]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/enlighten_pv.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / enlighten_pv.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89
90 void *xen_initial_gdt;
91
92 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
96
97 struct tls_descs {
98 struct desc_struct desc[3];
99 };
100
101 /*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110 /*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115 void xen_vcpu_restore(void)
116 {
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137 }
138
139 static void __init xen_banner(void)
140 {
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
145 pr_info("Booting paravirtualized kernel %son %s\n",
146 xen_feature(XENFEAT_auto_translated_physmap) ?
147 "with PVH extensions " : "", pv_info.name);
148 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
149 version >> 16, version & 0xffff, extra.extraversion,
150 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
151 }
152 /* Check if running on Xen version (major, minor) or later */
153 bool
154 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155 {
156 unsigned int version;
157
158 if (!xen_domain())
159 return false;
160
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
166 }
167
168 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
169 static __read_mostly unsigned int cpuid_leaf5_edx_val;
170
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 unsigned int *cx, unsigned int *dx)
173 {
174 unsigned maskebx = ~0;
175
176 /*
177 * Mask out inconvenient features, to try and disable as many
178 * unsupported kernel subsystems as possible.
179 */
180 switch (*ax) {
181 case CPUID_MWAIT_LEAF:
182 /* Synthesize the values.. */
183 *ax = 0;
184 *bx = 0;
185 *cx = cpuid_leaf5_ecx_val;
186 *dx = cpuid_leaf5_edx_val;
187 return;
188
189 case 0xb:
190 /* Suppress extended topology stuff */
191 maskebx = 0;
192 break;
193 }
194
195 asm(XEN_EMULATE_PREFIX "cpuid"
196 : "=a" (*ax),
197 "=b" (*bx),
198 "=c" (*cx),
199 "=d" (*dx)
200 : "0" (*ax), "2" (*cx));
201
202 *bx &= maskebx;
203 }
204 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
205
206 static bool __init xen_check_mwait(void)
207 {
208 #ifdef CONFIG_ACPI
209 struct xen_platform_op op = {
210 .cmd = XENPF_set_processor_pminfo,
211 .u.set_pminfo.id = -1,
212 .u.set_pminfo.type = XEN_PM_PDC,
213 };
214 uint32_t buf[3];
215 unsigned int ax, bx, cx, dx;
216 unsigned int mwait_mask;
217
218 /* We need to determine whether it is OK to expose the MWAIT
219 * capability to the kernel to harvest deeper than C3 states from ACPI
220 * _CST using the processor_harvest_xen.c module. For this to work, we
221 * need to gather the MWAIT_LEAF values (which the cstate.c code
222 * checks against). The hypervisor won't expose the MWAIT flag because
223 * it would break backwards compatibility; so we will find out directly
224 * from the hardware and hypercall.
225 */
226 if (!xen_initial_domain())
227 return false;
228
229 /*
230 * When running under platform earlier than Xen4.2, do not expose
231 * mwait, to avoid the risk of loading native acpi pad driver
232 */
233 if (!xen_running_on_version_or_later(4, 2))
234 return false;
235
236 ax = 1;
237 cx = 0;
238
239 native_cpuid(&ax, &bx, &cx, &dx);
240
241 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
242 (1 << (X86_FEATURE_MWAIT % 32));
243
244 if ((cx & mwait_mask) != mwait_mask)
245 return false;
246
247 /* We need to emulate the MWAIT_LEAF and for that we need both
248 * ecx and edx. The hypercall provides only partial information.
