]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/xen/enlighten_pv.c
008291121cb4eebd4e02675ec2a8542f9124e5e2
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / xen / enlighten_pv.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/cpu.h>
74 #ifdef CONFIG_X86_IOPL_IOPERM
75 #include <asm/io_bitmap.h>
76 #endif
77
78 #ifdef CONFIG_ACPI
79 #include <linux/acpi.h>
80 #include <asm/acpi.h>
81 #include <acpi/pdc_intel.h>
82 #include <acpi/processor.h>
83 #include <xen/interface/platform.h>
84 #endif
85
86 #include "xen-ops.h"
87 #include "mmu.h"
88 #include "smp.h"
89 #include "multicalls.h"
90 #include "pmu.h"
91
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94 void *xen_initial_gdt;
95
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98
99 struct tls_descs {
100 struct desc_struct desc[3];
101 };
102
103 /*
104 * Updating the 3 TLS descriptors in the GDT on every task switch is
105 * surprisingly expensive so we avoid updating them if they haven't
106 * changed. Since Xen writes different descriptors than the one
107 * passed in the update_descriptor hypercall we keep shadow copies to
108 * compare against.
109 */
110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
111
112 static void __init xen_banner(void)
113 {
114 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
115 struct xen_extraversion extra;
116 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
117
118 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
119 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
120 version >> 16, version & 0xffff, extra.extraversion,
121 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
122
123 #ifdef CONFIG_X86_32
124 pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
125 "Support for running as 32-bit PV-guest under Xen will soon be removed\n"
126 "from the Linux kernel!\n"
127 "Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
128 "WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
129 #endif
130 }
131
132 static void __init xen_pv_init_platform(void)
133 {
134 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
135
136 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
137 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
138
139 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
140 xen_vcpu_info_reset(0);
141
142 /* pvclock is in shared info area */
143 xen_init_time_ops();
144 }
145
146 static void __init xen_pv_guest_late_init(void)
147 {
148 #ifndef CONFIG_SMP
149 /* Setup shared vcpu info for non-smp configurations */
150 xen_setup_vcpu_info_placement();
151 #endif
152 }
153
154 /* Check if running on Xen version (major, minor) or later */
155 bool
156 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
157 {
158 unsigned int version;
159
160 if (!xen_domain())
161 return false;
162
163 version = HYPERVISOR_xen_version(XENVER_version, NULL);
164 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
165 ((version >> 16) > major))
166 return true;
167 return false;
168 }
169
170 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
171 static __read_mostly unsigned int cpuid_leaf5_edx_val;
172
173 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
174 unsigned int *cx, unsigned int *dx)
175 {
176 unsigned maskebx = ~0;
177
178 /*
179 * Mask out inconvenient features, to try and disable as many
180 * unsupported kernel subsystems as possible.
181 */
182 switch (*ax) {
183 case CPUID_MWAIT_LEAF:
184 /* Synthesize the values.. */
185 *ax = 0;
186 *bx = 0;
187 *cx = cpuid_leaf5_ecx_val;
188 *dx = cpuid_leaf5_edx_val;
189 return;
190
191 case 0xb:
192 /* Suppress extended topology stuff */
193 maskebx = 0;
194 break;
195 }
196
197 asm(XEN_EMULATE_PREFIX "cpuid"
198 : "=a" (*ax),
199 "=b" (*bx),
200 "=c" (*cx),
201 "=d" (*dx)
202 : "0" (*ax), "2" (*cx));
203
204 *bx &= maskebx;
205 }
206 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
207
208 static bool __init xen_check_mwait(void)
209 {
210 #ifdef CONFIG_ACPI
211 struct xen_platform_op op = {
212 .cmd = XENPF_set_processor_pminfo,
213 .u.set_pminfo.id = -1,
214 .u.set_pminfo.type = XEN_PM_PDC,
215 };
216 uint32_t buf[3];
217 unsigned int ax, bx, cx, dx;
218 unsigned int mwait_mask;
219
220 /* We need to determine whether it is OK to expose the MWAIT
221 * capability to the kernel to harvest deeper than C3 states from ACPI
222 * _CST using the processor_harvest_xen.c module. For this to work, we
223 * need to gather the MWAIT_LEAF values (which the cstate.c code
224 * checks against). The hypervisor won't expose the MWAIT flag because
225 * it would break backwards compatibility; so we will find out directly
226 * from the hardware and hypercall.
227 */
228 if (!xen_initial_domain())
229 return false;
230
231 /*
232 * When running under platform earlier than Xen4.2, do not expose
233 * mwait, to avoid the risk of loading native acpi pad driver
234 */
235 if (!xen_running_on_version_or_later(4, 2))
236 return false;
237
238 ax = 1;
239 cx = 0;
240
241 native_cpuid(&ax, &bx, &cx, &dx);
242
243 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
244 (1 << (X86_FEATURE_MWAIT % 32));
245
246 if ((cx & mwait_mask) != mwait_mask)
247 return false;
248
249 /* We need to emulate the MWAIT_LEAF and for that we need both
250 * ecx and edx. The hypercall provides only partial information.
