]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/xen/enlighten.c
Merge branches 'at91', 'dyntick', 'ep93xx', 'iop', 'ixp', 'misc', 'orion', 'omap...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
52
53 EXPORT_SYMBOL_GPL(hypercall_page);
54
55 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
56 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
57
58 /*
59 * Note about cr3 (pagetable base) values:
60 *
61 * xen_cr3 contains the current logical cr3 value; it contains the
62 * last set cr3. This may not be the current effective cr3, because
63 * its update may be being lazily deferred. However, a vcpu looking
64 * at its own cr3 can use this value knowing that it everything will
65 * be self-consistent.
66 *
67 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
68 * hypercall to set the vcpu cr3 is complete (so it may be a little
69 * out of date, but it will never be set early). If one vcpu is
70 * looking at another vcpu's cr3 value, it should use this variable.
71 */
72 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
73 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
74
75 struct start_info *xen_start_info;
76 EXPORT_SYMBOL_GPL(xen_start_info);
77
78 static /* __initdata */ struct shared_info dummy_shared_info;
79
80 /*
81 * Point at some empty memory to start with. We map the real shared_info
82 * page as soon as fixmap is up and running.
83 */
84 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
85
86 /*
87 * Flag to determine whether vcpu info placement is available on all
88 * VCPUs. We assume it is to start with, and then set it to zero on
89 * the first failure. This is because it can succeed on some VCPUs
90 * and not others, since it can involve hypervisor memory allocation,
91 * or because the guest failed to guarantee all the appropriate
92 * constraints on all VCPUs (ie buffer can't cross a page boundary).
93 *
94 * Note that any particular CPU may be using a placed vcpu structure,
95 * but we can only optimise if the all are.
96 *
97 * 0: not available, 1: available
98 */
99 static int have_vcpu_info_placement = 1;
100
101 static void __init xen_vcpu_setup(int cpu)
102 {
103 struct vcpu_register_vcpu_info info;
104 int err;
105 struct vcpu_info *vcpup;
106
107 BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
108 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
109
110 if (!have_vcpu_info_placement)
111 return; /* already tested, not available */
112
113 vcpup = &per_cpu(xen_vcpu_info, cpu);
114
115 info.mfn = virt_to_mfn(vcpup);
116 info.offset = offset_in_page(vcpup);
117
118 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
119 cpu, vcpup, info.mfn, info.offset);
120
121 /* Check to see if the hypervisor will put the vcpu_info
122 structure where we want it, which allows direct access via
123 a percpu-variable. */
124 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
125
126 if (err) {
127 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
128 have_vcpu_info_placement = 0;
129 } else {
130 /* This cpu is using the registered vcpu info, even if
131 later ones fail to. */
132 per_cpu(xen_vcpu, cpu) = vcpup;
133
134 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
135 cpu, vcpup);
136 }
137 }
138
139 static void __init xen_banner(void)
140 {
141 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
142 pv_info.name);
143 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
144 }
145
146 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
147 unsigned int *cx, unsigned int *dx)
148 {
149 unsigned maskedx = ~0;
150
151 /*
152 * Mask out inconvenient features, to try and disable as many
153 * unsupported kernel subsystems as possible.
