]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/xen/enlighten.c
xen64: implement xen_load_gs_index()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49 #include <asm/pgalloc.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61 * Note about cr3 (pagetable base) values:
62 *
63 * xen_cr3 contains the current logical cr3 value; it contains the
64 * last set cr3. This may not be the current effective cr3, because
65 * its update may be being lazily deferred. However, a vcpu looking
66 * at its own cr3 can use this value knowing that it everything will
67 * be self-consistent.
68 *
69 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
70 * hypercall to set the vcpu cr3 is complete (so it may be a little
71 * out of date, but it will never be set early). If one vcpu is
72 * looking at another vcpu's cr3 value, it should use this variable.
73 */
74 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
75 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 /*
83 * Point at some empty memory to start with. We map the real shared_info
84 * page as soon as fixmap is up and running.
85 */
86 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
87
88 /*
89 * Flag to determine whether vcpu info placement is available on all
90 * VCPUs. We assume it is to start with, and then set it to zero on
91 * the first failure. This is because it can succeed on some VCPUs
92 * and not others, since it can involve hypervisor memory allocation,
93 * or because the guest failed to guarantee all the appropriate
94 * constraints on all VCPUs (ie buffer can't cross a page boundary).
95 *
96 * Note that any particular CPU may be using a placed vcpu structure,
97 * but we can only optimise if the all are.
98 *
99 * 0: not available, 1: available
100 */
101 static int have_vcpu_info_placement = 1;
102
103 static void xen_vcpu_setup(int cpu)
104 {
105 struct vcpu_register_vcpu_info info;
106 int err;
107 struct vcpu_info *vcpup;
108
109 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
110 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
111
112 if (!have_vcpu_info_placement)
113 return; /* already tested, not available */
114
115 vcpup = &per_cpu(xen_vcpu_info, cpu);
116
117 info.mfn = virt_to_mfn(vcpup);
118 info.offset = offset_in_page(vcpup);
119
120 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
121 cpu, vcpup, info.mfn, info.offset);
122
123 /* Check to see if the hypervisor will put the vcpu_info
124 structure where we want it, which allows direct access via
125 a percpu-variable. */
126 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
127
128 if (err) {
129 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
130 have_vcpu_info_placement = 0;
131 } else {
132 /* This cpu is using the registered vcpu info, even if
133 later ones fail to. */
134 per_cpu(xen_vcpu, cpu) = vcpup;
135
136 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
137 cpu, vcpup);
138 }
139 }
140
141 /*
142 * On restore, set the vcpu placement up again.
143 * If it fails, then we're in a bad state, since
144 * we can't back out from using it...
145 */
146 void xen_vcpu_restore(void)
147 {
148 if (have_vcpu_info_placement) {
149 int cpu;
150
151 for_each_online_cpu(cpu) {
152 bool other_cpu = (cpu != smp_processor_id());
153
154 if (other_cpu &&
155 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
156 BUG();
157
158 xen_vcpu_setup(cpu);
159
160 if (other_cpu &&
161 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
162 BUG();
163 }
164
165 BUG_ON(!have_vcpu_info_placement);
166 }
167 }
168
169 static void __init xen_banner(void)
170 {
171 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
172 pv_info.name);
173 printk(KERN_INFO "Hypervisor signature: %s%s\n",
174 xen_start_info->magic,
175 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
176 }
177
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179 unsigned int *cx, unsigned int *dx)
180 {
181 unsigned maskedx = ~0;
182
183 /*
184 * Mask out inconvenient features, to try and disable as many
185 * unsupported kernel subsystems as possible.
186 */
187 if (*ax == 1)
188 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
189 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
190 (1 << X86_FEATURE_MCE) | /* disable MCE */
191 (1 << X86_FEATURE_MCA) | /* disable MCA */
192 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
193
194 asm(XEN_EMULATE_PREFIX "cpuid"
195 : "=a" (*ax),
196 "=b" (*bx),
197 "=c" (*cx),
198 "=d" (*dx)
199 : "0" (*ax), "2" (*cx));
200 *dx &= maskedx;
201 }
202
203 static void xen_set_debugreg(int reg, unsigned long val)
204 {
205 HYPERVISOR_set_debugreg(reg, val);
206 }
207
208 static unsigned long xen_get_debugreg(int reg)
209 {
210 return HYPERVISOR_get_debugreg(reg);
211 }
212
213 static unsigned long xen_save_fl(void)
214 {
215 struct vcpu_info *vcpu;
216 unsigned long flags;
217
218 vcpu = x86_read_percpu(xen_vcpu);
219
220 /* flag has opposite sense of mask */
221 flags = !vcpu->evtchn_upcall_mask;
222
223 /* convert to IF type flag
224 -0 -> 0x00000000
225 -1 -> 0xffffffff
226 */
227 return (-flags) & X86_EFLAGS_IF;
228 }
229
230 static void xen_restore_fl(unsigned long flags)