249 */
250
251 ax = CPUID_MWAIT_LEAF;
252 bx = 0;
253 cx = 0;
254 dx = 0;
255
256 native_cpuid(&ax, &bx, &cx, &dx);
257
258 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
259 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
260 */
261 buf[0] = ACPI_PDC_REVISION_ID;
262 buf[1] = 1;
263 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
264
265 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
266
267 if ((HYPERVISOR_platform_op(&op) == 0) &&
268 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
269 cpuid_leaf5_ecx_val = cx;
270 cpuid_leaf5_edx_val = dx;
271 }
272 return true;
273 #else
274 return false;
275 #endif
276 }
277
278 static bool __init xen_check_xsave(void)
279 {
280 unsigned int cx, xsave_mask;
281
282 cx = cpuid_ecx(1);
283
284 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
285 (1 << (X86_FEATURE_OSXSAVE % 32));
286
287 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
288 return (cx & xsave_mask) == xsave_mask;
289 }
290
291 static void __init xen_init_capabilities(void)
292 {
293 setup_force_cpu_cap(X86_FEATURE_XENPV);
294 setup_clear_cpu_cap(X86_FEATURE_DCA);
295 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
296 setup_clear_cpu_cap(X86_FEATURE_MTRR);
297 setup_clear_cpu_cap(X86_FEATURE_ACC);
298 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
299
300 if (!xen_initial_domain())
301 setup_clear_cpu_cap(X86_FEATURE_ACPI);
302
303 if (xen_check_mwait())
304 setup_force_cpu_cap(X86_FEATURE_MWAIT);
305 else
306 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
307
308 if (!xen_check_xsave()) {
309 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
310 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
311 }
312 }
313
314 static void xen_set_debugreg(int reg, unsigned long val)
315 {
316 HYPERVISOR_set_debugreg(reg, val);
317 }
318
319 static unsigned long xen_get_debugreg(int reg)
320 {
321 return HYPERVISOR_get_debugreg(reg);
322 }
323
324 static void xen_end_context_switch(struct task_struct *next)
325 {
326 xen_mc_flush();
327 paravirt_end_context_switch(next);
328 }
329
330 static unsigned long xen_store_tr(void)
331 {
332 return 0;
333 }
334
335 /*
336 * Set the page permissions for a particular virtual address. If the
337 * address is a vmalloc mapping (or other non-linear mapping), then
338 * find the linear mapping of the page and also set its protections to
339 * match.
340 */
341 static void set_aliased_prot(void *v, pgprot_t prot)
342 {
343 int level;
344 pte_t *ptep;
345 pte_t pte;
346 unsigned long pfn;
347 struct page *page;
348 unsigned char dummy;
349
350 ptep = lookup_address((unsigned long)v, &level);
351 BUG_ON(ptep == NULL);
352
353 pfn = pte_pfn(*ptep);
354 page = pfn_to_page(pfn);
355
356 pte = pfn_pte(pfn, prot);
357
358 /*
359 * Careful: update_va_mapping() will fail if the virtual address
360 * we're poking isn't populated in the page tables. We don't
361 * need to worry about the direct map (that's always in the page
362 * tables), but we need to be careful about vmap space. In
363 * particular, the top level page table can lazily propagate
364 * entries between processes, so if we've switched mms since we
365 * vmapped the target in the first place, we might not have the
366 * top-level page table entry populated.
367 *
368 * We disable preemption because we want the same mm active when
369 * we probe the target and when we issue the hypercall. We'll
370 * have the same nominal mm, but if we're a kernel thread, lazy
371 * mm dropping could change our pgd.
372 *
373 * Out of an abundance of caution, this uses __get_user() to fault
374 * in the target address just in case there's some obscure case
375 * in which the target address isn't readable.
376 */
377
378 preempt_disable();
379
380 probe_kernel_read(&dummy, v, 1);
381
382 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
383 BUG();
384
385 if (!PageHighMem(page)) {
386 void *av = __va(PFN_PHYS(pfn));
387
388 if (av != v)
389 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
390 BUG();
391 } else
392 kmap_flush_unused();
393
394 preempt_enable();
395 }
396
397 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
398 {
399 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
400 int i;
401
402 /*
403 * We need to mark the all aliases of the LDT pages RO. We
404 * don't need to call vm_flush_aliases(), though, since that's
405 * only responsible for flushing aliases out the TLBs, not the
406 * page tables, and Xen will flush the TLB for us if needed.
407 *
408 * To avoid confusing future readers: none of this is necessary
409 * to load the LDT. The hypervisor only checks this when the
410 * LDT is faulted in due to subsequent descriptor access.