154 */
155 if (*ax == 1)
156 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
157 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
158 (1 << X86_FEATURE_MCE) | /* disable MCE */
159 (1 << X86_FEATURE_MCA) | /* disable MCA */
160 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
161
162 asm(XEN_EMULATE_PREFIX "cpuid"
163 : "=a" (*ax),
164 "=b" (*bx),
165 "=c" (*cx),
166 "=d" (*dx)
167 : "0" (*ax), "2" (*cx));
168 *dx &= maskedx;
169 }
170
171 static void xen_set_debugreg(int reg, unsigned long val)
172 {
173 HYPERVISOR_set_debugreg(reg, val);
174 }
175
176 static unsigned long xen_get_debugreg(int reg)
177 {
178 return HYPERVISOR_get_debugreg(reg);
179 }
180
181 static unsigned long xen_save_fl(void)
182 {
183 struct vcpu_info *vcpu;
184 unsigned long flags;
185
186 vcpu = x86_read_percpu(xen_vcpu);
187
188 /* flag has opposite sense of mask */
189 flags = !vcpu->evtchn_upcall_mask;
190
191 /* convert to IF type flag
192 -0 -> 0x00000000
193 -1 -> 0xffffffff
194 */
195 return (-flags) & X86_EFLAGS_IF;
196 }
197
198 static void xen_restore_fl(unsigned long flags)
199 {
200 struct vcpu_info *vcpu;
201
202 /* convert from IF type flag */
203 flags = !(flags & X86_EFLAGS_IF);
204
205 /* There's a one instruction preempt window here. We need to
206 make sure we're don't switch CPUs between getting the vcpu
207 pointer and updating the mask. */
208 preempt_disable();
209 vcpu = x86_read_percpu(xen_vcpu);
210 vcpu->evtchn_upcall_mask = flags;
211 preempt_enable_no_resched();
212
213 /* Doesn't matter if we get preempted here, because any
214 pending event will get dealt with anyway. */
215
216 if (flags == 0) {
217 preempt_check_resched();
218 barrier(); /* unmask then check (avoid races) */
219 if (unlikely(vcpu->evtchn_upcall_pending))
220 force_evtchn_callback();
221 }
222 }
223
224 static void xen_irq_disable(void)
225 {
226 /* There's a one instruction preempt window here. We need to
227 make sure we're don't switch CPUs between getting the vcpu
228 pointer and updating the mask. */
229 preempt_disable();
230 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
231 preempt_enable_no_resched();
232 }
233
234 static void xen_irq_enable(void)
235 {
236 struct vcpu_info *vcpu;
237
238 /* There's a one instruction preempt window here. We need to
239 make sure we're don't switch CPUs between getting the vcpu
240 pointer and updating the mask. */
241 preempt_disable();
242 vcpu = x86_read_percpu(xen_vcpu);
243 vcpu->evtchn_upcall_mask = 0;
244 preempt_enable_no_resched();
245
246 /* Doesn't matter if we get preempted here, because any
247 pending event will get dealt with anyway. */
248
249 barrier(); /* unmask then check (avoid races) */
250 if (unlikely(vcpu->evtchn_upcall_pending))
251 force_evtchn_callback();
252 }
253
254 static void xen_safe_halt(void)
255 {
256 /* Blocking includes an implicit local_irq_enable(). */
257 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
258 BUG();
259 }
260
261 static void xen_halt(void)
262 {
263 if (irqs_disabled())
264 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
265 else
266 xen_safe_halt();
267 }
268
269 static void xen_leave_lazy(void)
270 {
271 paravirt_leave_lazy(paravirt_get_lazy_mode());
272 xen_mc_flush();
273 }
274
275 static unsigned long xen_store_tr(void)
276 {
277 return 0;
278 }
279
280 static void xen_set_ldt(const void *addr, unsigned entries)
281 {
282 struct mmuext_op *op;
283 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
284
285 op = mcs.args;
286 op->cmd = MMUEXT_SET_LDT;
287 op->arg1.linear_addr = (unsigned long)addr;
288 op->arg2.nr_ents = entries;
289
290 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
291
292 xen_mc_issue(PARAVIRT_LAZY_CPU);
293 }
294
295 static void xen_load_gdt(const struct desc_ptr *dtr)
296 {
297 unsigned long *frames;
298 unsigned long va = dtr->address;
299 unsigned int size = dtr->size + 1;
300 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
301 int f;
302 struct multicall_space mcs;
303
304 /* A GDT can be up to 64k in size, which corresponds to 8192
305 8-byte entries, or 16 4k pages.. */
306
307 BUG_ON(size > 65536);
308 BUG_ON(va & ~PAGE_MASK);
309
310 mcs = xen_mc_entry(sizeof(*frames) * pages);
311 frames = mcs.args;
312
313 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
314 frames[f] = virt_to_mfn(va);
315 make_lowmem_page_readonly((void *)va);
316 }
317
318 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
319
320 xen_mc_issue(PARAVIRT_LAZY_CPU);
321 }
322
323 static void load_TLS_descriptor(struct thread_struct *t,
324 unsigned int cpu, unsigned int i)
325 {
326 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
327 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
328 struct multicall_space mc = __xen_mc_entry(0);
329
330 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
331 }
332
333 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
334 {
335 xen_mc_batch();
336
337 load_TLS_descriptor(t, cpu, 0);
338 load_TLS_descriptor(t, cpu, 1);
339 load_TLS_descriptor(t, cpu, 2);
340
341 xen_mc_issue(PARAVIRT_LAZY_CPU);
342
343 /*
344 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
345 * it means we're in a context switch, and %gs has just been
346 * saved. This means we can zero it out to prevent faults on
347 * exit from the hypervisor if the next process has no %gs.