231 {
232 struct vcpu_info *vcpu;
233
234 /* convert from IF type flag */
235 flags = !(flags & X86_EFLAGS_IF);
236
237 /* There's a one instruction preempt window here. We need to
238 make sure we're don't switch CPUs between getting the vcpu
239 pointer and updating the mask. */
240 preempt_disable();
241 vcpu = x86_read_percpu(xen_vcpu);
242 vcpu->evtchn_upcall_mask = flags;
243 preempt_enable_no_resched();
244
245 /* Doesn't matter if we get preempted here, because any
246 pending event will get dealt with anyway. */
247
248 if (flags == 0) {
249 preempt_check_resched();
250 barrier(); /* unmask then check (avoid races) */
251 if (unlikely(vcpu->evtchn_upcall_pending))
252 force_evtchn_callback();
253 }
254 }
255
256 static void xen_irq_disable(void)
257 {
258 /* There's a one instruction preempt window here. We need to
259 make sure we're don't switch CPUs between getting the vcpu
260 pointer and updating the mask. */
261 preempt_disable();
262 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
263 preempt_enable_no_resched();
264 }
265
266 static void xen_irq_enable(void)
267 {
268 struct vcpu_info *vcpu;
269
270 /* We don't need to worry about being preempted here, since
271 either a) interrupts are disabled, so no preemption, or b)
272 the caller is confused and is trying to re-enable interrupts
273 on an indeterminate processor. */
274
275 vcpu = x86_read_percpu(xen_vcpu);
276 vcpu->evtchn_upcall_mask = 0;
277
278 /* Doesn't matter if we get preempted here, because any
279 pending event will get dealt with anyway. */
280
281 barrier(); /* unmask then check (avoid races) */
282 if (unlikely(vcpu->evtchn_upcall_pending))
283 force_evtchn_callback();
284 }
285
286 static void xen_safe_halt(void)
287 {
288 /* Blocking includes an implicit local_irq_enable(). */
289 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
290 BUG();
291 }
292
293 static void xen_halt(void)
294 {
295 if (irqs_disabled())
296 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
297 else
298 xen_safe_halt();
299 }
300
301 static void xen_leave_lazy(void)
302 {
303 paravirt_leave_lazy(paravirt_get_lazy_mode());
304 xen_mc_flush();
305 }
306
307 static unsigned long xen_store_tr(void)
308 {
309 return 0;
310 }
311
312 static void xen_set_ldt(const void *addr, unsigned entries)
313 {
314 struct mmuext_op *op;
315 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
316
317 op = mcs.args;
318 op->cmd = MMUEXT_SET_LDT;
319 op->arg1.linear_addr = (unsigned long)addr;
320 op->arg2.nr_ents = entries;
321
322 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
323
324 xen_mc_issue(PARAVIRT_LAZY_CPU);
325 }
326
327 static void xen_load_gdt(const struct desc_ptr *dtr)
328 {
329 unsigned long *frames;
330 unsigned long va = dtr->address;
331 unsigned int size = dtr->size + 1;
332 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
333 int f;
334 struct multicall_space mcs;
335
336 /* A GDT can be up to 64k in size, which corresponds to 8192
337 8-byte entries, or 16 4k pages.. */
338
339 BUG_ON(size > 65536);
340 BUG_ON(va & ~PAGE_MASK);
341
342 mcs = xen_mc_entry(sizeof(*frames) * pages);
343 frames = mcs.args;
344
345 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
346 frames[f] = virt_to_mfn(va);
347 make_lowmem_page_readonly((void *)va);
348 }
349
350 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
351
352 xen_mc_issue(PARAVIRT_LAZY_CPU);
353 }
354
355 static void load_TLS_descriptor(struct thread_struct *t,
356 unsigned int cpu, unsigned int i)
357 {
358 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
359 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
360 struct multicall_space mc = __xen_mc_entry(0);
361
362 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
363 }
364
365 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
366 {
367 xen_mc_batch();
368
369 load_TLS_descriptor(t, cpu, 0);
370 load_TLS_descriptor(t, cpu, 1);
371 load_TLS_descriptor(t, cpu, 2);
372
373 xen_mc_issue(PARAVIRT_LAZY_CPU);
374
375 /*
376 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
377 * it means we're in a context switch, and %gs has just been
378 * saved. This means we can zero it out to prevent faults on
379 * exit from the hypervisor if the next process has no %gs.
380 * Either way, it has been saved, and the new value will get
381 * loaded properly. This will go away as soon as Xen has been
382 * modified to not save/restore %gs for normal hypercalls.
383 */
384 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
385 loadsegment(gs, 0);
386 }
387
388 #ifdef CONFIG_X86_64
389 static void xen_load_gs_index(unsigned int idx)
390 {
391 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
392 BUG();
393 }
394 #endif
395
396 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
397 const void *ptr)
398 {
399 unsigned long lp = (unsigned long)&dt[entrynum];
400 xmaddr_t mach_lp = virt_to_machine(lp);
401 u64 entry = *(u64 *)ptr;
402
403 preempt_disable();
404
405 xen_mc_flush();
406 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
407 BUG();
408
409 preempt_enable();
410 }
411
412 static int cvt_gate_to_trap(int vector, const gate_desc *val,
413 struct trap_info *info)
