]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/xen/enlighten.c
Merge branch 'x86/uv' into x86/devel
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
52
53 EXPORT_SYMBOL_GPL(hypercall_page);
54
55 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
56 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
57
58 /*
59 * Note about cr3 (pagetable base) values:
60 *
61 * xen_cr3 contains the current logical cr3 value; it contains the
62 * last set cr3. This may not be the current effective cr3, because
63 * its update may be being lazily deferred. However, a vcpu looking
64 * at its own cr3 can use this value knowing that it everything will
65 * be self-consistent.
66 *
67 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
68 * hypercall to set the vcpu cr3 is complete (so it may be a little
69 * out of date, but it will never be set early). If one vcpu is
70 * looking at another vcpu's cr3 value, it should use this variable.
71 */
72 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
73 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
74
75 struct start_info *xen_start_info;
76 EXPORT_SYMBOL_GPL(xen_start_info);
77
78 struct shared_info xen_dummy_shared_info;
79
80 /*
81 * Point at some empty memory to start with. We map the real shared_info
82 * page as soon as fixmap is up and running.
83 */
84 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
85
86 /*
87 * Flag to determine whether vcpu info placement is available on all
88 * VCPUs. We assume it is to start with, and then set it to zero on
89 * the first failure. This is because it can succeed on some VCPUs
90 * and not others, since it can involve hypervisor memory allocation,
91 * or because the guest failed to guarantee all the appropriate
92 * constraints on all VCPUs (ie buffer can't cross a page boundary).
93 *
94 * Note that any particular CPU may be using a placed vcpu structure,
95 * but we can only optimise if the all are.
96 *
97 * 0: not available, 1: available
98 */
99 static int have_vcpu_info_placement = 1;
100
101 static void xen_vcpu_setup(int cpu)
102 {
103 struct vcpu_register_vcpu_info info;
104 int err;
105 struct vcpu_info *vcpup;
106
107 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
108 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
109
110 if (!have_vcpu_info_placement)
111 return; /* already tested, not available */
112
113 vcpup = &per_cpu(xen_vcpu_info, cpu);
114
115 info.mfn = virt_to_mfn(vcpup);
116 info.offset = offset_in_page(vcpup);
117
118 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
119 cpu, vcpup, info.mfn, info.offset);
120
121 /* Check to see if the hypervisor will put the vcpu_info
122 structure where we want it, which allows direct access via
123 a percpu-variable. */
124 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
125
126 if (err) {
127 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
128 have_vcpu_info_placement = 0;
129 } else {
130 /* This cpu is using the registered vcpu info, even if
131 later ones fail to. */
132 per_cpu(xen_vcpu, cpu) = vcpup;
133
134 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
135 cpu, vcpup);
136 }
137 }
138
139 /*
140 * On restore, set the vcpu placement up again.
141 * If it fails, then we're in a bad state, since
142 * we can't back out from using it...
143 */
144 void xen_vcpu_restore(void)
145 {
146 if (have_vcpu_info_placement) {
147 int cpu;
148
149 for_each_online_cpu(cpu) {
150 bool other_cpu = (cpu != smp_processor_id());
151
152 if (other_cpu &&
153 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
154 BUG();
155
156 xen_vcpu_setup(cpu);
157
158 if (other_cpu &&
159 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
160 BUG();
161 }
162
163 BUG_ON(!have_vcpu_info_placement);
164 }
165 }
166
167 static void __init xen_banner(void)
168 {
169 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
170 pv_info.name);
171 printk(KERN_INFO "Hypervisor signature: %s%s\n",
172 xen_start_info->magic,
173 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
174 }
175
176 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
177 unsigned int *cx, unsigned int *dx)
178 {
179 unsigned maskedx = ~0;
180
181 /*
182 * Mask out inconvenient features, to try and disable as many
183 * unsupported kernel subsystems as possible.