348 * Either way, it has been saved, and the new value will get
349 * loaded properly. This will go away as soon as Xen has been
350 * modified to not save/restore %gs for normal hypercalls.
351 */
352 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
353 loadsegment(gs, 0);
354 }
355
356 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
357 const void *ptr)
358 {
359 unsigned long lp = (unsigned long)&dt[entrynum];
360 xmaddr_t mach_lp = virt_to_machine(lp);
361 u64 entry = *(u64 *)ptr;
362
363 preempt_disable();
364
365 xen_mc_flush();
366 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
367 BUG();
368
369 preempt_enable();
370 }
371
372 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
373 struct trap_info *info)
374 {
375 u8 type, dpl;
376
377 type = (high >> 8) & 0x1f;
378 dpl = (high >> 13) & 3;
379
380 if (type != 0xf && type != 0xe)
381 return 0;
382
383 info->vector = vector;
384 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
385 info->cs = low >> 16;
386 info->flags = dpl;
387 /* interrupt gates clear IF */
388 if (type == 0xe)
389 info->flags |= 4;
390
391 return 1;
392 }
393
394 /* Locations of each CPU's IDT */
395 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
396
397 /* Set an IDT entry. If the entry is part of the current IDT, then
398 also update Xen. */
399 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
400 {
401 unsigned long p = (unsigned long)&dt[entrynum];
402 unsigned long start, end;
403
404 preempt_disable();
405
406 start = __get_cpu_var(idt_desc).address;
407 end = start + __get_cpu_var(idt_desc).size + 1;
408
409 xen_mc_flush();
410
411 native_write_idt_entry(dt, entrynum, g);
412
413 if (p >= start && (p + 8) <= end) {
414 struct trap_info info[2];
415 u32 *desc = (u32 *)g;
416
417 info[1].address = 0;
418
419 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
420 if (HYPERVISOR_set_trap_table(info))
421 BUG();
422 }
423
424 preempt_enable();
425 }
426
427 static void xen_convert_trap_info(const struct desc_ptr *desc,
428 struct trap_info *traps)
429 {
430 unsigned in, out, count;
431
432 count = (desc->size+1) / 8;
433 BUG_ON(count > 256);
434
435 for (in = out = 0; in < count; in++) {
436 const u32 *entry = (u32 *)(desc->address + in * 8);
437
438 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
439 out++;
440 }
441 traps[out].address = 0;
442 }
443
444 void xen_copy_trap_info(struct trap_info *traps)
445 {
446 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
447
448 xen_convert_trap_info(desc, traps);
449 }
450
451 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
452 hold a spinlock to protect the static traps[] array (static because
453 it avoids allocation, and saves stack space). */
454 static void xen_load_idt(const struct desc_ptr *desc)
455 {
456 static DEFINE_SPINLOCK(lock);
457 static struct trap_info traps[257];
458
459 spin_lock(&lock);
460
461 __get_cpu_var(idt_desc) = *desc;
462
463 xen_convert_trap_info(desc, traps);
464
465 xen_mc_flush();
466 if (HYPERVISOR_set_trap_table(traps))
467 BUG();
468
469 spin_unlock(&lock);
470 }
471
472 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
473 they're handled differently. */
474 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
475 const void *desc, int type)
476 {
477 preempt_disable();
478
479 switch (type) {
480 case DESC_LDT:
481 case DESC_TSS:
482 /* ignore */
483 break;
484
485 default: {
486 xmaddr_t maddr = virt_to_machine(&dt[entry]);
487
488 xen_mc_flush();
489 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
490 BUG();
491 }
492
493 }
494
495 preempt_enable();
496 }
497
498 static void xen_load_sp0(struct tss_struct *tss,
499 struct thread_struct *thread)
500 {
501 struct multicall_space mcs = xen_mc_entry(0);
502 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
503 xen_mc_issue(PARAVIRT_LAZY_CPU);
504 }
505
506 static void xen_set_iopl_mask(unsigned mask)
507 {
508 struct physdev_set_iopl set_iopl;
509
510 /* Force the change at ring 0. */
511 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
512 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
513 }
514
515 static void xen_io_delay(void)
516 {
517 }
518
519 #ifdef CONFIG_X86_LOCAL_APIC
520 static u32 xen_apic_read(unsigned long reg)
521 {
522 return 0;
523 }