414 {
415 if (val->type != 0xf && val->type != 0xe)
416 return 0;
417
418 info->vector = vector;
419 info->address = gate_offset(*val);
420 info->cs = gate_segment(*val);
421 info->flags = val->dpl;
422 /* interrupt gates clear IF */
423 if (val->type == 0xe)
424 info->flags |= 4;
425
426 return 1;
427 }
428
429 /* Locations of each CPU's IDT */
430 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
431
432 /* Set an IDT entry. If the entry is part of the current IDT, then
433 also update Xen. */
434 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
435 {
436 unsigned long p = (unsigned long)&dt[entrynum];
437 unsigned long start, end;
438
439 preempt_disable();
440
441 start = __get_cpu_var(idt_desc).address;
442 end = start + __get_cpu_var(idt_desc).size + 1;
443
444 xen_mc_flush();
445
446 native_write_idt_entry(dt, entrynum, g);
447
448 if (p >= start && (p + 8) <= end) {
449 struct trap_info info[2];
450
451 info[1].address = 0;
452
453 if (cvt_gate_to_trap(entrynum, g, &info[0]))
454 if (HYPERVISOR_set_trap_table(info))
455 BUG();
456 }
457
458 preempt_enable();
459 }
460
461 static void xen_convert_trap_info(const struct desc_ptr *desc,
462 struct trap_info *traps)
463 {
464 unsigned in, out, count;
465
466 count = (desc->size+1) / sizeof(gate_desc);
467 BUG_ON(count > 256);
468
469 for (in = out = 0; in < count; in++) {
470 gate_desc *entry = (gate_desc*)(desc->address) + in;
471
472 if (cvt_gate_to_trap(in, entry, &traps[out]))
473 out++;
474 }
475 traps[out].address = 0;
476 }
477
478 void xen_copy_trap_info(struct trap_info *traps)
479 {
480 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
481
482 xen_convert_trap_info(desc, traps);
483 }
484
485 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
486 hold a spinlock to protect the static traps[] array (static because
487 it avoids allocation, and saves stack space). */
488 static void xen_load_idt(const struct desc_ptr *desc)
489 {
490 static DEFINE_SPINLOCK(lock);
491 static struct trap_info traps[257];
492
493 spin_lock(&lock);
494
495 __get_cpu_var(idt_desc) = *desc;
496
497 xen_convert_trap_info(desc, traps);
498
499 xen_mc_flush();
500 if (HYPERVISOR_set_trap_table(traps))
501 BUG();
502
503 spin_unlock(&lock);
504 }
505
506 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
507 they're handled differently. */
508 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
509 const void *desc, int type)
510 {
511 preempt_disable();
512
513 switch (type) {
514 case DESC_LDT:
515 case DESC_TSS:
516 /* ignore */
517 break;
518
519 default: {
520 xmaddr_t maddr = virt_to_machine(&dt[entry]);
521
522 xen_mc_flush();
523 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
524 BUG();
525 }
526
527 }
528
529 preempt_enable();
530 }
531
532 static void xen_load_sp0(struct tss_struct *tss,
533 struct thread_struct *thread)
534 {
535 struct multicall_space mcs = xen_mc_entry(0);
536 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
537 xen_mc_issue(PARAVIRT_LAZY_CPU);
538 }
539
540 static void xen_set_iopl_mask(unsigned mask)
541 {
542 struct physdev_set_iopl set_iopl;
543
544 /* Force the change at ring 0. */
545 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
546 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
547 }
548
549 static void xen_io_delay(void)
550 {
551 }
552
553 #ifdef CONFIG_X86_LOCAL_APIC
554 static u32 xen_apic_read(unsigned long reg)
555 {
556 return 0;
557 }
558
559 static void xen_apic_write(unsigned long reg, u32 val)
560 {
561 /* Warn to see if there's any stray references */
562 WARN_ON(1);
563 }
564 #endif
565
566 static void xen_flush_tlb(void)
567 {
568 struct mmuext_op *op;
569 struct multicall_space mcs;
570
571 preempt_disable();
572
573 mcs = xen_mc_entry(sizeof(*op));
574
575 op = mcs.args;
576 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
577 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
578
579 xen_mc_issue(PARAVIRT_LAZY_MMU);
580
581 preempt_enable();
582 }
583
584 static void xen_flush_tlb_single(unsigned long addr)
585 {
586 struct mmuext_op *op;
587 struct multicall_space mcs;
588
589 preempt_disable();
590
591 mcs = xen_mc_entry(sizeof(*op));
592 op = mcs.args;
593 op->cmd = MMUEXT_INVLPG_LOCAL;
594 op->arg1.linear_addr = addr & PAGE_MASK;
595 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
596
597 xen_mc_issue(PARAVIRT_LAZY_MMU);
598
599 preempt_enable();
600 }
601
602 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
603 unsigned long va)
604 {
605 struct {
606 struct mmuext_op op;
607 cpumask_t mask;
608 } *args;
609 cpumask_t cpumask = *cpus;
610 struct multicall_space mcs;
611
612 /*
613 * A couple of (to be removed) sanity checks:
614 *
615 * - current CPU must not be in mask
616 * - mask must exist :)
617 */
618 BUG_ON(cpus_empty(cpumask));
619 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
620 BUG_ON(!mm);
621
622 /* If a CPU which we ran on has gone down, OK. */
623 cpus_and(cpumask, cpumask, cpu_online_map);
624 if (cpus_empty(cpumask))
625 return;
626
627 mcs = xen_mc_entry(sizeof(*args));
628 args = mcs.args;
629 args->mask = cpumask;
630 args->op.arg2.vcpumask = &args->mask;
631