251 */
252
253 ax = CPUID_MWAIT_LEAF;
254 bx = 0;
255 cx = 0;
256 dx = 0;
257
258 native_cpuid(&ax, &bx, &cx, &dx);
259
260 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
261 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
262 */
263 buf[0] = ACPI_PDC_REVISION_ID;
264 buf[1] = 1;
265 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
266
267 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
268
269 if ((HYPERVISOR_platform_op(&op) == 0) &&
270 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
271 cpuid_leaf5_ecx_val = cx;
272 cpuid_leaf5_edx_val = dx;
273 }
274 return true;
275 #else
276 return false;
277 #endif
278 }
279
280 static bool __init xen_check_xsave(void)
281 {
282 unsigned int cx, xsave_mask;
283
284 cx = cpuid_ecx(1);
285
286 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
287 (1 << (X86_FEATURE_OSXSAVE % 32));
288
289 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
290 return (cx & xsave_mask) == xsave_mask;
291 }
292
293 static void __init xen_init_capabilities(void)
294 {
295 setup_force_cpu_cap(X86_FEATURE_XENPV);
296 setup_clear_cpu_cap(X86_FEATURE_DCA);
297 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
298 setup_clear_cpu_cap(X86_FEATURE_MTRR);
299 setup_clear_cpu_cap(X86_FEATURE_ACC);
300 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
301 setup_clear_cpu_cap(X86_FEATURE_SME);
302
303 /*
304 * Xen PV would need some work to support PCID: CR3 handling as well
305 * as xen_flush_tlb_others() would need updating.
306 */
307 setup_clear_cpu_cap(X86_FEATURE_PCID);
308
309 if (!xen_initial_domain())
310 setup_clear_cpu_cap(X86_FEATURE_ACPI);
311
312 if (xen_check_mwait())
313 setup_force_cpu_cap(X86_FEATURE_MWAIT);
314 else
315 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
316
317 if (!xen_check_xsave()) {
318 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
319 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
320 }
321 }
322
323 static void xen_set_debugreg(int reg, unsigned long val)
324 {
325 HYPERVISOR_set_debugreg(reg, val);
326 }
327
328 static unsigned long xen_get_debugreg(int reg)
329 {
330 return HYPERVISOR_get_debugreg(reg);
331 }
332
333 static void xen_end_context_switch(struct task_struct *next)
334 {
335 xen_mc_flush();
336 paravirt_end_context_switch(next);
337 }
338
339 static unsigned long xen_store_tr(void)
340 {
341 return 0;
342 }
343
344 /*
345 * Set the page permissions for a particular virtual address. If the
346 * address is a vmalloc mapping (or other non-linear mapping), then
347 * find the linear mapping of the page and also set its protections to
348 * match.
349 */
350 static void set_aliased_prot(void *v, pgprot_t prot)
351 {
352 int level;
353 pte_t *ptep;
354 pte_t pte;
355 unsigned long pfn;
356 struct page *page;
357 unsigned char dummy;
358
359 ptep = lookup_address((unsigned long)v, &level);
360 BUG_ON(ptep == NULL);
361
362 pfn = pte_pfn(*ptep);
363 page = pfn_to_page(pfn);
364
365 pte = pfn_pte(pfn, prot);
366
367 /*
368 * Careful: update_va_mapping() will fail if the virtual address
369 * we're poking isn't populated in the page tables. We don't
370 * need to worry about the direct map (that's always in the page
371 * tables), but we need to be careful about vmap space. In
372 * particular, the top level page table can lazily propagate
373 * entries between processes, so if we've switched mms since we
374 * vmapped the target in the first place, we might not have the
375 * top-level page table entry populated.
376 *
377 * We disable preemption because we want the same mm active when
378 * we probe the target and when we issue the hypercall. We'll
379 * have the same nominal mm, but if we're a kernel thread, lazy
380 * mm dropping could change our pgd.
381 *
382 * Out of an abundance of caution, this uses __get_user() to fault
383 * in the target address just in case there's some obscure case
384 * in which the target address isn't readable.
385 */
386
387 preempt_disable();
388
389 probe_kernel_read(&dummy, v, 1);
390
391 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
392 BUG();
393
394 if (!PageHighMem(page)) {
395 void *av = __va(PFN_PHYS(pfn));
396
397 if (av != v)
398 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
399 BUG();
400 } else
401 kmap_flush_unused();
402
403 preempt_enable();
404 }
405
406 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
407 {
408 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
409 int i;
410
411 /*
412 * We need to mark the all aliases of the LDT pages RO. We
413 * don't need to call vm_flush_aliases(), though, since that's
414 * only responsible for flushing aliases out the TLBs, not the
415 * page tables, and Xen will flush the TLB for us if needed.
416 *
417 * To avoid confusing future readers: none of this is necessary
418 * to load the LDT. The hypervisor only checks this when the
419 * LDT is faulted in due to subsequent descriptor access.