411 */
412
413 for (i = 0; i < entries; i += entries_per_page)
414 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
415 }
416
417 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
418 {
419 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
420 int i;
421
422 for (i = 0; i < entries; i += entries_per_page)
423 set_aliased_prot(ldt + i, PAGE_KERNEL);
424 }
425
426 static void xen_set_ldt(const void *addr, unsigned entries)
427 {
428 struct mmuext_op *op;
429 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
430
431 trace_xen_cpu_set_ldt(addr, entries);
432
433 op = mcs.args;
434 op->cmd = MMUEXT_SET_LDT;
435 op->arg1.linear_addr = (unsigned long)addr;
436 op->arg2.nr_ents = entries;
437
438 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
439
440 xen_mc_issue(PARAVIRT_LAZY_CPU);
441 }
442
443 static void xen_load_gdt(const struct desc_ptr *dtr)
444 {
445 unsigned long va = dtr->address;
446 unsigned int size = dtr->size + 1;
447 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
448 unsigned long frames[pages];
449 int f;
450
451 /*
452 * A GDT can be up to 64k in size, which corresponds to 8192
453 * 8-byte entries, or 16 4k pages..
454 */
455
456 BUG_ON(size > 65536);
457 BUG_ON(va & ~PAGE_MASK);
458
459 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
460 int level;
461 pte_t *ptep;
462 unsigned long pfn, mfn;
463 void *virt;
464
465 /*
466 * The GDT is per-cpu and is in the percpu data area.
467 * That can be virtually mapped, so we need to do a
468 * page-walk to get the underlying MFN for the
469 * hypercall. The page can also be in the kernel's
470 * linear range, so we need to RO that mapping too.
471 */
472 ptep = lookup_address(va, &level);
473 BUG_ON(ptep == NULL);
474
475 pfn = pte_pfn(*ptep);
476 mfn = pfn_to_mfn(pfn);
477 virt = __va(PFN_PHYS(pfn));
478
479 frames[f] = mfn;
480
481 make_lowmem_page_readonly((void *)va);
482 make_lowmem_page_readonly(virt);
483 }
484
485 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
486 BUG();
487 }
488
489 /*
490 * load_gdt for early boot, when the gdt is only mapped once
491 */
492 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
493 {
494 unsigned long va = dtr->address;
495 unsigned int size = dtr->size + 1;
496 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
497 unsigned long frames[pages];
498 int f;
499
500 /*
501 * A GDT can be up to 64k in size, which corresponds to 8192
502 * 8-byte entries, or 16 4k pages..
503 */
504
505 BUG_ON(size > 65536);
506 BUG_ON(va & ~PAGE_MASK);
507
508 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
509 pte_t pte;
510 unsigned long pfn, mfn;
511
512 pfn = virt_to_pfn(va);
513 mfn = pfn_to_mfn(pfn);
514
515 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
516
517 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
518 BUG();
519
520 frames[f] = mfn;
521 }
522
523 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
524 BUG();
525 }
526
527 static inline bool desc_equal(const struct desc_struct *d1,
528 const struct desc_struct *d2)
529 {
530 return d1->a == d2->a && d1->b == d2->b;
531 }
532
533 static void load_TLS_descriptor(struct thread_struct *t,
534 unsigned int cpu, unsigned int i)
535 {
536 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
537 struct desc_struct *gdt;
538 xmaddr_t maddr;
539 struct multicall_space mc;
540
541 if (desc_equal(shadow, &t->tls_array[i]))
542 return;
543
544 *shadow = t->tls_array[i];
545
546 gdt = get_cpu_gdt_rw(cpu);
547 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
548 mc = __xen_mc_entry(0);
549
550 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
551 }
552
553 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
554 {
555 /*
556 * XXX sleazy hack: If we're being called in a lazy-cpu zone
557 * and lazy gs handling is enabled, it means we're in a
558 * context switch, and %gs has just been saved. This means we
559 * can zero it out to prevent faults on exit from the
560 * hypervisor if the next process has no %gs. Either way, it
561 * has been saved, and the new value will get loaded properly.