632 if (va == TLB_FLUSH_ALL) {
633 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
634 } else {
635 args->op.cmd = MMUEXT_INVLPG_MULTI;
636 args->op.arg1.linear_addr = va;
637 }
638
639 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
640
641 xen_mc_issue(PARAVIRT_LAZY_MMU);
642 }
643
644 static void xen_clts(void)
645 {
646 struct multicall_space mcs;
647
648 mcs = xen_mc_entry(0);
649
650 MULTI_fpu_taskswitch(mcs.mc, 0);
651
652 xen_mc_issue(PARAVIRT_LAZY_CPU);
653 }
654
655 static void xen_write_cr0(unsigned long cr0)
656 {
657 struct multicall_space mcs;
658
659 /* Only pay attention to cr0.TS; everything else is
660 ignored. */
661 mcs = xen_mc_entry(0);
662
663 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
664
665 xen_mc_issue(PARAVIRT_LAZY_CPU);
666 }
667
668 static void xen_write_cr2(unsigned long cr2)
669 {
670 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
671 }
672
673 static unsigned long xen_read_cr2(void)
674 {
675 return x86_read_percpu(xen_vcpu)->arch.cr2;
676 }
677
678 static unsigned long xen_read_cr2_direct(void)
679 {
680 return x86_read_percpu(xen_vcpu_info.arch.cr2);
681 }
682
683 static void xen_write_cr4(unsigned long cr4)
684 {
685 cr4 &= ~X86_CR4_PGE;
686 cr4 &= ~X86_CR4_PSE;
687
688 native_write_cr4(cr4);
689 }
690
691 static unsigned long xen_read_cr3(void)
692 {
693 return x86_read_percpu(xen_cr3);
694 }
695
696 static void set_current_cr3(void *v)
697 {
698 x86_write_percpu(xen_current_cr3, (unsigned long)v);
699 }
700
701 static void xen_write_cr3(unsigned long cr3)
702 {
703 struct mmuext_op *op;
704 struct multicall_space mcs;
705 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
706
707 BUG_ON(preemptible());
708
709 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
710
711 /* Update while interrupts are disabled, so its atomic with
712 respect to ipis */
713 x86_write_percpu(xen_cr3, cr3);
714
715 op = mcs.args;
716 op->cmd = MMUEXT_NEW_BASEPTR;
717 op->arg1.mfn = mfn;
718
719 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
720
721 /* Update xen_update_cr3 once the batch has actually
722 been submitted. */
723 xen_mc_callback(set_current_cr3, (void *)cr3);
724
725 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
726 }
727
728 /* Early in boot, while setting up the initial pagetable, assume
729 everything is pinned. */
730 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
731 {
732 #ifdef CONFIG_FLATMEM
733 BUG_ON(mem_map); /* should only be used early */
734 #endif
735 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
736 }
737
738 /* Early release_pte assumes that all pts are pinned, since there's
739 only init_mm and anything attached to that is pinned. */
740 static void xen_release_pte_init(u32 pfn)
741 {
742 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
743 }
744
745 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
746 {
747 struct mmuext_op op;
748 op.cmd = cmd;
749 op.arg1.mfn = pfn_to_mfn(pfn);
750 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
751 BUG();
752 }
753
754 /* This needs to make sure the new pte page is pinned iff its being
755 attached to a pinned pagetable. */
756 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
757 {
758 struct page *page = pfn_to_page(pfn);
759
760 if (PagePinned(virt_to_page(mm->pgd))) {
761 SetPagePinned(page);
762
763 if (!PageHighMem(page)) {
764 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
765 if (level == PT_PTE)
766 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
767 } else
768 /* make sure there are no stray mappings of
769 this page */
770 kmap_flush_unused();
771 }
772 }
773
774 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
775 {
776 xen_alloc_ptpage(mm, pfn, PT_PTE);
777 }
778
779 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
780 {
781 xen_alloc_ptpage(mm, pfn, PT_PMD);
782 }
783
784 /* This should never happen until we're OK to use struct page */
785 static void xen_release_ptpage(u32 pfn, unsigned level)
786 {
787 struct page *page = pfn_to_page(pfn);
788
789 if (PagePinned(page)) {
790 if (!PageHighMem(page)) {
791 if (level == PT_PTE)
792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
793 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
794 }
795 ClearPagePinned(page);
796 }
797 }
798
799 static void xen_release_pte(u32 pfn)
800 {
801 xen_release_ptpage(pfn, PT_PTE);
802 }
803
804 static void xen_release_pmd(u32 pfn)
805 {
806 xen_release_ptpage(pfn, PT_PMD);
807 }
808
809 #if PAGETABLE_LEVELS == 4
810 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
811 {
812 xen_alloc_ptpage(mm, pfn, PT_PUD);
813 }
814
815 static void xen_release_pud(u32 pfn)
816 {
817 xen_release_ptpage(pfn, PT_PUD);
818 }
819 #endif
820
821 #ifdef CONFIG_HIGHPTE
822 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
823 {
824 pgprot_t prot = PAGE_KERNEL;
825
826 if (PagePinned(page))
827 prot = PAGE_KERNEL_RO;
828
829 if (0 && PageHighMem(page))
830 printk("mapping highpte %lx type %d prot %s\n",
831 page_to_pfn(page), type,
832 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
833
834 return kmap_atomic_prot(page, type, prot);
835 }
836 #endif
837
838 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