420 */
421
422 for (i = 0; i < entries; i += entries_per_page)
423 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
424 }
425
426 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
427 {
428 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
429 int i;
430
431 for (i = 0; i < entries; i += entries_per_page)
432 set_aliased_prot(ldt + i, PAGE_KERNEL);
433 }
434
435 static void xen_set_ldt(const void *addr, unsigned entries)
436 {
437 struct mmuext_op *op;
438 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
439
440 trace_xen_cpu_set_ldt(addr, entries);
441
442 op = mcs.args;
443 op->cmd = MMUEXT_SET_LDT;
444 op->arg1.linear_addr = (unsigned long)addr;
445 op->arg2.nr_ents = entries;
446
447 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
448
449 xen_mc_issue(PARAVIRT_LAZY_CPU);
450 }
451
452 static void xen_load_gdt(const struct desc_ptr *dtr)
453 {
454 unsigned long va = dtr->address;
455 unsigned int size = dtr->size + 1;
456 unsigned long pfn, mfn;
457 int level;
458 pte_t *ptep;
459 void *virt;
460
461 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
462 BUG_ON(size > PAGE_SIZE);
463 BUG_ON(va & ~PAGE_MASK);
464
465 /*
466 * The GDT is per-cpu and is in the percpu data area.
467 * That can be virtually mapped, so we need to do a
468 * page-walk to get the underlying MFN for the
469 * hypercall. The page can also be in the kernel's
470 * linear range, so we need to RO that mapping too.
471 */
472 ptep = lookup_address(va, &level);
473 BUG_ON(ptep == NULL);
474
475 pfn = pte_pfn(*ptep);
476 mfn = pfn_to_mfn(pfn);
477 virt = __va(PFN_PHYS(pfn));
478
479 make_lowmem_page_readonly((void *)va);
480 make_lowmem_page_readonly(virt);
481
482 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
483 BUG();
484 }
485
486 /*
487 * load_gdt for early boot, when the gdt is only mapped once
488 */
489 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
490 {
491 unsigned long va = dtr->address;
492 unsigned int size = dtr->size + 1;
493 unsigned long pfn, mfn;
494 pte_t pte;
495
496 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
497 BUG_ON(size > PAGE_SIZE);
498 BUG_ON(va & ~PAGE_MASK);
499
500 pfn = virt_to_pfn(va);
501 mfn = pfn_to_mfn(pfn);
502
503 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
504
505 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
506 BUG();
507
508 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
509 BUG();
510 }
511
512 static inline bool desc_equal(const struct desc_struct *d1,
513 const struct desc_struct *d2)
514 {
515 return !memcmp(d1, d2, sizeof(*d1));
516 }
517
518 static void load_TLS_descriptor(struct thread_struct *t,
519 unsigned int cpu, unsigned int i)
520 {
521 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
522 struct desc_struct *gdt;
523 xmaddr_t maddr;
524 struct multicall_space mc;
525
526 if (desc_equal(shadow, &t->tls_array[i]))
527 return;
528
529 *shadow = t->tls_array[i];
530
531 gdt = get_cpu_gdt_rw(cpu);
532 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
533 mc = __xen_mc_entry(0);
534
535 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
536 }
537
538 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
539 {
540 /*
541 * XXX sleazy hack: If we're being called in a lazy-cpu zone
542 * and lazy gs handling is enabled, it means we're in a
543 * context switch, and %gs has just been saved. This means we
544 * can zero it out to prevent faults on exit from the
545 * hypervisor if the next process has no %gs. Either way, it
546 * has been saved, and the new value will get loaded properly.
547 * This will go away as soon as Xen has been modified to not
548 * save/restore %gs for normal hypercalls.
549 *
550 * On x86_64, this hack is not used for %gs, because gs points
551 * to KERNEL_GS_BASE (and uses it for PDA references), so we
552 * must not zero %gs on x86_64
553 *
554 * For x86_64, we need to zero %fs, otherwise we may get an
555 * exception between the new %fs descriptor being loaded and
556 * %fs being effectively cleared at __switch_to().
557 */
558 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
559 #ifdef CONFIG_X86_32
560 lazy_load_gs(0);
561 #else
562 loadsegment(fs, 0);
563 #endif
564 }
565
566 xen_mc_batch();
567
568 load_TLS_descriptor(t, cpu, 0);
569 load_TLS_descriptor(t, cpu, 1);
570 load_TLS_descriptor(t, cpu, 2);
571
572 xen_mc_issue(PARAVIRT_LAZY_CPU);
573 }
574
575 #ifdef CONFIG_X86_64
576 static void xen_load_gs_index(unsigned int idx)
577 {
578 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
579 BUG();
580 }
581 #endif
582
583 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
584 const void *ptr)
585 {
586 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
587 u64 entry = *(u64 *)ptr;
588
589 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
590
591 preempt_disable();
592
593 xen_mc_flush();
594 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
595 BUG();
596
597 preempt_enable();
598 }
599
600 #ifdef CONFIG_X86_64
601 struct trap_array_entry {
602 void (*orig)(void);
603 void (*xen)(void);
604 bool ist_okay;
605 };
606
607 #define TRAP_ENTRY(func, ist_ok) { \
608 .orig = asm_##func, \
609 .xen = xen_asm_##func, \
610 .ist_okay = ist_ok }
611
612 #define TRAP_ENTRY_REDIR(func, xenfunc, ist_ok) { \
613 .orig = asm_##func, \
614 .xen = xen_asm_##xenfunc, \
615 .ist_okay = ist_ok }
616
617 static struct trap_array_entry trap_array[] = {
618 TRAP_ENTRY_REDIR(exc_debug, exc_xendebug, true ),
619 TRAP_ENTRY(exc_double_fault, true ),
620 #ifdef CONFIG_X86_MCE
621 TRAP_ENTRY(exc_machine_check, true ),
622 #endif
623 TRAP_ENTRY_REDIR(exc_nmi, exc_xennmi, true ),
624 TRAP_ENTRY(exc_int3, false ),
625 TRAP_ENTRY(exc_overflow, false ),
626 #ifdef CONFIG_IA32_EMULATION
627 { entry_INT80_compat, xen_entry_INT80_compat, false },
628 #endif
629 { page_fault, xen_page_fault, false },
630 TRAP_ENTRY(exc_divide_error, false ),
631 TRAP_ENTRY(exc_bounds, false ),
632 TRAP_ENTRY(exc_invalid_op, false ),
633 TRAP_ENTRY(exc_device_not_available, false ),
634 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
635 TRAP_ENTRY(exc_invalid_tss, false ),
636 TRAP_ENTRY(exc_segment_not_present, false ),
637 TRAP_ENTRY(exc_stack_segment, false ),
638 TRAP_ENTRY(exc_general_protection, false ),
639 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
640 TRAP_ENTRY(exc_coprocessor_error, false ),
641 TRAP_ENTRY(exc_alignment_check, false ),
642 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
643 };
644
645 static bool __ref get_trap_addr(void **addr, unsigned int ist)
646 {
647 unsigned int nr;
648 bool ist_okay = false;
649
650 /*
651 * Replace trap handler addresses by Xen specific ones.
