
;
1585 if (xen_feature(XENFEAT_auto_translated_physmap
))
1586 x86_init
.resources
.memory_setup
= xen_auto_xlated_memory_setup
;
1588 x86_init
.resources
.memory_setup
= xen_memory_setup
;
1589 x86_init
.oem
.arch_setup
= xen_arch_setup
;
1590 x86_init
.oem
.banner
= xen_banner
;
1592 xen_init_time_ops();
1595 * Set up some pagetable state before starting to set any ptes.
1600 /* Prevent unwanted bits from being set in PTEs. */
1601 __supported_pte_mask
&= ~_PAGE_GLOBAL
;
1604 * Prevent page tables from being allocated in highmem, even
1605 * if CONFIG_HIGHPTE is enabled.
1607 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
1609 /* Work out if we support NX */
1613 xen_build_dynamic_phys_to_machine();
1616 * Set up kernel GDT and segment registers, mainly so that
1617 * -fstack-protector code can be executed.
1622 xen_init_cpuid_mask();
1624 #ifdef CONFIG_X86_LOCAL_APIC
1626 * set up the basic apic ops.
1631 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad
)) {
1632 pv_mmu_ops
.ptep_modify_prot_start
= xen_ptep_modify_prot_start
;
1633 pv_mmu_ops
.ptep_modify_prot_commit
= xen_ptep_modify_prot_commit
;
1636 machine_ops
= xen_machine_ops
;
1639 * The only reliable way to retain the initial address of the
1640 * percpu gdt_page is to remember it here, so we can go and
1641 * mark it RW later, when the initial percpu area is freed.
1643 xen_initial_gdt
= &per_cpu(gdt_page
, 0);
1647 #ifdef CONFIG_ACPI_NUMA
1649 * The pages we from Xen are not related to machine pages, so
1650 * any NUMA information the kernel tries to get from ACPI will
1651 * be meaningless. Prevent it from trying.
1655 /* Don't do the full vcpu_info placement stuff until we have a
1656 possible map and a non-dummy shared_info. */
1657 per_cpu(xen_vcpu
, 0) = &HYPERVISOR_shared_info
->vcpu_info
[0];
1659 WARN_ON(xen_cpuhp_setup());
1661 local_irq_disable();
1662 early_boot_irqs_disabled
= true;
1664 xen_raw_console_write("mapping kernel into physical memory\n");
1665 xen_setup_kernel_pagetable((pgd_t
*)xen_start_info
->pt_base
,
1666 xen_start_info
->nr_pages
);
1667 xen_reserve_special_pages();
1669 /* keep using Xen gdt for now; no urgent need to change it */
1671 #ifdef CONFIG_X86_32
1672 pv_info
.kernel_rpl
= 1;
1673 if (xen_feature(XENFEAT_supervisor_mode_kernel
))
1674 pv_info
.kernel_rpl
= 0;
1676 pv_info
.kernel_rpl
= 0;
1678 /* set the limit of our address space */
1681 /* PVH: runs at default kernel iopl of 0 */
1682 if (!xen_pvh_domain()) {
1684 * We used to do this in xen_arch_setup, but that is too late
1685 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1686 * early_amd_init which pokes 0xcf8 port.
1689 rc
= HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl
, &set_iopl
);
1691 xen_raw_printk("physdev_op failed %d\n", rc
);
1694 #ifdef CONFIG_X86_32
1695 /* set up basic CPUID stuff */
1696 cpu_detect(&new_cpu_data
);
1697 set_cpu_cap(&new_cpu_data
, X86_FEATURE_FPU
);
1698 new_cpu_data
.wp_works_ok
= 1;
1699 new_cpu_data
.x86_capability
[CPUID_1_EDX
] = cpuid_edx(1);
1702 if (xen_start_info
->mod_start
) {
1703 if (xen_start_info
->flags
& SIF_MOD_START_PFN
)
1704 initrd_start
= PFN_PHYS(xen_start_info
->mod_start
);
1706 initrd_start
= __pa(xen_start_info
->mod_start
);
1709 /* Poke various useful things into boot_params */
1710 boot_params
.hdr
.type_of_loader
= (9 << 4) | 0;
1711 boot_params
.hdr
.ramdisk_image
= initrd_start
;
1712 boot_params
.hdr
.ramdisk_size
= xen_start_info
->mod_len
;
1713 boot_params
.hdr
.cmd_line_ptr
= __pa(xen_start_info
->cmd_line
);
1714 boot_params
.hdr
.hardware_subarch
= X86_SUBARCH_XEN
;
1716 if (!xen_initial_domain()) {
1717 add_preferred_console("xenboot", 0, NULL
);