839 {
840 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
841 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
842 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
843 pte_val_ma(pte));
844
845 return pte;
846 }
847
848 /* Init-time set_pte while constructing initial pagetables, which
849 doesn't allow RO pagetable pages to be remapped RW */
850 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
851 {
852 pte = mask_rw_pte(ptep, pte);
853
854 xen_set_pte(ptep, pte);
855 }
856
857 static __init void xen_pagetable_setup_start(pgd_t *base)
858 {
859 }
860
861 void xen_setup_shared_info(void)
862 {
863 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
864 set_fixmap(FIX_PARAVIRT_BOOTMAP,
865 xen_start_info->shared_info);
866
867 HYPERVISOR_shared_info =
868 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
869 } else
870 HYPERVISOR_shared_info =
871 (struct shared_info *)__va(xen_start_info->shared_info);
872
873 #ifndef CONFIG_SMP
874 /* In UP this is as good a place as any to set up shared info */
875 xen_setup_vcpu_info_placement();
876 #endif
877
878 xen_setup_mfn_list_list();
879 }
880
881 static __init void xen_pagetable_setup_done(pgd_t *base)
882 {
883 xen_setup_shared_info();
884 }
885
886 static __init void xen_post_allocator_init(void)
887 {
888 pv_mmu_ops.set_pte = xen_set_pte;
889 pv_mmu_ops.set_pmd = xen_set_pmd;
890 pv_mmu_ops.set_pud = xen_set_pud;
891 #if PAGETABLE_LEVELS == 4
892 pv_mmu_ops.set_pgd = xen_set_pgd;
893 #endif
894
895 /* This will work as long as patching hasn't happened yet
896 (which it hasn't) */
897 pv_mmu_ops.alloc_pte = xen_alloc_pte;
898 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
899 pv_mmu_ops.release_pte = xen_release_pte;
900 pv_mmu_ops.release_pmd = xen_release_pmd;
901 #if PAGETABLE_LEVELS == 4
902 pv_mmu_ops.alloc_pud = xen_alloc_pud;
903 pv_mmu_ops.release_pud = xen_release_pud;
904 #endif
905
906 xen_mark_init_mm_pinned();
907 }
908
909 /* This is called once we have the cpu_possible_map */
910 void xen_setup_vcpu_info_placement(void)
911 {
912 int cpu;
913
914 for_each_possible_cpu(cpu)
915 xen_vcpu_setup(cpu);
916
917 /* xen_vcpu_setup managed to place the vcpu_info within the
918 percpu area for all cpus, so make use of it */
919 #ifdef CONFIG_X86_32
920 if (have_vcpu_info_placement) {
921 printk(KERN_INFO "Xen: using vcpu_info placement\n");
922
923 pv_irq_ops.save_fl = xen_save_fl_direct;
924 pv_irq_ops.restore_fl = xen_restore_fl_direct;
925 pv_irq_ops.irq_disable = xen_irq_disable_direct;
926 pv_irq_ops.irq_enable = xen_irq_enable_direct;
927 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
928 }
929 #endif
930 }
931
932 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
933 unsigned long addr, unsigned len)
934 {
935 char *start, *end, *reloc;
936 unsigned ret;
937
938 start = end = reloc = NULL;
939
940 #define SITE(op, x) \
941 case PARAVIRT_PATCH(op.x): \
942 if (have_vcpu_info_placement) { \
943 start = (char *)xen_##x##_direct; \
944 end = xen_##x##_direct_end; \
945 reloc = xen_##x##_direct_reloc; \
946 } \
947 goto patch_site
948
949 switch (type) {
950 #ifdef CONFIG_X86_32
951 SITE(pv_irq_ops, irq_enable);
952 SITE(pv_irq_ops, irq_disable);
953 SITE(pv_irq_ops, save_fl);
954 SITE(pv_irq_ops, restore_fl);
955 #endif /* CONFIG_X86_32 */
956 #undef SITE
957
958 patch_site:
959 if (start == NULL || (end-start) > len)
960 goto default_patch;
961
962 ret = paravirt_patch_insns(insnbuf, len, start, end);
963
964 /* Note: because reloc is assigned from something that
965 appears to be an array, gcc assumes it's non-null,
966 but doesn't know its relationship with start and
967 end. */
968 if (reloc > start && reloc < end) {
969 int reloc_off = reloc - start;
970 long *relocp = (long *)(insnbuf + reloc_off);
971 long delta = start - (char *)addr;
972
973 *relocp += delta;
974 }
975 break;
976
977 default_patch:
978 default:
979 ret = paravirt_patch_default(type, clobbers, insnbuf,
980 addr, len);
981 break;
982 }
983
984 return ret;
985 }
986
987 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
988 {
989 pte_t pte;
990
991 phys >>= PAGE_SHIFT;
992
993 switch (idx) {
994 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
995 #ifdef CONFIG_X86_F00F_BUG
996 case FIX_F00F_IDT:
997 #endif
998 #ifdef CONFIG_X86_32
999 case FIX_WP_TEST:
1000 case FIX_VDSO:
1001 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1002 #else
1003 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1004 #endif
1005 #ifdef CONFIG_X86_LOCAL_APIC
1006 case FIX_APIC_BASE: /* maps dummy local APIC */
1007 #endif
1008 pte = pfn_pte(phys, prot);
1009 break;
1010
1011 default:
1012 pte = mfn_pte(phys, prot);
1013 break;
1014 }
1015
1016 __native_set_fixmap(idx, pte);
1017 }
1018
1019 static const struct pv_info xen_info __initdata = {
1020 .paravirt_enabled = 1,
1021 .shared_kernel_pmd = 0,
1022
1023 .name = "Xen",
1024 };
1025
1026 static const struct pv_init_ops xen_init_ops __initdata = {
1027 .patch = xen_patch,
1028
1029 .banner = xen_banner,
1030 .memory_setup = xen_memory_setup,
1031 .arch_setup = xen_arch_setup,
1032 .post_allocator_init = xen_post_allocator_init,