562 * This will go away as soon as Xen has been modified to not
563 * save/restore %gs for normal hypercalls.
564 *
565 * On x86_64, this hack is not used for %gs, because gs points
566 * to KERNEL_GS_BASE (and uses it for PDA references), so we
567 * must not zero %gs on x86_64
568 *
569 * For x86_64, we need to zero %fs, otherwise we may get an
570 * exception between the new %fs descriptor being loaded and
571 * %fs being effectively cleared at __switch_to().
572 */
573 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
574 #ifdef CONFIG_X86_32
575 lazy_load_gs(0);
576 #else
577 loadsegment(fs, 0);
578 #endif
579 }
580
581 xen_mc_batch();
582
583 load_TLS_descriptor(t, cpu, 0);
584 load_TLS_descriptor(t, cpu, 1);
585 load_TLS_descriptor(t, cpu, 2);
586
587 xen_mc_issue(PARAVIRT_LAZY_CPU);
588 }
589
590 #ifdef CONFIG_X86_64
591 static void xen_load_gs_index(unsigned int idx)
592 {
593 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
594 BUG();
595 }
596 #endif
597
598 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
599 const void *ptr)
600 {
601 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
602 u64 entry = *(u64 *)ptr;
603
604 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
605
606 preempt_disable();
607
608 xen_mc_flush();
609 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
610 BUG();
611
612 preempt_enable();
613 }
614
615 static int cvt_gate_to_trap(int vector, const gate_desc *val,
616 struct trap_info *info)
617 {
618 unsigned long addr;
619
620 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
621 return 0;
622
623 info->vector = vector;
624
625 addr = gate_offset(*val);
626 #ifdef CONFIG_X86_64
627 /*
628 * Look for known traps using IST, and substitute them
629 * appropriately. The debugger ones are the only ones we care
630 * about. Xen will handle faults like double_fault,
631 * so we should never see them. Warn if
632 * there's an unexpected IST-using fault handler.
633 */
634 if (addr == (unsigned long)debug)
635 addr = (unsigned long)xen_debug;
636 else if (addr == (unsigned long)int3)
637 addr = (unsigned long)xen_int3;
638 else if (addr == (unsigned long)stack_segment)
639 addr = (unsigned long)xen_stack_segment;
640 else if (addr == (unsigned long)double_fault) {
641 /* Don't need to handle these */
642 return 0;
643 #ifdef CONFIG_X86_MCE
644 } else if (addr == (unsigned long)machine_check) {
645 /*
646 * when xen hypervisor inject vMCE to guest,
647 * use native mce handler to handle it
648 */
649 ;
650 #endif
651 } else if (addr == (unsigned long)nmi)
652 /*
653 * Use the native version as well.
654 */
655 ;
656 else {
657 /* Some other trap using IST? */
658 if (WARN_ON(val->ist != 0))
659 return 0;
660 }
661 #endif /* CONFIG_X86_64 */
662 info->address = addr;
663
664 info->cs = gate_segment(*val);
665 info->flags = val->dpl;
666 /* interrupt gates clear IF */
667 if (val->type == GATE_INTERRUPT)
668 info->flags |= 1 << 2;
669
670 return 1;
671 }
672
673 /* Locations of each CPU's IDT */
674 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
675
676 /* Set an IDT entry. If the entry is part of the current IDT, then
677 also update Xen. */
678 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
679 {
680 unsigned long p = (unsigned long)&dt[entrynum];
681 unsigned long start, end;
682
683 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
684
685 preempt_disable();
686
687 start = __this_cpu_read(idt_desc.address);
688 end = start + __this_cpu_read(idt_desc.size) + 1;
689
690 xen_mc_flush();
691
692 native_write_idt_entry(dt, entrynum, g);
693
694 if (p >= start && (p + 8) <= end) {
695 struct trap_info info[2];
696
697 info[1].address = 0;
698
699 if (cvt_gate_to_trap(entrynum, g, &info[0]))
700 if (HYPERVISOR_set_trap_table(info))
701 BUG();
702 }
703
704 preempt_enable();
705 }
706
707 static void xen_convert_trap_info(const struct desc_ptr *desc,