524
525 static void xen_apic_write(unsigned long reg, u32 val)
526 {
527 /* Warn to see if there's any stray references */
528 WARN_ON(1);
529 }
530 #endif
531
532 static void xen_flush_tlb(void)
533 {
534 struct mmuext_op *op;
535 struct multicall_space mcs;
536
537 preempt_disable();
538
539 mcs = xen_mc_entry(sizeof(*op));
540
541 op = mcs.args;
542 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
543 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
544
545 xen_mc_issue(PARAVIRT_LAZY_MMU);
546
547 preempt_enable();
548 }
549
550 static void xen_flush_tlb_single(unsigned long addr)
551 {
552 struct mmuext_op *op;
553 struct multicall_space mcs;
554
555 preempt_disable();
556
557 mcs = xen_mc_entry(sizeof(*op));
558 op = mcs.args;
559 op->cmd = MMUEXT_INVLPG_LOCAL;
560 op->arg1.linear_addr = addr & PAGE_MASK;
561 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
562
563 xen_mc_issue(PARAVIRT_LAZY_MMU);
564
565 preempt_enable();
566 }
567
568 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
569 unsigned long va)
570 {
571 struct {
572 struct mmuext_op op;
573 cpumask_t mask;
574 } *args;
575 cpumask_t cpumask = *cpus;
576 struct multicall_space mcs;
577
578 /*
579 * A couple of (to be removed) sanity checks:
580 *
581 * - current CPU must not be in mask
582 * - mask must exist :)
583 */
584 BUG_ON(cpus_empty(cpumask));
585 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
586 BUG_ON(!mm);
587
588 /* If a CPU which we ran on has gone down, OK. */
589 cpus_and(cpumask, cpumask, cpu_online_map);
590 if (cpus_empty(cpumask))
591 return;
592
593 mcs = xen_mc_entry(sizeof(*args));
594 args = mcs.args;
595 args->mask = cpumask;
596 args->op.arg2.vcpumask = &args->mask;
597
598 if (va == TLB_FLUSH_ALL) {
599 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
600 } else {
601 args->op.cmd = MMUEXT_INVLPG_MULTI;
602 args->op.arg1.linear_addr = va;
603 }
604
605 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
606
607 xen_mc_issue(PARAVIRT_LAZY_MMU);
608 }
609
610 static void xen_write_cr2(unsigned long cr2)
611 {
612 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
613 }
614
615 static unsigned long xen_read_cr2(void)
616 {
617 return x86_read_percpu(xen_vcpu)->arch.cr2;
618 }
619
620 static unsigned long xen_read_cr2_direct(void)
621 {
622 return x86_read_percpu(xen_vcpu_info.arch.cr2);
623 }
624
625 static void xen_write_cr4(unsigned long cr4)
626 {
627 /* Just ignore cr4 changes; Xen doesn't allow us to do
628 anything anyway. */
629 }
630
631 static unsigned long xen_read_cr3(void)
632 {
633 return x86_read_percpu(xen_cr3);
634 }
635
636 static void set_current_cr3(void *v)
637 {
638 x86_write_percpu(xen_current_cr3, (unsigned long)v);
639 }
640
641 static void xen_write_cr3(unsigned long cr3)
642 {
643 struct mmuext_op *op;
644 struct multicall_space mcs;
645 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
646
647 BUG_ON(preemptible());
648
649 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
650
651 /* Update while interrupts are disabled, so its atomic with
652 respect to ipis */
653 x86_write_percpu(xen_cr3, cr3);
654
655 op = mcs.args;
656 op->cmd = MMUEXT_NEW_BASEPTR;
657 op->arg1.mfn = mfn;
658
659 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
660
661 /* Update xen_update_cr3 once the batch has actually
662 been submitted. */
663 xen_mc_callback(set_current_cr3, (void *)cr3);
664
665 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
666 }
667
668 /* Early in boot, while setting up the initial pagetable, assume
669 everything is pinned. */
670 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
671 {
672 #ifdef CONFIG_FLATMEM
673 BUG_ON(mem_map); /* should only be used early */
674 #endif
675 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
676 }
677
678 /* Early release_pte assumes that all pts are pinned, since there's
679 only init_mm and anything attached to that is pinned. */
680 static void xen_release_pte_init(u32 pfn)
681 {
682 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
683 }
684
685 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
686 {
687 struct mmuext_op op;
688 op.cmd = cmd;
689 op.arg1.mfn = pfn_to_mfn(pfn);
690 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
691 BUG();
692 }
693