1033 };
1034
1035 static const struct pv_time_ops xen_time_ops __initdata = {
1036 .time_init = xen_time_init,
1037
1038 .set_wallclock = xen_set_wallclock,
1039 .get_wallclock = xen_get_wallclock,
1040 .get_tsc_khz = xen_tsc_khz,
1041 .sched_clock = xen_sched_clock,
1042 };
1043
1044 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1045 .cpuid = xen_cpuid,
1046
1047 .set_debugreg = xen_set_debugreg,
1048 .get_debugreg = xen_get_debugreg,
1049
1050 .clts = xen_clts,
1051
1052 .read_cr0 = native_read_cr0,
1053 .write_cr0 = xen_write_cr0,
1054
1055 .read_cr4 = native_read_cr4,
1056 .read_cr4_safe = native_read_cr4_safe,
1057 .write_cr4 = xen_write_cr4,
1058
1059 .wbinvd = native_wbinvd,
1060
1061 .read_msr = native_read_msr_safe,
1062 .write_msr = native_write_msr_safe,
1063 .read_tsc = native_read_tsc,
1064 .read_pmc = native_read_pmc,
1065
1066 .iret = xen_iret,
1067 .irq_enable_sysexit = xen_sysexit,
1068
1069 .load_tr_desc = paravirt_nop,
1070 .set_ldt = xen_set_ldt,
1071 .load_gdt = xen_load_gdt,
1072 .load_idt = xen_load_idt,
1073 .load_tls = xen_load_tls,
1074 #ifdef CONFIG_X86_64
1075 .load_gs_index = xen_load_gs_index,
1076 #endif
1077
1078 .store_gdt = native_store_gdt,
1079 .store_idt = native_store_idt,
1080 .store_tr = xen_store_tr,
1081
1082 .write_ldt_entry = xen_write_ldt_entry,
1083 .write_gdt_entry = xen_write_gdt_entry,
1084 .write_idt_entry = xen_write_idt_entry,
1085 .load_sp0 = xen_load_sp0,
1086
1087 .set_iopl_mask = xen_set_iopl_mask,
1088 .io_delay = xen_io_delay,
1089
1090 /* Xen takes care of %gs when switching to usermode for us */
1091 .swapgs = paravirt_nop,
1092
1093 .lazy_mode = {
1094 .enter = paravirt_enter_lazy_cpu,
1095 .leave = xen_leave_lazy,
1096 },
1097 };
1098
1099 static void __init __xen_init_IRQ(void)
1100 {
1101 #ifdef CONFIG_X86_64
1102 int i;
1103
1104 /* Create identity vector->irq map */
1105 for(i = 0; i < NR_VECTORS; i++) {
1106 int cpu;
1107
1108 for_each_possible_cpu(cpu)
1109 per_cpu(vector_irq, cpu)[i] = i;
1110 }
1111 #endif /* CONFIG_X86_64 */
1112
1113 xen_init_IRQ();
1114 }
1115
1116 static const struct pv_irq_ops xen_irq_ops __initdata = {
1117 .init_IRQ = __xen_init_IRQ,
1118 .save_fl = xen_save_fl,
1119 .restore_fl = xen_restore_fl,
1120 .irq_disable = xen_irq_disable,
1121 .irq_enable = xen_irq_enable,
1122 .safe_halt = xen_safe_halt,
1123 .halt = xen_halt,
1124 #ifdef CONFIG_X86_64
1125 .adjust_exception_frame = xen_adjust_exception_frame,
1126 #endif
1127 };
1128
1129 static const struct pv_apic_ops xen_apic_ops __initdata = {
1130 #ifdef CONFIG_X86_LOCAL_APIC
1131 .apic_write = xen_apic_write,
1132 .apic_write_atomic = xen_apic_write,
1133 .apic_read = xen_apic_read,
1134 .setup_boot_clock = paravirt_nop,
1135 .setup_secondary_clock = paravirt_nop,
1136 .startup_ipi_hook = paravirt_nop,
1137 #endif
1138 };
1139
1140 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1141 .pagetable_setup_start = xen_pagetable_setup_start,
1142 .pagetable_setup_done = xen_pagetable_setup_done,
1143
1144 .read_cr2 = xen_read_cr2,
1145 .write_cr2 = xen_write_cr2,
1146
1147 .read_cr3 = xen_read_cr3,
1148 .write_cr3 = xen_write_cr3,
1149
1150 .flush_tlb_user = xen_flush_tlb,
1151 .flush_tlb_kernel = xen_flush_tlb,
1152 .flush_tlb_single = xen_flush_tlb_single,
1153 .flush_tlb_others = xen_flush_tlb_others,
1154
1155 .pte_update = paravirt_nop,
1156 .pte_update_defer = paravirt_nop,
1157
1158 .pgd_alloc = __paravirt_pgd_alloc,
1159 .pgd_free = paravirt_nop,
1160
1161 .alloc_pte = xen_alloc_pte_init,
1162 .release_pte = xen_release_pte_init,
1163 .alloc_pmd = xen_alloc_pte_init,
1164 .alloc_pmd_clone = paravirt_nop,
1165 .release_pmd = xen_release_pte_init,
1166
1167 #ifdef CONFIG_HIGHPTE
1168 .kmap_atomic_pte = xen_kmap_atomic_pte,
1169 #endif
1170
1171 #ifdef CONFIG_X86_64
1172 .set_pte = xen_set_pte,
1173 #else
1174 .set_pte = xen_set_pte_init,
1175 #endif
1176 .set_pte_at = xen_set_pte_at,
1177 .set_pmd = xen_set_pmd_hyper,
1178
1179 .ptep_modify_prot_start = __ptep_modify_prot_start,
1180 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1181
1182 .pte_val = xen_pte_val,
1183 .pte_flags = native_pte_val,
1184 .pgd_val = xen_pgd_val,
1185
1186 .make_pte = xen_make_pte,
1187 .make_pgd = xen_make_pgd,
1188
1189 #ifdef CONFIG_X86_PAE
1190 .set_pte_atomic = xen_set_pte_atomic,
1191 .set_pte_present = xen_set_pte_at,
1192 .pte_clear = xen_pte_clear,
1193 .pmd_clear = xen_pmd_clear,
1194 #endif /* CONFIG_X86_PAE */
1195 .set_pud = xen_set_pud_hyper,
1196
1197 .make_pmd = xen_make_pmd,
1198 .pmd_val = xen_pmd_val,
1199
1200 #if PAGETABLE_LEVELS == 4
1201 .pud_val = xen_pud_val,
1202 .make_pud = xen_make_pud,
1203 .set_pgd = xen_set_pgd_hyper,
1204
1205 .alloc_pud = xen_alloc_pte_init,
1206 .release_pud = xen_release_pte_init,
1207 #endif /* PAGETABLE_LEVELS == 4 */
1208
1209 .activate_mm = xen_activate_mm,
1210 .dup_mmap = xen_dup_mmap,
1211 .exit_mmap = xen_exit_mmap,
1212
1213 .lazy_mode = {
1214 .enter = paravirt_enter_lazy_mmu,
1215 .leave = xen_leave_lazy,
1216 },
1217
1218 .set_fixmap = xen_set_fixmap,
1219 };
1220
1221 static void xen_reboot(int reason)
1222 {
1223 struct sched_shutdown r = { .reason = reason };