652 * Check for known traps using IST and whitelist them.
653 * The debugger ones are the only ones we care about.
654 * Xen will handle faults like double_fault, so we should never see
655 * them. Warn if there's an unexpected IST-using fault handler.
656 */
657 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
658 struct trap_array_entry *entry = trap_array + nr;
659
660 if (*addr == entry->orig) {
661 *addr = entry->xen;
662 ist_okay = entry->ist_okay;
663 break;
664 }
665 }
666
667 if (nr == ARRAY_SIZE(trap_array) &&
668 *addr >= (void *)early_idt_handler_array[0] &&
669 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
670 nr = (*addr - (void *)early_idt_handler_array[0]) /
671 EARLY_IDT_HANDLER_SIZE;
672 *addr = (void *)xen_early_idt_handler_array[nr];
673 }
674
675 if (WARN_ON(ist != 0 && !ist_okay))
676 return false;
677
678 return true;
679 }
680 #endif
681
682 static int cvt_gate_to_trap(int vector, const gate_desc *val,
683 struct trap_info *info)
684 {
685 unsigned long addr;
686
687 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
688 return 0;
689
690 info->vector = vector;
691
692 addr = gate_offset(val);
693 #ifdef CONFIG_X86_64
694 if (!get_trap_addr((void **)&addr, val->bits.ist))
695 return 0;
696 #endif /* CONFIG_X86_64 */
697 info->address = addr;
698
699 info->cs = gate_segment(val);
700 info->flags = val->bits.dpl;
701 /* interrupt gates clear IF */
702 if (val->bits.type == GATE_INTERRUPT)
703 info->flags |= 1 << 2;
704
705 return 1;
706 }
707
708 /* Locations of each CPU's IDT */
709 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
710
711 /* Set an IDT entry. If the entry is part of the current IDT, then
712 also update Xen. */
713 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
714 {
715 unsigned long p = (unsigned long)&dt[entrynum];
716 unsigned long start, end;
717
718 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
719
720 preempt_disable();
721
722 start = __this_cpu_read(idt_desc.address);
723 end = start + __this_cpu_read(idt_desc.size) + 1;
724
725 xen_mc_flush();
726
727 native_write_idt_entry(dt, entrynum, g);
728
729 if (p >= start && (p + 8) <= end) {
730 struct trap_info info[2];
731
732 info[1].address = 0;
733
734 if (cvt_gate_to_trap(entrynum, g, &info[0]))
735 if (HYPERVISOR_set_trap_table(info))
736 BUG();
737 }
738
739 preempt_enable();
740 }
741
742 static void xen_convert_trap_info(const struct desc_ptr *desc,
743 struct trap_info *traps)
744 {
745 unsigned in, out, count;
746
747 count = (desc->size+1) / sizeof(gate_desc);
748 BUG_ON(count > 256);
749
750 for (in = out = 0; in < count; in++) {
751 gate_desc *entry = (gate_desc *)(desc->address) + in;
752
753 if (cvt_gate_to_trap(in, entry, &traps[out]))
754 out++;
755 }
756 traps[out].address = 0;
757 }
758
759 void xen_copy_trap_info(struct trap_info *traps)
760 {
761 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
762
763 xen_convert_trap_info(desc, traps);
764 }
765
766 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
767 hold a spinlock to protect the static traps[] array (static because
768 it avoids allocation, and saves stack space). */
769 static void xen_load_idt(const struct desc_ptr *desc)
770 {
771 static DEFINE_SPINLOCK(lock);
772 static struct trap_info traps[257];
773
774 trace_xen_cpu_load_idt(desc);
775
776 spin_lock(&lock);
777
778 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
779
780 xen_convert_trap_info(desc, traps);
781
782 xen_mc_flush();
783 if (HYPERVISOR_set_trap_table(traps))
784 BUG();
785
786 spin_unlock(&lock);
787 }
788
789 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
790 they're handled differently. */
791 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
792 const void *desc, int type)
793 {
794 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
795
796 preempt_disable();
797
798 switch (type) {
799 case DESC_LDT:
800 case DESC_TSS:
801 /* ignore */
802 break;
803
804 default: {
805 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
806
807 xen_mc_flush();
808 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
809 BUG();
810 }
811
812 }
813
814 preempt_enable();
815 }
816
817 /*
818 * Version of write_gdt_entry for use at early boot-time needed to
819 * update an entry as simply as possible.