694 /* This needs to make sure the new pte page is pinned iff its being
695 attached to a pinned pagetable. */
696 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
697 {
698 struct page *page = pfn_to_page(pfn);
699
700 if (PagePinned(virt_to_page(mm->pgd))) {
701 SetPagePinned(page);
702
703 if (!PageHighMem(page)) {
704 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
705 if (level == PT_PTE)
706 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
707 } else
708 /* make sure there are no stray mappings of
709 this page */
710 kmap_flush_unused();
711 }
712 }
713
714 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
715 {
716 xen_alloc_ptpage(mm, pfn, PT_PTE);
717 }
718
719 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
720 {
721 xen_alloc_ptpage(mm, pfn, PT_PMD);
722 }
723
724 /* This should never happen until we're OK to use struct page */
725 static void xen_release_ptpage(u32 pfn, unsigned level)
726 {
727 struct page *page = pfn_to_page(pfn);
728
729 if (PagePinned(page)) {
730 if (!PageHighMem(page)) {
731 if (level == PT_PTE)
732 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
733 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
734 }
735 ClearPagePinned(page);
736 }
737 }
738
739 static void xen_release_pte(u32 pfn)
740 {
741 xen_release_ptpage(pfn, PT_PTE);
742 }
743
744 static void xen_release_pmd(u32 pfn)
745 {
746 xen_release_ptpage(pfn, PT_PMD);
747 }
748
749 #ifdef CONFIG_HIGHPTE
750 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
751 {
752 pgprot_t prot = PAGE_KERNEL;
753
754 if (PagePinned(page))
755 prot = PAGE_KERNEL_RO;
756
757 if (0 && PageHighMem(page))
758 printk("mapping highpte %lx type %d prot %s\n",
759 page_to_pfn(page), type,
760 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
761
762 return kmap_atomic_prot(page, type, prot);
763 }
764 #endif
765
766 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
767 {
768 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
769 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
770 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
771 pte_val_ma(pte));
772
773 return pte;
774 }
775
776 /* Init-time set_pte while constructing initial pagetables, which
777 doesn't allow RO pagetable pages to be remapped RW */
778 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
779 {
780 pte = mask_rw_pte(ptep, pte);
781
782 xen_set_pte(ptep, pte);
783 }
784
785 static __init void xen_pagetable_setup_start(pgd_t *base)
786 {
787 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
788 int i;
789
790 /* special set_pte for pagetable initialization */
791 pv_mmu_ops.set_pte = xen_set_pte_init;
792
793 init_mm.pgd = base;
794 /*
795 * copy top-level of Xen-supplied pagetable into place. This
796 * is a stand-in while we copy the pmd pages.
797 */
798 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
799
800 /*
801 * For PAE, need to allocate new pmds, rather than
802 * share Xen's, since Xen doesn't like pmd's being
803 * shared between address spaces.
804 */
805 for (i = 0; i < PTRS_PER_PGD; i++) {
806 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
807 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
808
809 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
810 PAGE_SIZE);
811
812 make_lowmem_page_readonly(pmd);
813
814 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
815 } else
816 pgd_clear(&base[i]);
817 }
818
819 /* make sure zero_page is mapped RO so we can use it in pagetables */
820 make_lowmem_page_readonly(empty_zero_page);
821 make_lowmem_page_readonly(base);
822 /*
823 * Switch to new pagetable. This is done before
824 * pagetable_init has done anything so that the new pages
825 * added to the table can be prepared properly for Xen.
826 */
827 xen_write_cr3(__pa(base));
828
829 /* Unpin initial Xen pagetable */
830 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
831 PFN_DOWN(__pa(xen_start_info->pt_base)));
832 }
833
834 static __init void setup_shared_info(void)
835 {
836 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
837 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
838
839 /*
840 * Create a mapping for the shared info page.
841 * Should be set_fixmap(), but shared_info is a machine
842 * address with no corresponding pseudo-phys address.