184 */
185 if (*ax == 1)
186 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
187 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
188 (1 << X86_FEATURE_MCE) | /* disable MCE */
189 (1 << X86_FEATURE_MCA) | /* disable MCA */
190 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
191
192 asm(XEN_EMULATE_PREFIX "cpuid"
193 : "=a" (*ax),
194 "=b" (*bx),
195 "=c" (*cx),
196 "=d" (*dx)
197 : "0" (*ax), "2" (*cx));
198 *dx &= maskedx;
199 }
200
201 static void xen_set_debugreg(int reg, unsigned long val)
202 {
203 HYPERVISOR_set_debugreg(reg, val);
204 }
205
206 static unsigned long xen_get_debugreg(int reg)
207 {
208 return HYPERVISOR_get_debugreg(reg);
209 }
210
211 static unsigned long xen_save_fl(void)
212 {
213 struct vcpu_info *vcpu;
214 unsigned long flags;
215
216 vcpu = x86_read_percpu(xen_vcpu);
217
218 /* flag has opposite sense of mask */
219 flags = !vcpu->evtchn_upcall_mask;
220
221 /* convert to IF type flag
222 -0 -> 0x00000000
223 -1 -> 0xffffffff
224 */
225 return (-flags) & X86_EFLAGS_IF;
226 }
227
228 static void xen_restore_fl(unsigned long flags)
229 {
230 struct vcpu_info *vcpu;
231
232 /* convert from IF type flag */
233 flags = !(flags & X86_EFLAGS_IF);
234
235 /* There's a one instruction preempt window here. We need to
236 make sure we're don't switch CPUs between getting the vcpu
237 pointer and updating the mask. */
238 preempt_disable();
239 vcpu = x86_read_percpu(xen_vcpu);
240 vcpu->evtchn_upcall_mask = flags;
241 preempt_enable_no_resched();
242
243 /* Doesn't matter if we get preempted here, because any
244 pending event will get dealt with anyway. */
245
246 if (flags == 0) {
247 preempt_check_resched();
248 barrier(); /* unmask then check (avoid races) */
249 if (unlikely(vcpu->evtchn_upcall_pending))
250 force_evtchn_callback();
251 }
252 }
253
254 static void xen_irq_disable(void)
255 {
256 /* There's a one instruction preempt window here. We need to
257 make sure we're don't switch CPUs between getting the vcpu
258 pointer and updating the mask. */
259 preempt_disable();
260 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
261 preempt_enable_no_resched();
262 }
263
264 static void xen_irq_enable(void)
265 {
266 struct vcpu_info *vcpu;
267
268 /* We don't need to worry about being preempted here, since
269 either a) interrupts are disabled, so no preemption, or b)
270 the caller is confused and is trying to re-enable interrupts
271 on an indeterminate processor. */
272
273 vcpu = x86_read_percpu(xen_vcpu);
274 vcpu->evtchn_upcall_mask = 0;
275
276 /* Doesn't matter if we get preempted here, because any
277 pending event will get dealt with anyway. */
278
279 barrier(); /* unmask then check (avoid races) */
280 if (unlikely(vcpu->evtchn_upcall_pending))
281 force_evtchn_callback();
282 }
283
284 static void xen_safe_halt(void)
285 {
286 /* Blocking includes an implicit local_irq_enable(). */
287 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
288 BUG();
289 }
290
291 static void xen_halt(void)
292 {
293 if (irqs_disabled())
294 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
295 else
296 xen_safe_halt();
297 }
298
299 static void xen_leave_lazy(void)
300 {
301 paravirt_leave_lazy(paravirt_get_lazy_mode());
302 xen_mc_flush();
303 }
304
305 static unsigned long xen_store_tr(void)
306 {
307 return 0;
308 }
309
310 static void xen_set_ldt(const void *addr, unsigned entries)
311 {
312 struct mmuext_op *op;
313 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
314
315 op = mcs.args;
316 op->cmd = MMUEXT_SET_LDT;
317 op->arg1.linear_addr = (unsigned long)addr;
318 op->arg2.nr_ents = entries;
319
320 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
321
322 xen_mc_issue(PARAVIRT_LAZY_CPU);
323 }
324
325 static void xen_load_gdt(const struct desc_ptr *dtr)
326 {
327 unsigned long *frames;
328 unsigned long va = dtr->address;
329 unsigned int size = dtr->size + 1;
330 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
331 int f;
332 struct multicall_space mcs;
333
334 /* A GDT can be up to 64k in size, which corresponds to 8192
335 8-byte entries, or 16 4k pages.. */
336
337 BUG_ON(size > 65536);
338 BUG_ON(va & ~PAGE_MASK);
339
340 mcs = xen_mc_entry(sizeof(*frames) * pages);
341 frames = mcs.args;
342
343 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
344 frames[f] = virt_to_mfn(va);
345 make_lowmem_page_readonly((void *)va);
346 }
347
348 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
349
350 xen_mc_issue(PARAVIRT_LAZY_CPU);
351 }
352
353 static void load_TLS_descriptor(struct thread_struct *t,
354 unsigned int cpu, unsigned int i)
355 {
356 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
357 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
358 struct multicall_space mc = __xen_mc_entry(0);
359
360 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
361 }
362
363 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
364 {
365 xen_mc_batch();
366
367 load_TLS_descriptor(t, cpu, 0);
368 load_TLS_descriptor(t, cpu, 1);
369 load_TLS_descriptor(t, cpu, 2);
370
371 xen_mc_issue(PARAVIRT_LAZY_CPU);
372
373 /*
374 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
375 * it means we're in a context switch, and %gs has just been
376 * saved. This means we can zero it out to prevent faults on
377 * exit from the hypervisor if the next process has no %gs.