1718 add_preferred_console("tty", 0, NULL
);
1719 add_preferred_console("hvc", 0, NULL
);
1721 x86_init
.pci
.arch_init
= pci_xen_init
;
1723 const struct dom0_vga_console_info
*info
=
1724 (void *)((char *)xen_start_info
+
1725 xen_start_info
->console
.dom0
.info_off
);
1726 struct xen_platform_op op
= {
1727 .cmd
= XENPF_firmware_info
,
1728 .interface_version
= XENPF_INTERFACE_VERSION
,
1729 .u
.firmware_info
.type
= XEN_FW_KBD_SHIFT_FLAGS
,
1732 x86_platform
.set_legacy_features
=
1733 xen_dom0_set_legacy_features
;
1734 xen_init_vga(info
, xen_start_info
->console
.dom0
.info_size
);
1735 xen_start_info
->console
.domU
.mfn
= 0;
1736 xen_start_info
->console
.domU
.evtchn
= 0;
1738 if (HYPERVISOR_platform_op(&op
) == 0)
1739 boot_params
.kbd_status
= op
.u
.firmware_info
.u
.kbd_shift_flags
;
1741 /* Make sure ACS will be enabled */
1744 xen_acpi_sleep_register();
1746 /* Avoid searching for BIOS MP tables */
1747 x86_init
.mpparse
.find_smp_config
= x86_init_noop
;
1748 x86_init
.mpparse
.get_smp_config
= x86_init_uint_noop
;
1750 xen_boot_params_init_edd();
1753 /* PCI BIOS service won't work from a PV guest. */
1754 pci_probe
&= ~PCI_PROBE_BIOS
;
1756 xen_raw_console_write("about to get started...\n");
1758 /* Let's presume PV guests always boot on vCPU with id 0. */
1759 per_cpu(xen_vcpu_id
, 0) = 0;
1761 xen_setup_runstate_info(0);
1765 /* Start the world */
1766 #ifdef CONFIG_X86_32
1767 i386_start_kernel();
1769 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1770 x86_64_start_reservations((char *)__pa_symbol(&boot_params
));
1774 void __ref
xen_hvm_init_shared_info(void)
1777 struct xen_add_to_physmap xatp
;
1778 static struct shared_info
*shared_info_page
= 0;
1780 if (!shared_info_page
)
1781 shared_info_page
= (struct shared_info
*)
1782 extend_brk(PAGE_SIZE
, PAGE_SIZE
);
1783 xatp
.domid
= DOMID_SELF
;
1785 xatp
.space
= XENMAPSPACE_shared_info
;
1786 xatp
.gpfn
= __pa(shared_info_page
) >> PAGE_SHIFT
;
1787 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap
, &xatp
))
1790 HYPERVISOR_shared_info
= (struct shared_info
*)shared_info_page
;
1792 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1793 * page, we use it in the event channel upcall and in some pvclock
1794 * related functions. We don't need the vcpu_info placement
1795 * optimizations because we don't use any pv_mmu or pv_irq op on
1797 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1798 * online but xen_hvm_init_shared_info is run at resume time too and
1799 * in that case multiple vcpus might be online. */
1800 for_each_online_cpu(cpu
) {
1801 /* Leave it to be NULL. */
1802 if (xen_vcpu_nr(cpu
) >= MAX_VIRT_CPUS
)
1804 per_cpu(xen_vcpu
, cpu
) =
1805 &HYPERVISOR_shared_info
->vcpu_info
[xen_vcpu_nr(cpu
)];
1809 #ifdef CONFIG_XEN_PVHVM
1810 static void __init
init_hvm_pv_info(void)
1813 uint32_t eax
, ebx
, ecx
, edx
, pages
, msr
, base
;
1816 base
= xen_cpuid_base();
1817 cpuid(base
+ 1, &eax
, &ebx
, &ecx
, &edx
);
1820 minor
= eax
& 0xffff;
1821 printk(KERN_INFO
"Xen version %d.%d.\n", major
, minor
);
1823 cpuid(base
+ 2, &pages
, &msr
, &ecx
, &edx
);
1825 pfn
= __pa(hypercall_page
);
1826 wrmsr_safe(msr
, (u32
)pfn
, (u32
)(pfn
>> 32));
1828 xen_setup_features();
1830 cpuid(base
+ 4, &eax
, &ebx
, &ecx
, &edx
);
1831 if (eax
& XEN_HVM_CPUID_VCPU_ID_PRESENT
)
1832 this_cpu_write(xen_vcpu_id
, ebx
);
1834 this_cpu_write(xen_vcpu_id
, smp_processor_id());
1836 pv_info
.name
= "Xen HVM";
1838 xen_domain_type
= XEN_HVM_DOMAIN
;
1841 static int xen_cpu_up_prepare(unsigned int cpu
)
1845 if (xen_hvm_domain()) {
1847 * This can happen if CPU was offlined earlier and
1848 * offlining timed out in common_cpu_die().