843 */
844 set_pte_mfn(addr,
845 PFN_DOWN(xen_start_info->shared_info),
846 PAGE_KERNEL);
847
848 HYPERVISOR_shared_info = (struct shared_info *)addr;
849 } else
850 HYPERVISOR_shared_info =
851 (struct shared_info *)__va(xen_start_info->shared_info);
852
853 #ifndef CONFIG_SMP
854 /* In UP this is as good a place as any to set up shared info */
855 xen_setup_vcpu_info_placement();
856 #endif
857 }
858
859 static __init void xen_pagetable_setup_done(pgd_t *base)
860 {
861 /* This will work as long as patching hasn't happened yet
862 (which it hasn't) */
863 pv_mmu_ops.alloc_pte = xen_alloc_pte;
864 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
865 pv_mmu_ops.release_pte = xen_release_pte;
866 pv_mmu_ops.release_pmd = xen_release_pmd;
867 pv_mmu_ops.set_pte = xen_set_pte;
868
869 setup_shared_info();
870
871 /* Actually pin the pagetable down, but we can't set PG_pinned
872 yet because the page structures don't exist yet. */
873 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
874 }
875
876 /* This is called once we have the cpu_possible_map */
877 void __init xen_setup_vcpu_info_placement(void)
878 {
879 int cpu;
880
881 for_each_possible_cpu(cpu)
882 xen_vcpu_setup(cpu);
883
884 /* xen_vcpu_setup managed to place the vcpu_info within the
885 percpu area for all cpus, so make use of it */
886 if (have_vcpu_info_placement) {
887 printk(KERN_INFO "Xen: using vcpu_info placement\n");
888
889 pv_irq_ops.save_fl = xen_save_fl_direct;
890 pv_irq_ops.restore_fl = xen_restore_fl_direct;
891 pv_irq_ops.irq_disable = xen_irq_disable_direct;
892 pv_irq_ops.irq_enable = xen_irq_enable_direct;
893 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
894 }
895 }
896
897 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
898 unsigned long addr, unsigned len)
899 {
900 char *start, *end, *reloc;
901 unsigned ret;
902
903 start = end = reloc = NULL;
904
905 #define SITE(op, x) \
906 case PARAVIRT_PATCH(op.x): \
907 if (have_vcpu_info_placement) { \
908 start = (char *)xen_##x##_direct; \
909 end = xen_##x##_direct_end; \
910 reloc = xen_##x##_direct_reloc; \
911 } \
912 goto patch_site
913
914 switch (type) {
915 SITE(pv_irq_ops, irq_enable);
916 SITE(pv_irq_ops, irq_disable);
917 SITE(pv_irq_ops, save_fl);
918 SITE(pv_irq_ops, restore_fl);
919 #undef SITE
920
921 patch_site:
922 if (start == NULL || (end-start) > len)
923 goto default_patch;
924
925 ret = paravirt_patch_insns(insnbuf, len, start, end);
926
927 /* Note: because reloc is assigned from something that
928 appears to be an array, gcc assumes it's non-null,
929 but doesn't know its relationship with start and
930 end. */
931 if (reloc > start && reloc < end) {
932 int reloc_off = reloc - start;
933 long *relocp = (long *)(insnbuf + reloc_off);
934 long delta = start - (char *)addr;
935
936 *relocp += delta;
937 }
938 break;
939
940 default_patch:
941 default:
942 ret = paravirt_patch_default(type, clobbers, insnbuf,
943 addr, len);
944 break;
945 }
946
947 return ret;
948 }
949
950 static const struct pv_info xen_info __initdata = {
951 .paravirt_enabled = 1,
952 .shared_kernel_pmd = 0,
953
954 .name = "Xen",
955 };
956
957 static const struct pv_init_ops xen_init_ops __initdata = {
958 .patch = xen_patch,
959
960 .banner = xen_banner,
961 .memory_setup = xen_memory_setup,
962 .arch_setup = xen_arch_setup,
963 .post_allocator_init = xen_mark_init_mm_pinned,
964 };
965
966 static const struct pv_time_ops xen_time_ops __initdata = {
967 .time_init = xen_time_init,
968
969 .set_wallclock = xen_set_wallclock,
970 .get_wallclock = xen_get_wallclock,
971 .get_cpu_khz = xen_cpu_khz,
972 .sched_clock = xen_sched_clock,
973 };
974
975 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