378 * Either way, it has been saved, and the new value will get
379 * loaded properly. This will go away as soon as Xen has been
380 * modified to not save/restore %gs for normal hypercalls.
381 */
382 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
383 loadsegment(gs, 0);
384 }
385
386 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
387 const void *ptr)
388 {
389 unsigned long lp = (unsigned long)&dt[entrynum];
390 xmaddr_t mach_lp = virt_to_machine(lp);
391 u64 entry = *(u64 *)ptr;
392
393 preempt_disable();
394
395 xen_mc_flush();
396 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
397 BUG();
398
399 preempt_enable();
400 }
401
402 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
403 struct trap_info *info)
404 {
405 u8 type, dpl;
406
407 type = (high >> 8) & 0x1f;
408 dpl = (high >> 13) & 3;
409
410 if (type != 0xf && type != 0xe)
411 return 0;
412
413 info->vector = vector;
414 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
415 info->cs = low >> 16;
416 info->flags = dpl;
417 /* interrupt gates clear IF */
418 if (type == 0xe)
419 info->flags |= 4;
420
421 return 1;
422 }
423
424 /* Locations of each CPU's IDT */
425 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
426
427 /* Set an IDT entry. If the entry is part of the current IDT, then
428 also update Xen. */
429 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
430 {
431 unsigned long p = (unsigned long)&dt[entrynum];
432 unsigned long start, end;
433
434 preempt_disable();
435
436 start = __get_cpu_var(idt_desc).address;
437 end = start + __get_cpu_var(idt_desc).size + 1;
438
439 xen_mc_flush();
440
441 native_write_idt_entry(dt, entrynum, g);
442
443 if (p >= start && (p + 8) <= end) {
444 struct trap_info info[2];
445 u32 *desc = (u32 *)g;
446
447 info[1].address = 0;
448
449 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
450 if (HYPERVISOR_set_trap_table(info))
451 BUG();
452 }
453
454 preempt_enable();
455 }
456
457 static void xen_convert_trap_info(const struct desc_ptr *desc,
458 struct trap_info *traps)
459 {
460 unsigned in, out, count;
461
462 count = (desc->size+1) / 8;
463 BUG_ON(count > 256);
464
465 for (in = out = 0; in < count; in++) {
466 const u32 *entry = (u32 *)(desc->address + in * 8);
467
468 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
469 out++;
470 }
471 traps[out].address = 0;
472 }
473
474 void xen_copy_trap_info(struct trap_info *traps)
475 {
476 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
477
478 xen_convert_trap_info(desc, traps);
479 }
480
481 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
482 hold a spinlock to protect the static traps[] array (static because
483 it avoids allocation, and saves stack space). */
484 static void xen_load_idt(const struct desc_ptr *desc)
485 {
486 static DEFINE_SPINLOCK(lock);
487 static struct trap_info traps[257];
488
489 spin_lock(&lock);
490
491 __get_cpu_var(idt_desc) = *desc;
492
493 xen_convert_trap_info(desc, traps);
494
495 xen_mc_flush();
496 if (HYPERVISOR_set_trap_table(traps))
497 BUG();
498
499 spin_unlock(&lock);
500 }
501
502 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
503 they're handled differently. */
504 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
505 const void *desc, int type)
506 {
507 preempt_disable();
508
509 switch (type) {
510 case DESC_LDT:
511 case DESC_TSS:
512 /* ignore */
513 break;
514
515 default: {
516 xmaddr_t maddr = virt_to_machine(&dt[entry]);
517
518 xen_mc_flush();
519 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
520 BUG();
521 }
522
523 }
524
525 preempt_enable();
526 }
527
528 static void xen_load_sp0(struct tss_struct *tss,
529 struct thread_struct *thread)
530 {
531 struct multicall_space mcs = xen_mc_entry(0);
532 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
533 xen_mc_issue(PARAVIRT_LAZY_CPU);
534 }
535
536 static void xen_set_iopl_mask(unsigned mask)
537 {
538 struct physdev_set_iopl set_iopl;
539
540 /* Force the change at ring 0. */
541 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
542 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
543 }
544
545 static void xen_io_delay(void)
546 {
547 }
548
549 #ifdef CONFIG_X86_LOCAL_APIC
550 static u32 xen_apic_read(unsigned long reg)
551 {
552 return 0;
553 }
554
555 static void xen_apic_write(unsigned long reg, u32 val)
556 {
557 /* Warn to see if there's any stray references */
558 WARN_ON(1);
559 }
560 #endif
561