820 */
821 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
822 const void *desc, int type)
823 {
824 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
825
826 switch (type) {
827 case DESC_LDT:
828 case DESC_TSS:
829 /* ignore */
830 break;
831
832 default: {
833 xmaddr_t maddr = virt_to_machine(&dt[entry]);
834
835 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
836 dt[entry] = *(struct desc_struct *)desc;
837 }
838
839 }
840 }
841
842 static void xen_load_sp0(unsigned long sp0)
843 {
844 struct multicall_space mcs;
845
846 mcs = xen_mc_entry(0);
847 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
848 xen_mc_issue(PARAVIRT_LAZY_CPU);
849 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
850 }
851
852 #ifdef CONFIG_X86_IOPL_IOPERM
853 static void xen_update_io_bitmap(void)
854 {
855 struct physdev_set_iobitmap iobitmap;
856 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
857
858 native_tss_update_io_bitmap();
859
860 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
861 tss->x86_tss.io_bitmap_base;
862 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
863 iobitmap.nr_ports = 0;
864 else
865 iobitmap.nr_ports = IO_BITMAP_BITS;
866
867 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
868 }
869 #endif
870
871 static void xen_io_delay(void)
872 {
873 }
874
875 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
876
877 static unsigned long xen_read_cr0(void)
878 {
879 unsigned long cr0 = this_cpu_read(xen_cr0_value);
880
881 if (unlikely(cr0 == 0)) {
882 cr0 = native_read_cr0();
883 this_cpu_write(xen_cr0_value, cr0);
884 }
885
886 return cr0;
887 }
888
889 static void xen_write_cr0(unsigned long cr0)
890 {
891 struct multicall_space mcs;
892
893 this_cpu_write(xen_cr0_value, cr0);
894
895 /* Only pay attention to cr0.TS; everything else is
896 ignored. */
897 mcs = xen_mc_entry(0);
898
899 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
900
901 xen_mc_issue(PARAVIRT_LAZY_CPU);
902 }
903
904 static void xen_write_cr4(unsigned long cr4)
905 {
906 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
907
908 native_write_cr4(cr4);
909 }
910
911 static u64 xen_read_msr_safe(unsigned int msr, int *err)
912 {
913 u64 val;
914
915 if (pmu_msr_read(msr, &val, err))
916 return val;
917
918 val = native_read_msr_safe(msr, err);
919 switch (msr) {
920 case MSR_IA32_APICBASE:
921 val &= ~X2APIC_ENABLE;
922 break;
923 }
924 return val;
925 }
926
927 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
928 {
929 int ret;
930 #ifdef CONFIG_X86_64
931 unsigned int which;
932 u64 base;
933 #endif
934
935 ret = 0;
936
937 switch (msr) {
938 #ifdef CONFIG_X86_64
939 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
940 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
941 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
942
943 set:
944 base = ((u64)high << 32) | low;
945 if (HYPERVISOR_set_segment_base(which, base) != 0)
946 ret = -EIO;
947 break;
948 #endif
949
950 case MSR_STAR:
951 case MSR_CSTAR:
952 case MSR_LSTAR:
953 case MSR_SYSCALL_MASK:
954 case MSR_IA32_SYSENTER_CS:
955 case MSR_IA32_SYSENTER_ESP:
956 case MSR_IA32_SYSENTER_EIP:
957 /* Fast syscall setup is all done in hypercalls, so
958 these are all ignored. Stub them out here to stop
959 Xen console noise. */
960 break;
961
962 default:
963 if (!pmu_msr_write(msr, low, high, &ret))
964 ret = native_write_msr_safe(msr, low, high);
965 }
966
967 return ret;
968 }
969
970 static u64 xen_read_msr(unsigned int msr)
971 {
972 /*
973 * This will silently swallow a #GP from RDMSR. It may be worth
974 * changing that.
975 */
976 int err;
977
978 return xen_read_msr_safe(msr, &err);
979 }
980
981 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
982 {
983 /*
984 * This will silently swallow a #GP from WRMSR. It may be worth
985 * changing that.
986 */
987 xen_write_msr_safe(msr, low, high);
988 }
989
990 /* This is called once we have the cpu_possible_mask */
991 void __init xen_setup_vcpu_info_placement(void)
992 {
993 int cpu;
994
995 for_each_possible_cpu(cpu) {
996 /* Set up direct vCPU id mapping for PV guests. */
997 per_cpu(xen_vcpu_id, cpu) = cpu;
998
999 /*
1000 * xen_vcpu_setup(cpu) can fail -- in which case it
1001 * falls back to the shared_info version for cpus
1002 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1003 *
1004 * xen_cpu_up_prepare_pv() handles the rest by failing
1005 * them in hotplug.