1850 if (cpu_report_state(cpu
) == CPU_DEAD_FROZEN
) {
1851 xen_smp_intr_free(cpu
);
1852 xen_uninit_lock_cpu(cpu
);
1855 if (cpu_acpi_id(cpu
) != U32_MAX
)
1856 per_cpu(xen_vcpu_id
, cpu
) = cpu_acpi_id(cpu
);
1858 per_cpu(xen_vcpu_id
, cpu
) = cpu
;
1859 xen_vcpu_setup(cpu
);
1862 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock
))
1863 xen_setup_timer(cpu
);
1865 rc
= xen_smp_intr_init(cpu
);
1867 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1874 static int xen_cpu_dead(unsigned int cpu
)
1876 xen_smp_intr_free(cpu
);
1878 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock
))
1879 xen_teardown_timer(cpu
);
1884 static int xen_cpu_up_online(unsigned int cpu
)
1886 xen_init_lock_cpu(cpu
);
1890 #ifdef CONFIG_KEXEC_CORE
1891 static void xen_hvm_shutdown(void)
1893 native_machine_shutdown();
1894 if (kexec_in_progress
)
1895 xen_reboot(SHUTDOWN_soft_reset
);
1898 static void xen_hvm_crash_shutdown(struct pt_regs
*regs
)
1900 native_machine_crash_shutdown(regs
);
1901 xen_reboot(SHUTDOWN_soft_reset
);
1905 static void __init
xen_hvm_guest_init(void)
1907 if (xen_pv_domain())
1912 xen_hvm_init_shared_info();
1914 xen_panic_handler_init();
1916 BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector
));
1919 WARN_ON(xen_cpuhp_setup());
1920 xen_unplug_emulated_devices();
1921 x86_init
.irqs
.intr_init
= xen_init_IRQ
;
1922 xen_hvm_init_time_ops();
1923 xen_hvm_init_mmu_ops();
1924 #ifdef CONFIG_KEXEC_CORE
1925 machine_ops
.shutdown
= xen_hvm_shutdown
;
1926 machine_ops
.crash_shutdown
= xen_hvm_crash_shutdown
;
1931 static bool xen_nopv
= false;
1932 static __init
int xen_parse_nopv(char *arg
)
1937 early_param("xen_nopv", xen_parse_nopv
);
1939 static uint32_t __init
xen_platform(void)
1944 return xen_cpuid_base();
1947 bool xen_hvm_need_lapic(void)
1951 if (xen_pv_domain())
1953 if (!xen_hvm_domain())
1955 if (xen_feature(XENFEAT_hvm_pirqs
))
1959 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic
);
1961 static void xen_set_cpu_features(struct cpuinfo_x86
*c
)
1963 if (xen_pv_domain()) {
1964 clear_cpu_bug(c
, X86_BUG_SYSRET_SS_ATTRS
);
1965 set_cpu_cap(c
, X86_FEATURE_XENPV
);
1969 static void xen_pin_vcpu(int cpu
)
1971 static bool disable_pinning
;
1972 struct sched_pin_override pin_override
;
1975 if (disable_pinning
)
1978 pin_override
.pcpu
= cpu
;
1979 ret
= HYPERVISOR_sched_op(SCHEDOP_pin_override
, &pin_override
);
1981 /* Ignore errors when removing override. */
1987 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
1989 disable_pinning
= true;
1992 WARN(1, "Trying to pin vcpu without having privilege to do so\n");
1993 disable_pinning
= true;
1997 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
2003 WARN(1, "rc %d while trying to pin vcpu\n", ret
);
2004 disable_pinning
= true;
2008 const struct hypervisor_x86 x86_hyper_xen
= {
2010 .detect
= xen_platform
,
2011 #ifdef CONFIG_XEN_PVHVM
2012 .init_platform
= xen_hvm_guest_init
,
2014 .x2apic_available
= xen_x2apic_para_available
,
2015 .set_cpu_features
= xen_set_cpu_features
,
2016 .pin_vcpu
= xen_pin_vcpu
,
2018 EXPORT_SYMBOL(x86_hyper_xen
);
2020 #ifdef CONFIG_HOTPLUG_CPU
2021 void xen_arch_register_cpu(int num
)
2023 arch_register_cpu(num
);
2025 EXPORT_SYMBOL(xen_arch_register_cpu
);
2027 void xen_arch_unregister_cpu(int num
)
2029 arch_unregister_cpu(num
);
2031 EXPORT_SYMBOL(xen_arch_unregister_cpu
);