562 static void xen_flush_tlb(void)
563 {
564 struct mmuext_op *op;
565 struct multicall_space mcs;
566
567 preempt_disable();
568
569 mcs = xen_mc_entry(sizeof(*op));
570
571 op = mcs.args;
572 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
573 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
574
575 xen_mc_issue(PARAVIRT_LAZY_MMU);
576
577 preempt_enable();
578 }
579
580 static void xen_flush_tlb_single(unsigned long addr)
581 {
582 struct mmuext_op *op;
583 struct multicall_space mcs;
584
585 preempt_disable();
586
587 mcs = xen_mc_entry(sizeof(*op));
588 op = mcs.args;
589 op->cmd = MMUEXT_INVLPG_LOCAL;
590 op->arg1.linear_addr = addr & PAGE_MASK;
591 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
592
593 xen_mc_issue(PARAVIRT_LAZY_MMU);
594
595 preempt_enable();
596 }
597
598 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
599 unsigned long va)
600 {
601 struct {
602 struct mmuext_op op;
603 cpumask_t mask;
604 } *args;
605 cpumask_t cpumask = *cpus;
606 struct multicall_space mcs;
607
608 /*
609 * A couple of (to be removed) sanity checks:
610 *
611 * - current CPU must not be in mask
612 * - mask must exist :)
613 */
614 BUG_ON(cpus_empty(cpumask));
615 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
616 BUG_ON(!mm);
617
618 /* If a CPU which we ran on has gone down, OK. */
619 cpus_and(cpumask, cpumask, cpu_online_map);
620 if (cpus_empty(cpumask))
621 return;
622
623 mcs = xen_mc_entry(sizeof(*args));
624 args = mcs.args;
625 args->mask = cpumask;
626 args->op.arg2.vcpumask = &args->mask;
627
628 if (va == TLB_FLUSH_ALL) {
629 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
630 } else {
631 args->op.cmd = MMUEXT_INVLPG_MULTI;
632 args->op.arg1.linear_addr = va;
633 }
634
635 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
636
637 xen_mc_issue(PARAVIRT_LAZY_MMU);
638 }
639
640 static void xen_clts(void)
641 {
642 struct multicall_space mcs;
643
644 mcs = xen_mc_entry(0);
645
646 MULTI_fpu_taskswitch(mcs.mc, 0);
647
648 xen_mc_issue(PARAVIRT_LAZY_CPU);
649 }
650
651 static void xen_write_cr0(unsigned long cr0)
652 {
653 struct multicall_space mcs;
654
655 /* Only pay attention to cr0.TS; everything else is
656 ignored. */
657 mcs = xen_mc_entry(0);
658
659 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
660
661 xen_mc_issue(PARAVIRT_LAZY_CPU);
662 }
663
664 static void xen_write_cr2(unsigned long cr2)
665 {
666 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
667 }
668
669 static unsigned long xen_read_cr2(void)
670 {
671 return x86_read_percpu(xen_vcpu)->arch.cr2;
672 }
673
674 static unsigned long xen_read_cr2_direct(void)
675 {
676 return x86_read_percpu(xen_vcpu_info.arch.cr2);
677 }
678
679 static void xen_write_cr4(unsigned long cr4)
680 {
681 cr4 &= ~X86_CR4_PGE;
682 cr4 &= ~X86_CR4_PSE;
683
684 native_write_cr4(cr4);
685 }
686
687 static unsigned long xen_read_cr3(void)
688 {
689 return x86_read_percpu(xen_cr3);
690 }
691
692 static void set_current_cr3(void *v)
693 {
694 x86_write_percpu(xen_current_cr3, (unsigned long)v);
695 }
696
697 static void xen_write_cr3(unsigned long cr3)
698 {
699 struct mmuext_op *op;
700 struct multicall_space mcs;
701 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
702
703 BUG_ON(preemptible());
704
705 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
706
707 /* Update while interrupts are disabled, so its atomic with
708 respect to ipis */
709 x86_write_percpu(xen_cr3, cr3);
710
711 op = mcs.args;
712 op->cmd = MMUEXT_NEW_BASEPTR;
713 op->arg1.mfn = mfn;
714
715 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
716
717 /* Update xen_update_cr3 once the batch has actually
718 been submitted. */
719 xen_mc_callback(set_current_cr3, (void *)cr3);
720
721 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
722 }
723
724 /* Early in boot, while setting up the initial pagetable, assume
725 everything is pinned. */
726 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
727 {
728 #ifdef CONFIG_FLATMEM
729 BUG_ON(mem_map); /* should only be used early */
730 #endif
731 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
732 }
733
734 /* Early release_pte assumes that all pts are pinned, since there's
735 only init_mm and anything attached to that is pinned. */
736 static void xen_release_pte_init(u32 pfn)
737 {
738 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
739 }
740
741 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
742 {