1006 */
1007 (void) xen_vcpu_setup(cpu);
1008 }
1009
1010 /*
1011 * xen_vcpu_setup managed to place the vcpu_info within the
1012 * percpu area for all cpus, so make use of it.
1013 */
1014 if (xen_have_vcpu_info_placement) {
1015 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1016 pv_ops.irq.restore_fl =
1017 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1018 pv_ops.irq.irq_disable =
1019 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1020 pv_ops.irq.irq_enable =
1021 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1022 pv_ops.mmu.read_cr2 =
1023 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1024 }
1025 }
1026
1027 static const struct pv_info xen_info __initconst = {
1028 .shared_kernel_pmd = 0,
1029
1030 #ifdef CONFIG_X86_64
1031 .extra_user_64bit_cs = FLAT_USER_CS64,
1032 #endif
1033 .name = "Xen",
1034 };
1035
1036 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1037 .cpuid = xen_cpuid,
1038
1039 .set_debugreg = xen_set_debugreg,
1040 .get_debugreg = xen_get_debugreg,
1041
1042 .read_cr0 = xen_read_cr0,
1043 .write_cr0 = xen_write_cr0,
1044
1045 .write_cr4 = xen_write_cr4,
1046
1047 .wbinvd = native_wbinvd,
1048
1049 .read_msr = xen_read_msr,
1050 .write_msr = xen_write_msr,
1051
1052 .read_msr_safe = xen_read_msr_safe,
1053 .write_msr_safe = xen_write_msr_safe,
1054
1055 .read_pmc = xen_read_pmc,
1056
1057 .iret = xen_iret,
1058 #ifdef CONFIG_X86_64
1059 .usergs_sysret64 = xen_sysret64,
1060 #endif
1061
1062 .load_tr_desc = paravirt_nop,
1063 .set_ldt = xen_set_ldt,
1064 .load_gdt = xen_load_gdt,
1065 .load_idt = xen_load_idt,
1066 .load_tls = xen_load_tls,
1067 #ifdef CONFIG_X86_64
1068 .load_gs_index = xen_load_gs_index,
1069 #endif
1070
1071 .alloc_ldt = xen_alloc_ldt,
1072 .free_ldt = xen_free_ldt,
1073
1074 .store_tr = xen_store_tr,
1075
1076 .write_ldt_entry = xen_write_ldt_entry,
1077 .write_gdt_entry = xen_write_gdt_entry,
1078 .write_idt_entry = xen_write_idt_entry,
1079 .load_sp0 = xen_load_sp0,
1080
1081 #ifdef CONFIG_X86_IOPL_IOPERM
1082 .update_io_bitmap = xen_update_io_bitmap,
1083 #endif
1084 .io_delay = xen_io_delay,
1085
1086 /* Xen takes care of %gs when switching to usermode for us */
1087 .swapgs = paravirt_nop,
1088
1089 .start_context_switch = paravirt_start_context_switch,
1090 .end_context_switch = xen_end_context_switch,
1091 };
1092
1093 static void xen_restart(char *msg)
1094 {
1095 xen_reboot(SHUTDOWN_reboot);
1096 }
1097
1098 static void xen_machine_halt(void)
1099 {
1100 xen_reboot(SHUTDOWN_poweroff);
1101 }
1102
1103 static void xen_machine_power_off(void)
1104 {
1105 if (pm_power_off)
1106 pm_power_off();
1107 xen_reboot(SHUTDOWN_poweroff);
1108 }
1109
1110 static void xen_crash_shutdown(struct pt_regs *regs)
1111 {
1112 xen_reboot(SHUTDOWN_crash);
1113 }
1114
1115 static const struct machine_ops xen_machine_ops __initconst = {
1116 .restart = xen_restart,
1117 .halt = xen_machine_halt,
1118 .power_off = xen_machine_power_off,
1119 .shutdown = xen_machine_halt,
1120 .crash_shutdown = xen_crash_shutdown,
1121 .emergency_restart = xen_emergency_restart,
1122 };
1123
1124 static unsigned char xen_get_nmi_reason(void)
1125 {
1126 unsigned char reason = 0;
1127
1128 /* Construct a value which looks like it came from port 0x61. */
1129 if (test_bit(_XEN_NMIREASON_io_error,
1130 &HYPERVISOR_shared_info->arch.nmi_reason))
1131 reason |= NMI_REASON_IOCHK;
1132 if (test_bit(_XEN_NMIREASON_pci_serr,
1133 &HYPERVISOR_shared_info->arch.nmi_reason))
1134 reason |= NMI_REASON_SERR;
1135
1136 return reason;
1137 }
1138
1139 static void __init xen_boot_params_init_edd(void)
1140 {
1141 #if IS_ENABLED(CONFIG_EDD)
1142 struct xen_platform_op op;
1143 struct edd_info *edd_info;
1144 u32 *mbr_signature;
1145 unsigned nr;
1146 int ret;
1147
1148 edd_info = boot_params.eddbuf;
1149 mbr_signature = boot_params.edd_mbr_sig_buffer;
1150
1151 op.cmd = XENPF_firmware_info;
1152
1153 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1154 for (nr = 0; nr < EDDMAXNR; nr++) {
1155 struct edd_info *info = edd_info + nr;
1156
1157 op.u.firmware_info.index = nr;
1158 info->params.length = sizeof(info->params);
1159 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1160 &info->params);
1161 ret = HYPERVISOR_platform_op(&op);
1162 if (ret)
1163 break;
1164
1165 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1166 C(device);
1167 C(version);
1168 C(interface_support);
1169 C(legacy_max_cylinder);
1170 C(legacy_max_head);
1171 C(legacy_sectors_per_track);
1172 #undef C
1173 }
1174 boot_params.eddbuf_entries = nr;
1175
1176 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1177 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1178 op.u.firmware_info.index = nr;
1179 ret = HYPERVISOR_platform_op(&op);
1180 if (ret)
1181 break;
1182 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1183 }
1184 boot_params.edd_mbr_sig_buf_entries = nr;
1185 #endif
1186 }
1187
1188 /*
1189 * Set up the GDT and segment registers for -fstack-protector. Until
1190 * we do this, we have to be careful not to call any stack-protected
1191 * function, which is most of the kernel.