1224
1225 #ifdef CONFIG_SMP
1226 smp_send_stop();
1227 #endif
1228
1229 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1230 BUG();
1231 }
1232
1233 static void xen_restart(char *msg)
1234 {
1235 xen_reboot(SHUTDOWN_reboot);
1236 }
1237
1238 static void xen_emergency_restart(void)
1239 {
1240 xen_reboot(SHUTDOWN_reboot);
1241 }
1242
1243 static void xen_machine_halt(void)
1244 {
1245 xen_reboot(SHUTDOWN_poweroff);
1246 }
1247
1248 static void xen_crash_shutdown(struct pt_regs *regs)
1249 {
1250 xen_reboot(SHUTDOWN_crash);
1251 }
1252
1253 static const struct machine_ops __initdata xen_machine_ops = {
1254 .restart = xen_restart,
1255 .halt = xen_machine_halt,
1256 .power_off = xen_machine_halt,
1257 .shutdown = xen_machine_halt,
1258 .crash_shutdown = xen_crash_shutdown,
1259 .emergency_restart = xen_emergency_restart,
1260 };
1261
1262
1263 static void __init xen_reserve_top(void)
1264 {
1265 #ifdef CONFIG_X86_32
1266 unsigned long top = HYPERVISOR_VIRT_START;
1267 struct xen_platform_parameters pp;
1268
1269 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1270 top = pp.virt_start;
1271
1272 reserve_top_address(-top + 2 * PAGE_SIZE);
1273 #endif /* CONFIG_X86_32 */
1274 }
1275
1276 /*
1277 * Like __va(), but returns address in the kernel mapping (which is
1278 * all we have until the physical memory mapping has been set up.
1279 */
1280 static void *__ka(phys_addr_t paddr)
1281 {
1282 #ifdef CONFIG_X86_64
1283 return (void *)(paddr + __START_KERNEL_map);
1284 #else
1285 return __va(paddr);
1286 #endif
1287 }
1288
1289 /* Convert a machine address to physical address */
1290 static unsigned long m2p(phys_addr_t maddr)
1291 {
1292 phys_addr_t paddr;
1293
1294 maddr &= PTE_MASK;
1295 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1296
1297 return paddr;
1298 }
1299
1300 /* Convert a machine address to kernel virtual */
1301 static void *m2v(phys_addr_t maddr)
1302 {
1303 return __ka(m2p(maddr));
1304 }
1305
1306 #ifdef CONFIG_X86_64
1307 static void walk(pgd_t *pgd, unsigned long addr)
1308 {
1309 unsigned l4idx = pgd_index(addr);
1310 unsigned l3idx = pud_index(addr);
1311 unsigned l2idx = pmd_index(addr);
1312 unsigned l1idx = pte_index(addr);
1313 pgd_t l4;
1314 pud_t l3;
1315 pmd_t l2;
1316 pte_t l1;
1317
1318 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1319 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1320
1321 l4 = pgd[l4idx];
1322 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1323 xen_raw_printk(" %016lx\n", pgd_val(l4));
1324
1325 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1326 xen_raw_printk(" l3: %016lx\n", l3.pud);
1327 xen_raw_printk(" %016lx\n", pud_val(l3));
1328
1329 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1330 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1331 xen_raw_printk(" %016lx\n", pmd_val(l2));
1332
1333 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1334 xen_raw_printk(" l1: %016lx\n", l1.pte);
1335 xen_raw_printk(" %016lx\n", pte_val(l1));
1336 }
1337 #endif
1338
1339 static void set_page_prot(void *addr, pgprot_t prot)
1340 {
1341 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1342 pte_t pte = pfn_pte(pfn, prot);
1343
1344 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1345 addr, pfn, get_phys_to_machine(pfn),
1346 pgprot_val(prot), pte.pte);
1347
1348 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1349 BUG();
1350 }
1351
1352 /*
1353 * Identity map, in addition to plain kernel map. This needs to be
1354 * large enough to allocate page table pages to allocate the rest.
1355 * Each page can map 2MB.
1356 */
1357 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
1358
1359 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1360 {
1361 unsigned pmdidx, pteidx;
1362 unsigned ident_pte;
1363 unsigned long pfn;
1364
1365 ident_pte = 0;
1366 pfn = 0;
1367 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1368 pte_t *pte_page;
1369
1370 /* Reuse or allocate a page of ptes */
1371 if (pmd_present(pmd[pmdidx]))
1372 pte_page = m2v(pmd[pmdidx].pmd);
1373 else {
1374 /* Check for free pte pages */
1375 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1376 break;
1377
1378 pte_page = &level1_ident_pgt[ident_pte];
1379 ident_pte += PTRS_PER_PTE;
1380
1381 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1382 }
1383
1384 /* Install mappings */
1385 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1386 pte_t pte;
1387
1388 if (pfn > max_pfn_mapped)
1389 max_pfn_mapped = pfn;
1390
1391 if (!pte_none(pte_page[pteidx]))
1392 continue;
1393
1394 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1395 pte_page[pteidx] = pte;
1396 }
1397 }
1398
1399 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1400 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1401
1402 set_page_prot(pmd, PAGE_KERNEL_RO);
1403 }
1404
1405 #ifdef CONFIG_X86_64
1406 static void convert_pfn_mfn(void *v)
1407 {
1408 pte_t *pte = v;
1409 int i;
1410
1411 /* All levels are converted the same way, so just treat them
1412 as ptes. */
1413 for(i = 0; i < PTRS_PER_PTE; i++)
1414 pte[i] = xen_make_pte(pte[i].pte);
1415 }
1416
1417 /*
1418 * Set up the inital kernel pagetable.