743 struct mmuext_op op;
744 op.cmd = cmd;
745 op.arg1.mfn = pfn_to_mfn(pfn);
746 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
747 BUG();
748 }
749
750 /* This needs to make sure the new pte page is pinned iff its being
751 attached to a pinned pagetable. */
752 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
753 {
754 struct page *page = pfn_to_page(pfn);
755
756 if (PagePinned(virt_to_page(mm->pgd))) {
757 SetPagePinned(page);
758
759 if (!PageHighMem(page)) {
760 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
761 if (level == PT_PTE)
762 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
763 } else
764 /* make sure there are no stray mappings of
765 this page */
766 kmap_flush_unused();
767 }
768 }
769
770 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
771 {
772 xen_alloc_ptpage(mm, pfn, PT_PTE);
773 }
774
775 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
776 {
777 xen_alloc_ptpage(mm, pfn, PT_PMD);
778 }
779
780 /* This should never happen until we're OK to use struct page */
781 static void xen_release_ptpage(u32 pfn, unsigned level)
782 {
783 struct page *page = pfn_to_page(pfn);
784
785 if (PagePinned(page)) {
786 if (!PageHighMem(page)) {
787 if (level == PT_PTE)
788 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
789 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
790 }
791 ClearPagePinned(page);
792 }
793 }
794
795 static void xen_release_pte(u32 pfn)
796 {
797 xen_release_ptpage(pfn, PT_PTE);
798 }
799
800 static void xen_release_pmd(u32 pfn)
801 {
802 xen_release_ptpage(pfn, PT_PMD);
803 }
804
805 #ifdef CONFIG_HIGHPTE
806 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
807 {
808 pgprot_t prot = PAGE_KERNEL;
809
810 if (PagePinned(page))
811 prot = PAGE_KERNEL_RO;
812
813 if (0 && PageHighMem(page))
814 printk("mapping highpte %lx type %d prot %s\n",
815 page_to_pfn(page), type,
816 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
817
818 return kmap_atomic_prot(page, type, prot);
819 }
820 #endif
821
822 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
823 {
824 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
825 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
826 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
827 pte_val_ma(pte));
828
829 return pte;
830 }
831
832 /* Init-time set_pte while constructing initial pagetables, which
833 doesn't allow RO pagetable pages to be remapped RW */
834 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
835 {
836 pte = mask_rw_pte(ptep, pte);
837
838 xen_set_pte(ptep, pte);
839 }
840
841 static __init void xen_pagetable_setup_start(pgd_t *base)
842 {
843 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
844 int i;
845
846 /* special set_pte for pagetable initialization */
847 pv_mmu_ops.set_pte = xen_set_pte_init;
848
849 init_mm.pgd = base;
850 /*
851 * copy top-level of Xen-supplied pagetable into place. This
852 * is a stand-in while we copy the pmd pages.
853 */
854 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
855
856 /*
857 * For PAE, need to allocate new pmds, rather than
858 * share Xen's, since Xen doesn't like pmd's being
859 * shared between address spaces.
860 */
861 for (i = 0; i < PTRS_PER_PGD; i++) {
862 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
863 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
864
865 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
866 PAGE_SIZE);
867
868 make_lowmem_page_readonly(pmd);
869
870 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
871 } else
872 pgd_clear(&base[i]);
873 }
874
875 /* make sure zero_page is mapped RO so we can use it in pagetables */
876 make_lowmem_page_readonly(empty_zero_page);
877 make_lowmem_page_readonly(base);
878 /*
879 * Switch to new pagetable. This is done before
880 * pagetable_init has done anything so that the new pages
881 * added to the table can be prepared properly for Xen.
882 */
883 xen_write_cr3(__pa(base));
884
885 /* Unpin initial Xen pagetable */
886 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
887 PFN_DOWN(__pa(xen_start_info->pt_base)));
888 }
889
890 void xen_setup_shared_info(void)
891 {
892 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
893 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
894
895 /*
896 * Create a mapping for the shared info page.
897 * Should be set_fixmap(), but shared_info is a machine
898 * address with no corresponding pseudo-phys address.