976 .cpuid = xen_cpuid,
977
978 .set_debugreg = xen_set_debugreg,
979 .get_debugreg = xen_get_debugreg,
980
981 .clts = native_clts,
982
983 .read_cr0 = native_read_cr0,
984 .write_cr0 = native_write_cr0,
985
986 .read_cr4 = native_read_cr4,
987 .read_cr4_safe = native_read_cr4_safe,
988 .write_cr4 = xen_write_cr4,
989
990 .wbinvd = native_wbinvd,
991
992 .read_msr = native_read_msr_safe,
993 .write_msr = native_write_msr_safe,
994 .read_tsc = native_read_tsc,
995 .read_pmc = native_read_pmc,
996
997 .iret = xen_iret,
998 .irq_enable_syscall_ret = xen_sysexit,
999
1000 .load_tr_desc = paravirt_nop,
1001 .set_ldt = xen_set_ldt,
1002 .load_gdt = xen_load_gdt,
1003 .load_idt = xen_load_idt,
1004 .load_tls = xen_load_tls,
1005
1006 .store_gdt = native_store_gdt,
1007 .store_idt = native_store_idt,
1008 .store_tr = xen_store_tr,
1009
1010 .write_ldt_entry = xen_write_ldt_entry,
1011 .write_gdt_entry = xen_write_gdt_entry,
1012 .write_idt_entry = xen_write_idt_entry,
1013 .load_sp0 = xen_load_sp0,
1014
1015 .set_iopl_mask = xen_set_iopl_mask,
1016 .io_delay = xen_io_delay,
1017
1018 .lazy_mode = {
1019 .enter = paravirt_enter_lazy_cpu,
1020 .leave = xen_leave_lazy,
1021 },
1022 };
1023
1024 static const struct pv_irq_ops xen_irq_ops __initdata = {
1025 .init_IRQ = xen_init_IRQ,
1026 .save_fl = xen_save_fl,
1027 .restore_fl = xen_restore_fl,
1028 .irq_disable = xen_irq_disable,
1029 .irq_enable = xen_irq_enable,
1030 .safe_halt = xen_safe_halt,
1031 .halt = xen_halt,
1032 };
1033
1034 static const struct pv_apic_ops xen_apic_ops __initdata = {
1035 #ifdef CONFIG_X86_LOCAL_APIC
1036 .apic_write = xen_apic_write,
1037 .apic_write_atomic = xen_apic_write,
1038 .apic_read = xen_apic_read,
1039 .setup_boot_clock = paravirt_nop,
1040 .setup_secondary_clock = paravirt_nop,
1041 .startup_ipi_hook = paravirt_nop,
1042 #endif
1043 };
1044
1045 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1046 .pagetable_setup_start = xen_pagetable_setup_start,
1047 .pagetable_setup_done = xen_pagetable_setup_done,
1048
1049 .read_cr2 = xen_read_cr2,
1050 .write_cr2 = xen_write_cr2,
1051
1052 .read_cr3 = xen_read_cr3,
1053 .write_cr3 = xen_write_cr3,
1054
1055 .flush_tlb_user = xen_flush_tlb,
1056 .flush_tlb_kernel = xen_flush_tlb,
1057 .flush_tlb_single = xen_flush_tlb_single,
1058 .flush_tlb_others = xen_flush_tlb_others,
1059
1060 .pte_update = paravirt_nop,
1061 .pte_update_defer = paravirt_nop,
1062
1063 .alloc_pte = xen_alloc_pte_init,
1064 .release_pte = xen_release_pte_init,
1065 .alloc_pmd = xen_alloc_pte_init,
1066 .alloc_pmd_clone = paravirt_nop,
1067 .release_pmd = xen_release_pte_init,
1068
1069 #ifdef CONFIG_HIGHPTE
1070 .kmap_atomic_pte = xen_kmap_atomic_pte,
1071 #endif
1072
1073 .set_pte = NULL, /* see xen_pagetable_setup_* */
1074 .set_pte_at = xen_set_pte_at,
1075 .set_pmd = xen_set_pmd,
1076
1077 .pte_val = xen_pte_val,
1078 .pgd_val = xen_pgd_val,
1079
1080 .make_pte = xen_make_pte,
1081 .make_pgd = xen_make_pgd,
1082
1083 .set_pte_atomic = xen_set_pte_atomic,
1084 .set_pte_present = xen_set_pte_at,
1085 .set_pud = xen_set_pud,
1086 .pte_clear = xen_pte_clear,
1087 .pmd_clear = xen_pmd_clear,
1088
1089 .make_pmd = xen_make_pmd,
1090 .pmd_val = xen_pmd_val,
1091
1092 .activate_mm = xen_activate_mm,
1093 .dup_mmap = xen_dup_mmap,
1094 .exit_mmap = xen_exit_mmap,
1095
1096 .lazy_mode = {
1097 .enter = paravirt_enter_lazy_mmu,
1098 .leave = xen_leave_lazy,
1099 },
1100 };
1101
1102 #ifdef CONFIG_SMP
1103 static const struct smp_ops xen_smp_ops __initdata = {
1104 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1105 .smp_prepare_cpus = xen_smp_prepare_cpus,
1106 .cpu_up = xen_cpu_up,
1107 .smp_cpus_done = xen_smp_cpus_done,