1192 */
1193 static void __init xen_setup_gdt(int cpu)
1194 {
1195 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1196 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1197
1198 setup_stack_canary_segment(cpu);
1199 switch_to_new_gdt(cpu);
1200
1201 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1202 pv_ops.cpu.load_gdt = xen_load_gdt;
1203 }
1204
1205 static void __init xen_dom0_set_legacy_features(void)
1206 {
1207 x86_platform.legacy.rtc = 1;
1208 }
1209
1210 /* First C function to be called on Xen boot */
1211 asmlinkage __visible void __init xen_start_kernel(void)
1212 {
1213 struct physdev_set_iopl set_iopl;
1214 unsigned long initrd_start = 0;
1215 int rc;
1216
1217 if (!xen_start_info)
1218 return;
1219
1220 xen_domain_type = XEN_PV_DOMAIN;
1221 xen_start_flags = xen_start_info->flags;
1222
1223 xen_setup_features();
1224
1225 /* Install Xen paravirt ops */
1226 pv_info = xen_info;
1227 pv_ops.init.patch = paravirt_patch_default;
1228 pv_ops.cpu = xen_cpu_ops;
1229 xen_init_irq_ops();
1230
1231 /*
1232 * Setup xen_vcpu early because it is needed for
1233 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1234 *
1235 * Don't do the full vcpu_info placement stuff until we have
1236 * the cpu_possible_mask and a non-dummy shared_info.
1237 */
1238 xen_vcpu_info_reset(0);
1239
1240 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1241
1242 x86_init.resources.memory_setup = xen_memory_setup;
1243 x86_init.irqs.intr_mode_select = x86_init_noop;
1244 x86_init.irqs.intr_mode_init = x86_init_noop;
1245 x86_init.oem.arch_setup = xen_arch_setup;
1246 x86_init.oem.banner = xen_banner;
1247 x86_init.hyper.init_platform = xen_pv_init_platform;
1248 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1249
1250 /*
1251 * Set up some pagetable state before starting to set any ptes.
1252 */
1253
1254 xen_setup_machphys_mapping();
1255 xen_init_mmu_ops();
1256
1257 /* Prevent unwanted bits from being set in PTEs. */
1258 __supported_pte_mask &= ~_PAGE_GLOBAL;
1259 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1260
1261 /*
1262 * Prevent page tables from being allocated in highmem, even
1263 * if CONFIG_HIGHPTE is enabled.
1264 */
1265 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1266
1267 /* Get mfn list */
1268 xen_build_dynamic_phys_to_machine();
1269
1270 /*
1271 * Set up kernel GDT and segment registers, mainly so that
1272 * -fstack-protector code can be executed.
1273 */
1274 xen_setup_gdt(0);
1275
1276 /* Work out if we support NX */
1277 get_cpu_cap(&boot_cpu_data);
1278 x86_configure_nx();
1279
1280 /* Determine virtual and physical address sizes */
1281 get_cpu_address_sizes(&boot_cpu_data);
1282
1283 /* Let's presume PV guests always boot on vCPU with id 0. */
1284 per_cpu(xen_vcpu_id, 0) = 0;
1285
1286 idt_setup_early_handler();
1287
1288 xen_init_capabilities();
1289
1290 #ifdef CONFIG_X86_LOCAL_APIC
1291 /*
1292 * set up the basic apic ops.
1293 */
1294 xen_init_apic();
1295 #endif
1296
1297 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1298 pv_ops.mmu.ptep_modify_prot_start =
1299 xen_ptep_modify_prot_start;
1300 pv_ops.mmu.ptep_modify_prot_commit =
1301 xen_ptep_modify_prot_commit;
1302 }
1303
1304 machine_ops = xen_machine_ops;
1305
1306 /*
1307 * The only reliable way to retain the initial address of the
1308 * percpu gdt_page is to remember it here, so we can go and
1309 * mark it RW later, when the initial percpu area is freed.
1310 */
1311 xen_initial_gdt = &per_cpu(gdt_page, 0);
1312
1313 xen_smp_init();
1314
1315 #ifdef CONFIG_ACPI_NUMA
1316 /*
1317 * The pages we from Xen are not related to machine pages, so
1318 * any NUMA information the kernel tries to get from ACPI will
1319 * be meaningless. Prevent it from trying.