899 */
900 set_pte_mfn(addr,
901 PFN_DOWN(xen_start_info->shared_info),
902 PAGE_KERNEL);
903
904 HYPERVISOR_shared_info = (struct shared_info *)addr;
905 } else
906 HYPERVISOR_shared_info =
907 (struct shared_info *)__va(xen_start_info->shared_info);
908
909 #ifndef CONFIG_SMP
910 /* In UP this is as good a place as any to set up shared info */
911 xen_setup_vcpu_info_placement();
912 #endif
913
914 xen_setup_mfn_list_list();
915 }
916
917 static __init void xen_pagetable_setup_done(pgd_t *base)
918 {
919 /* This will work as long as patching hasn't happened yet
920 (which it hasn't) */
921 pv_mmu_ops.alloc_pte = xen_alloc_pte;
922 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
923 pv_mmu_ops.release_pte = xen_release_pte;
924 pv_mmu_ops.release_pmd = xen_release_pmd;
925 pv_mmu_ops.set_pte = xen_set_pte;
926
927 xen_setup_shared_info();
928
929 /* Actually pin the pagetable down, but we can't set PG_pinned
930 yet because the page structures don't exist yet. */
931 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
932 }
933
934 static __init void xen_post_allocator_init(void)
935 {
936 pv_mmu_ops.set_pmd = xen_set_pmd;
937 pv_mmu_ops.set_pud = xen_set_pud;
938
939 xen_mark_init_mm_pinned();
940 }
941
942 /* This is called once we have the cpu_possible_map */
943 void xen_setup_vcpu_info_placement(void)
944 {
945 int cpu;
946
947 for_each_possible_cpu(cpu)
948 xen_vcpu_setup(cpu);
949
950 /* xen_vcpu_setup managed to place the vcpu_info within the
951 percpu area for all cpus, so make use of it */
952 if (have_vcpu_info_placement) {
953 printk(KERN_INFO "Xen: using vcpu_info placement\n");
954
955 pv_irq_ops.save_fl = xen_save_fl_direct;
956 pv_irq_ops.restore_fl = xen_restore_fl_direct;
957 pv_irq_ops.irq_disable = xen_irq_disable_direct;
958 pv_irq_ops.irq_enable = xen_irq_enable_direct;
959 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
960 }
961 }
962
963 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
964 unsigned long addr, unsigned len)
965 {
966 char *start, *end, *reloc;
967 unsigned ret;
968
969 start = end = reloc = NULL;
970
971 #define SITE(op, x) \
972 case PARAVIRT_PATCH(op.x): \
973 if (have_vcpu_info_placement) { \
974 start = (char *)xen_##x##_direct; \
975 end = xen_##x##_direct_end; \
976 reloc = xen_##x##_direct_reloc; \
977 } \
978 goto patch_site
979
980 switch (type) {
981 SITE(pv_irq_ops, irq_enable);
982 SITE(pv_irq_ops, irq_disable);
983 SITE(pv_irq_ops, save_fl);
984 SITE(pv_irq_ops, restore_fl);
985 #undef SITE
986
987 patch_site:
988 if (start == NULL || (end-start) > len)
989 goto default_patch;
990
991 ret = paravirt_patch_insns(insnbuf, len, start, end);
992
993 /* Note: because reloc is assigned from something that
994 appears to be an array, gcc assumes it's non-null,
995 but doesn't know its relationship with start and
996 end. */
997 if (reloc > start && reloc < end) {
998 int reloc_off = reloc - start;
999 long *relocp = (long *)(insnbuf + reloc_off);
1000 long delta = start - (char *)addr;
1001
1002 *relocp += delta;
1003 }
1004 break;
1005
1006 default_patch:
1007 default:
1008 ret = paravirt_patch_default(type, clobbers, insnbuf,
1009 addr, len);
1010 break;
1011 }
1012
1013 return ret;
1014 }
1015
1016 static const struct pv_info xen_info __initdata = {
1017 .paravirt_enabled = 1,
1018 .shared_kernel_pmd = 0,
1019
1020 .name = "Xen",
1021 };
1022
1023 static const struct pv_init_ops xen_init_ops __initdata = {
1024 .patch = xen_patch,
1025
1026 .banner = xen_banner,
1027 .memory_setup = xen_memory_setup,
1028 .arch_setup = xen_arch_setup,
1029 .post_allocator_init = xen_post_allocator_init,
1030 };
1031
1032 static const struct pv_time_ops xen_time_ops __initdata = {
1033 .time_init = xen_time_init,
1034
1035 .set_wallclock = xen_set_wallclock,
1036 .get_wallclock = xen_get_wallclock,
1037 .get_cpu_khz = xen_cpu_khz,
1038 .sched_clock = xen_sched_clock,
1039 };
1040
1041 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1042 .cpuid = xen_cpuid,