1108
1109 .smp_send_stop = xen_smp_send_stop,
1110 .smp_send_reschedule = xen_smp_send_reschedule,
1111 .smp_call_function_mask = xen_smp_call_function_mask,
1112 };
1113 #endif /* CONFIG_SMP */
1114
1115 static void xen_reboot(int reason)
1116 {
1117 #ifdef CONFIG_SMP
1118 smp_send_stop();
1119 #endif
1120
1121 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1122 BUG();
1123 }
1124
1125 static void xen_restart(char *msg)
1126 {
1127 xen_reboot(SHUTDOWN_reboot);
1128 }
1129
1130 static void xen_emergency_restart(void)
1131 {
1132 xen_reboot(SHUTDOWN_reboot);
1133 }
1134
1135 static void xen_machine_halt(void)
1136 {
1137 xen_reboot(SHUTDOWN_poweroff);
1138 }
1139
1140 static void xen_crash_shutdown(struct pt_regs *regs)
1141 {
1142 xen_reboot(SHUTDOWN_crash);
1143 }
1144
1145 static const struct machine_ops __initdata xen_machine_ops = {
1146 .restart = xen_restart,
1147 .halt = xen_machine_halt,
1148 .power_off = xen_machine_halt,
1149 .shutdown = xen_machine_halt,
1150 .crash_shutdown = xen_crash_shutdown,
1151 .emergency_restart = xen_emergency_restart,
1152 };
1153
1154
1155 static void __init xen_reserve_top(void)
1156 {
1157 unsigned long top = HYPERVISOR_VIRT_START;
1158 struct xen_platform_parameters pp;
1159
1160 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1161 top = pp.virt_start;
1162
1163 reserve_top_address(-top + 2 * PAGE_SIZE);
1164 }
1165
1166 /* First C function to be called on Xen boot */
1167 asmlinkage void __init xen_start_kernel(void)
1168 {
1169 pgd_t *pgd;
1170
1171 if (!xen_start_info)
1172 return;
1173
1174 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1175
1176 /* Install Xen paravirt ops */
1177 pv_info = xen_info;
1178 pv_init_ops = xen_init_ops;
1179 pv_time_ops = xen_time_ops;
1180 pv_cpu_ops = xen_cpu_ops;
1181 pv_irq_ops = xen_irq_ops;
1182 pv_apic_ops = xen_apic_ops;
1183 pv_mmu_ops = xen_mmu_ops;
1184
1185 machine_ops = xen_machine_ops;
1186
1187 #ifdef CONFIG_SMP
1188 smp_ops = xen_smp_ops;
1189 #endif
1190
1191 xen_setup_features();
1192
1193 /* Get mfn list */
1194 if (!xen_feature(XENFEAT_auto_translated_physmap))
1195 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1196
1197 pgd = (pgd_t *)xen_start_info->pt_base;
1198
1199 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1200
1201 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1202
1203 /* keep using Xen gdt for now; no urgent need to change it */
1204
1205 x86_write_percpu(xen_cr3, __pa(pgd));
1206 x86_write_percpu(xen_current_cr3, __pa(pgd));
1207
1208 /* Don't do the full vcpu_info placement stuff until we have a
1209 possible map and a non-dummy shared_info. */
1210 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1211
1212 pv_info.kernel_rpl = 1;
1213 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1214 pv_info.kernel_rpl = 0;
1215
1216 /* Prevent unwanted bits from being set in PTEs. */
1217 __supported_pte_mask &= ~_PAGE_GLOBAL;
1218 if (!is_initial_xendomain())
1219 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1220
1221 /* set the limit of our address space */
1222 xen_reserve_top();
1223
1224 /* set up basic CPUID stuff */
1225 cpu_detect(&new_cpu_data);
1226 new_cpu_data.hard_math = 1;
1227 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1228
1229 /* Poke various useful things into boot_params */
1230 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1231 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1232 ? __pa(xen_start_info->mod_start) : 0;
1233 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1234
1235 if (!is_initial_xendomain())
1236 add_preferred_console("hvc", 0, NULL);
1237
1238 /* Start the world */
1239 start_kernel();
1240 }