1419 *
1420 * We can construct this by grafting the Xen provided pagetable into
1421 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1422 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1423 * means that only the kernel has a physical mapping to start with -
1424 * but that's enough to get __va working. We need to fill in the rest
1425 * of the physical mapping once some sort of allocator has been set
1426 * up.
1427 */
1428 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1429 {
1430 pud_t *l3;
1431 pmd_t *l2;
1432
1433 /* Zap identity mapping */
1434 init_level4_pgt[0] = __pgd(0);
1435
1436 /* Pre-constructed entries are in pfn, so convert to mfn */
1437 convert_pfn_mfn(init_level4_pgt);
1438 convert_pfn_mfn(level3_ident_pgt);
1439 convert_pfn_mfn(level3_kernel_pgt);
1440
1441 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1442 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1443
1444 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1445 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1446
1447 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1448 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1449 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1450
1451 /* Set up identity map */
1452 xen_map_identity_early(level2_ident_pgt, max_pfn);
1453
1454 /* Make pagetable pieces RO */
1455 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1456 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1457 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1458 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1459 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1460
1461 /* Pin down new L4 */
1462 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1463 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1464
1465 /* Unpin Xen-provided one */
1466 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1467
1468 /* Switch over */
1469 pgd = init_level4_pgt;
1470 xen_write_cr3(__pa(pgd));
1471
1472 reserve_early(__pa(xen_start_info->pt_base),
1473 __pa(xen_start_info->pt_base +
1474 xen_start_info->nr_pt_frames * PAGE_SIZE),
1475 "XEN PAGETABLES");
1476
1477 return pgd;
1478 }
1479 #else /* !CONFIG_X86_64 */
1480 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1481
1482 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1483 {
1484 pmd_t *kernel_pmd;
1485
1486 init_pg_tables_start = __pa(pgd);
1487 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1488 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1489
1490 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1491 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1492
1493 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1494
1495 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1496 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1497 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1498
1499 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1500 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1501 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1502
1503 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1504
1505 xen_write_cr3(__pa(swapper_pg_dir));
1506
1507 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1508
1509 return swapper_pg_dir;
1510 }
1511 #endif /* CONFIG_X86_64 */
1512
1513 /* First C function to be called on Xen boot */
1514 asmlinkage void __init xen_start_kernel(void)
1515 {
1516 pgd_t *pgd;
1517
1518 if (!xen_start_info)
1519 return;
1520
1521 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1522
1523 xen_setup_features();
1524
1525 /* Install Xen paravirt ops */
1526 pv_info = xen_info;
1527 pv_init_ops = xen_init_ops;
1528 pv_time_ops = xen_time_ops;
1529 pv_cpu_ops = xen_cpu_ops;
1530 pv_irq_ops = xen_irq_ops;
1531 pv_apic_ops = xen_apic_ops;
1532 pv_mmu_ops = xen_mmu_ops;
1533
1534 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1535 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1536 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1537 }
1538
1539 machine_ops = xen_machine_ops;
1540
1541 #ifdef CONFIG_X86_64
1542 /* Disable until direct per-cpu data access. */
1543 have_vcpu_info_placement = 0;
1544 x86_64_init_pda();
1545 #endif
1546
1547 xen_smp_init();
1548
1549 /* Get mfn list */
1550 if (!xen_feature(XENFEAT_auto_translated_physmap))
1551 xen_build_dynamic_phys_to_machine();
1552
1553 pgd = (pgd_t *)xen_start_info->pt_base;
1554
1555 /* Prevent unwanted bits from being set in PTEs. */
1556 __supported_pte_mask &= ~_PAGE_GLOBAL;
1557 if (!is_initial_xendomain())
1558 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1559
1560 /* Don't do the full vcpu_info placement stuff until we have a
1561 possible map and a non-dummy shared_info. */
1562 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1563
1564 xen_raw_console_write("mapping kernel into physical memory\n");
1565 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1566
1567 init_mm.pgd = pgd;
1568
1569 /* keep using Xen gdt for now; no urgent need to change it */
1570
1571 pv_info.kernel_rpl = 1;
1572 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1573 pv_info.kernel_rpl = 0;
1574
1575 /* set the limit of our address space */
1576 xen_reserve_top();
1577
1578 #ifdef CONFIG_X86_32
1579 /* set up basic CPUID stuff */
1580 cpu_detect(&new_cpu_data);
1581 new_cpu_data.hard_math = 1;
1582 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1583 #endif
1584
1585 /* Poke various useful things into boot_params */
1586 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1587 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1588 ? __pa(xen_start_info->mod_start) : 0;
1589 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1590
1591 if (!is_initial_xendomain()) {
1592 add_preferred_console("xenboot", 0, NULL);
1593 add_preferred_console("tty", 0, NULL);
1594 add_preferred_console("hvc", 0, NULL);
1595 }
1596
1597 xen_raw_console_write("about to get started...\n");
1598
1599 #if 0
1600 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1601 &boot_params, __pa_symbol(&boot_params),
1602 __va(__pa_symbol(&boot_params)));
1603
1604 walk(pgd, &boot_params);
1605 walk(pgd, __va(__pa(&boot_params)));
1606 #endif
1607
1608 /* Start the world */
1609 #ifdef CONFIG_X86_32
1610 i386_start_kernel();
1611 #else
1612 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1613 #endif
1614 }