1043
1044 .set_debugreg = xen_set_debugreg,
1045 .get_debugreg = xen_get_debugreg,
1046
1047 .clts = xen_clts,
1048
1049 .read_cr0 = native_read_cr0,
1050 .write_cr0 = xen_write_cr0,
1051
1052 .read_cr4 = native_read_cr4,
1053 .read_cr4_safe = native_read_cr4_safe,
1054 .write_cr4 = xen_write_cr4,
1055
1056 .wbinvd = native_wbinvd,
1057
1058 .read_msr = native_read_msr_safe,
1059 .write_msr = native_write_msr_safe,
1060 .read_tsc = native_read_tsc,
1061 .read_pmc = native_read_pmc,
1062
1063 .iret = xen_iret,
1064 .irq_enable_syscall_ret = xen_sysexit,
1065
1066 .load_tr_desc = paravirt_nop,
1067 .set_ldt = xen_set_ldt,
1068 .load_gdt = xen_load_gdt,
1069 .load_idt = xen_load_idt,
1070 .load_tls = xen_load_tls,
1071
1072 .store_gdt = native_store_gdt,
1073 .store_idt = native_store_idt,
1074 .store_tr = xen_store_tr,
1075
1076 .write_ldt_entry = xen_write_ldt_entry,
1077 .write_gdt_entry = xen_write_gdt_entry,
1078 .write_idt_entry = xen_write_idt_entry,
1079 .load_sp0 = xen_load_sp0,
1080
1081 .set_iopl_mask = xen_set_iopl_mask,
1082 .io_delay = xen_io_delay,
1083
1084 .lazy_mode = {
1085 .enter = paravirt_enter_lazy_cpu,
1086 .leave = xen_leave_lazy,
1087 },
1088 };
1089
1090 static const struct pv_irq_ops xen_irq_ops __initdata = {
1091 .init_IRQ = xen_init_IRQ,
1092 .save_fl = xen_save_fl,
1093 .restore_fl = xen_restore_fl,
1094 .irq_disable = xen_irq_disable,
1095 .irq_enable = xen_irq_enable,
1096 .safe_halt = xen_safe_halt,
1097 .halt = xen_halt,
1098 };
1099
1100 static const struct pv_apic_ops xen_apic_ops __initdata = {
1101 #ifdef CONFIG_X86_LOCAL_APIC
1102 .apic_write = xen_apic_write,
1103 .apic_write_atomic = xen_apic_write,
1104 .apic_read = xen_apic_read,
1105 .setup_boot_clock = paravirt_nop,
1106 .setup_secondary_clock = paravirt_nop,
1107 .startup_ipi_hook = paravirt_nop,
1108 #endif
1109 };
1110
1111 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1112 .pagetable_setup_start = xen_pagetable_setup_start,
1113 .pagetable_setup_done = xen_pagetable_setup_done,
1114
1115 .read_cr2 = xen_read_cr2,
1116 .write_cr2 = xen_write_cr2,
1117
1118 .read_cr3 = xen_read_cr3,
1119 .write_cr3 = xen_write_cr3,
1120
1121 .flush_tlb_user = xen_flush_tlb,
1122 .flush_tlb_kernel = xen_flush_tlb,
1123 .flush_tlb_single = xen_flush_tlb_single,
1124 .flush_tlb_others = xen_flush_tlb_others,
1125
1126 .pte_update = paravirt_nop,
1127 .pte_update_defer = paravirt_nop,
1128
1129 .alloc_pte = xen_alloc_pte_init,
1130 .release_pte = xen_release_pte_init,
1131 .alloc_pmd = xen_alloc_pte_init,
1132 .alloc_pmd_clone = paravirt_nop,
1133 .release_pmd = xen_release_pte_init,
1134
1135 #ifdef CONFIG_HIGHPTE
1136 .kmap_atomic_pte = xen_kmap_atomic_pte,
1137 #endif
1138
1139 .set_pte = NULL, /* see xen_pagetable_setup_* */
1140 .set_pte_at = xen_set_pte_at,
1141 .set_pmd = xen_set_pmd_hyper,
1142
1143 .ptep_modify_prot_start = __ptep_modify_prot_start,
1144 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1145
1146 .pte_val = xen_pte_val,
1147 .pte_flags = native_pte_val,
1148 .pgd_val = xen_pgd_val,
1149
1150 .make_pte = xen_make_pte,
1151 .make_pgd = xen_make_pgd,
1152
1153 .set_pte_atomic = xen_set_pte_atomic,
1154 .set_pte_present = xen_set_pte_at,
1155 .set_pud = xen_set_pud_hyper,
1156 .pte_clear = xen_pte_clear,
1157 .pmd_clear = xen_pmd_clear,
1158
1159 .make_pmd = xen_make_pmd,
1160 .pmd_val = xen_pmd_val,
1161
1162 .activate_mm = xen_activate_mm,
1163 .dup_mmap = xen_dup_mmap,
1164 .exit_mmap = xen_exit_mmap,
1165
1166 .lazy_mode = {
1167 .enter = paravirt_enter_lazy_mmu,
1168 .leave = xen_leave_lazy,
1169 },
1170 };
1171
1172 #ifdef CONFIG_SMP
1173 static const struct smp_ops xen_smp_ops __initdata = {
1174 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1175 .smp_prepare_cpus = xen_smp_prepare_cpus,
1176 .cpu_up = xen_cpu_up,
1177 .smp_cpus_done = xen_smp_cpus_done,
1178
1179 .smp_send_stop = xen_smp_send_stop,
1180 .smp_send_reschedule = xen_smp_send_reschedule,