1320 */
1321 acpi_numa = -1;
1322 #endif
1323 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1324
1325 local_irq_disable();
1326 early_boot_irqs_disabled = true;
1327
1328 xen_raw_console_write("mapping kernel into physical memory\n");
1329 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1330 xen_start_info->nr_pages);
1331 xen_reserve_special_pages();
1332
1333 /* keep using Xen gdt for now; no urgent need to change it */
1334
1335 #ifdef CONFIG_X86_32
1336 pv_info.kernel_rpl = 1;
1337 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1338 pv_info.kernel_rpl = 0;
1339 #else
1340 pv_info.kernel_rpl = 0;
1341 #endif
1342 /* set the limit of our address space */
1343 xen_reserve_top();
1344
1345 /*
1346 * We used to do this in xen_arch_setup, but that is too late
1347 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1348 * early_amd_init which pokes 0xcf8 port.
1349 */
1350 set_iopl.iopl = 1;
1351 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1352 if (rc != 0)
1353 xen_raw_printk("physdev_op failed %d\n", rc);
1354
1355 #ifdef CONFIG_X86_32
1356 /* set up basic CPUID stuff */
1357 cpu_detect(&new_cpu_data);
1358 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1359 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1360 #endif
1361
1362 if (xen_start_info->mod_start) {
1363 if (xen_start_info->flags & SIF_MOD_START_PFN)
1364 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1365 else
1366 initrd_start = __pa(xen_start_info->mod_start);
1367 }
1368
1369 /* Poke various useful things into boot_params */
1370 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1371 boot_params.hdr.ramdisk_image = initrd_start;
1372 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1373 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1374 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1375
1376 if (!xen_initial_domain()) {
1377 add_preferred_console("xenboot", 0, NULL);
1378 if (pci_xen)
1379 x86_init.pci.arch_init = pci_xen_init;
1380 } else {
1381 const struct dom0_vga_console_info *info =
1382 (void *)((char *)xen_start_info +
1383 xen_start_info->console.dom0.info_off);
1384 struct xen_platform_op op = {
1385 .cmd = XENPF_firmware_info,
1386 .interface_version = XENPF_INTERFACE_VERSION,
1387 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1388 };
1389
1390 x86_platform.set_legacy_features =
1391 xen_dom0_set_legacy_features;
1392 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1393 xen_start_info->console.domU.mfn = 0;
1394 xen_start_info->console.domU.evtchn = 0;
1395
1396 if (HYPERVISOR_platform_op(&op) == 0)
1397 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1398
1399 /* Make sure ACS will be enabled */
1400 pci_request_acs();
1401
1402 xen_acpi_sleep_register();
1403
1404 /* Avoid searching for BIOS MP tables */
1405 x86_init.mpparse.find_smp_config = x86_init_noop;
1406 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1407
1408 xen_boot_params_init_edd();
1409 }
1410
1411 if (!boot_params.screen_info.orig_video_isVGA)
1412 add_preferred_console("tty", 0, NULL);
1413 add_preferred_console("hvc", 0, NULL);
1414 if (boot_params.screen_info.orig_video_isVGA)
1415 add_preferred_console("tty", 0, NULL);
1416
1417 #ifdef CONFIG_PCI
1418 /* PCI BIOS service won't work from a PV guest. */
1419 pci_probe &= ~PCI_PROBE_BIOS;
1420 #endif
1421 xen_raw_console_write("about to get started...\n");
1422
1423 /* We need this for printk timestamps */
1424 xen_setup_runstate_info(0);
1425
1426 xen_efi_init(&boot_params);
1427
1428 /* Start the world */
1429 #ifdef CONFIG_X86_32
1430 i386_start_kernel();
1431 #else
1432 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1433 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1434 #endif
1435 }
1436
1437 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1438 {
1439 int rc;
1440
1441 if (per_cpu(xen_vcpu, cpu) == NULL)
1442 return -ENODEV;
1443
1444 xen_setup_timer(cpu);
1445
1446 rc = xen_smp_intr_init(cpu);
1447 if (rc) {
1448 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1449 cpu, rc);
1450 return rc;
1451 }
1452
1453 rc = xen_smp_intr_init_pv(cpu);
1454 if (rc) {
1455 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1456 cpu, rc);
1457 return rc;
1458 }
1459
1460 return 0;
1461 }
1462
1463 static int xen_cpu_dead_pv(unsigned int cpu)
1464 {
1465 xen_smp_intr_free(cpu);
1466 xen_smp_intr_free_pv(cpu);
1467
1468 xen_teardown_timer(cpu);
1469
1470 return 0;
1471 }
1472
1473 static uint32_t __init xen_platform_pv(void)
1474 {
1475 if (xen_pv_domain())
1476 return xen_cpuid_base();
1477
1478 return 0;
1479 }
1480
1481 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1482 .name = "Xen PV",
1483 .detect = xen_platform_pv,
1484 .type = X86_HYPER_XEN_PV,
1485 .runtime.pin_vcpu = xen_pin_vcpu,
1486 .ignore_nopv = true,
1487 };