1181 .smp_call_function_mask = xen_smp_call_function_mask,
1182 };
1183 #endif /* CONFIG_SMP */
1184
1185 static void xen_reboot(int reason)
1186 {
1187 struct sched_shutdown r = { .reason = reason };
1188
1189 #ifdef CONFIG_SMP
1190 smp_send_stop();
1191 #endif
1192
1193 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1194 BUG();
1195 }
1196
1197 static void xen_restart(char *msg)
1198 {
1199 xen_reboot(SHUTDOWN_reboot);
1200 }
1201
1202 static void xen_emergency_restart(void)
1203 {
1204 xen_reboot(SHUTDOWN_reboot);
1205 }
1206
1207 static void xen_machine_halt(void)
1208 {
1209 xen_reboot(SHUTDOWN_poweroff);
1210 }
1211
1212 static void xen_crash_shutdown(struct pt_regs *regs)
1213 {
1214 xen_reboot(SHUTDOWN_crash);
1215 }
1216
1217 static const struct machine_ops __initdata xen_machine_ops = {
1218 .restart = xen_restart,
1219 .halt = xen_machine_halt,
1220 .power_off = xen_machine_halt,
1221 .shutdown = xen_machine_halt,
1222 .crash_shutdown = xen_crash_shutdown,
1223 .emergency_restart = xen_emergency_restart,
1224 };
1225
1226
1227 static void __init xen_reserve_top(void)
1228 {
1229 unsigned long top = HYPERVISOR_VIRT_START;
1230 struct xen_platform_parameters pp;
1231
1232 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1233 top = pp.virt_start;
1234
1235 reserve_top_address(-top + 2 * PAGE_SIZE);
1236 }
1237
1238 /* First C function to be called on Xen boot */
1239 asmlinkage void __init xen_start_kernel(void)
1240 {
1241 pgd_t *pgd;
1242
1243 if (!xen_start_info)
1244 return;
1245
1246 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1247
1248 xen_setup_features();
1249
1250 /* Install Xen paravirt ops */
1251 pv_info = xen_info;
1252 pv_init_ops = xen_init_ops;
1253 pv_time_ops = xen_time_ops;
1254 pv_cpu_ops = xen_cpu_ops;
1255 pv_irq_ops = xen_irq_ops;
1256 pv_apic_ops = xen_apic_ops;
1257 pv_mmu_ops = xen_mmu_ops;
1258
1259 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1260 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1261 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1262 }
1263
1264 machine_ops = xen_machine_ops;
1265
1266 #ifdef CONFIG_SMP
1267 smp_ops = xen_smp_ops;
1268 #endif
1269
1270 /* Get mfn list */
1271 if (!xen_feature(XENFEAT_auto_translated_physmap))
1272 xen_build_dynamic_phys_to_machine();
1273
1274 pgd = (pgd_t *)xen_start_info->pt_base;
1275
1276 init_pg_tables_start = __pa(pgd);
1277 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1278
1279 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1280
1281 /* keep using Xen gdt for now; no urgent need to change it */
1282
1283 x86_write_percpu(xen_cr3, __pa(pgd));
1284 x86_write_percpu(xen_current_cr3, __pa(pgd));
1285
1286 /* Don't do the full vcpu_info placement stuff until we have a
1287 possible map and a non-dummy shared_info. */
1288 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1289
1290 pv_info.kernel_rpl = 1;
1291 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1292 pv_info.kernel_rpl = 0;
1293
1294 /* Prevent unwanted bits from being set in PTEs. */
1295 __supported_pte_mask &= ~_PAGE_GLOBAL;
1296 if (!is_initial_xendomain())
1297 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1298
1299 /* set the limit of our address space */
1300 xen_reserve_top();
1301
1302 /* set up basic CPUID stuff */
1303 cpu_detect(&new_cpu_data);
1304 new_cpu_data.hard_math = 1;
1305 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1306
1307 /* Poke various useful things into boot_params */
1308 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1309 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1310 ? __pa(xen_start_info->mod_start) : 0;
1311 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1312
1313 if (!is_initial_xendomain()) {
1314 add_preferred_console("xenboot", 0, NULL);
1315 add_preferred_console("tty", 0, NULL);
1316 add_preferred_console("hvc", 0, NULL);
1317 }
1318
1319 /* Start the world */
1320 i386_start_kernel();
1321 }