708 struct trap_info *traps)
709 {
710 unsigned in, out, count;
711
712 count = (desc->size+1) / sizeof(gate_desc);
713 BUG_ON(count > 256);
714
715 for (in = out = 0; in < count; in++) {
716 gate_desc *entry = (gate_desc *)(desc->address) + in;
717
718 if (cvt_gate_to_trap(in, entry, &traps[out]))
719 out++;
720 }
721 traps[out].address = 0;
722 }
723
724 void xen_copy_trap_info(struct trap_info *traps)
725 {
726 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
727
728 xen_convert_trap_info(desc, traps);
729 }
730
731 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
732 hold a spinlock to protect the static traps[] array (static because
733 it avoids allocation, and saves stack space). */
734 static void xen_load_idt(const struct desc_ptr *desc)
735 {
736 static DEFINE_SPINLOCK(lock);
737 static struct trap_info traps[257];
738
739 trace_xen_cpu_load_idt(desc);
740
741 spin_lock(&lock);
742
743 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
744
745 xen_convert_trap_info(desc, traps);
746
747 xen_mc_flush();
748 if (HYPERVISOR_set_trap_table(traps))
749 BUG();
750
751 spin_unlock(&lock);
752 }
753
754 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
755 they're handled differently. */
756 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
757 const void *desc, int type)
758 {
759 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
760
761 preempt_disable();
762
763 switch (type) {
764 case DESC_LDT:
765 case DESC_TSS:
766 /* ignore */
767 break;
768
769 default: {
770 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
771
772 xen_mc_flush();
773 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
774 BUG();
775 }
776
777 }
778
779 preempt_enable();
780 }
781
782 /*
783 * Version of write_gdt_entry for use at early boot-time needed to
784 * update an entry as simply as possible.
785 */
786 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
787 const void *desc, int type)
788 {
789 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
790
791 switch (type) {
792 case DESC_LDT:
793 case DESC_TSS:
794 /* ignore */
795 break;
796
797 default: {
798 xmaddr_t maddr = virt_to_machine(&dt[entry]);
799
800 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
801 dt[entry] = *(struct desc_struct *)desc;
802 }
803
804 }
805 }
806
807 static void xen_load_sp0(struct tss_struct *tss,
808 struct thread_struct *thread)
809 {
810 struct multicall_space mcs;
811
812 mcs = xen_mc_entry(0);
813 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
814 xen_mc_issue(PARAVIRT_LAZY_CPU);
815 tss->x86_tss.sp0 = thread->sp0;
816 }
817
818 void xen_set_iopl_mask(unsigned mask)
819 {
820 struct physdev_set_iopl set_iopl;
821
822 /* Force the change at ring 0. */
823 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
824 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
825 }
826
827 static void xen_io_delay(void)
828 {
829 }
830
831 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
832
833 static unsigned long xen_read_cr0(void)
834 {
835 unsigned long cr0 = this_cpu_read(xen_cr0_value);
836
837 if (unlikely(cr0 == 0)) {
838 cr0 = native_read_cr0();
839 this_cpu_write(xen_cr0_value, cr0);
840 }
841
842 return cr0;
843 }
844
845 static void xen_write_cr0(unsigned long cr0)
846 {
847 struct multicall_space mcs;
848
849 this_cpu_write(xen_cr0_value, cr0);
850
851 /* Only pay attention to cr0.TS; everything else is
852 ignored. */
853 mcs = xen_mc_entry(0);
854
855 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
856
857 xen_mc_issue(PARAVIRT_LAZY_CPU);
858 }
859
860 static void xen_write_cr4(unsigned long cr4)
861 {
862 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
863
864 native_write_cr4(cr4);
865 }
866 #ifdef CONFIG_X86_64
867 static inline unsigned long xen_read_cr8(void)
868 {
869 return 0;
870 }
871 static inline void xen_write_cr8(unsigned long val)
872 {
873 BUG_ON(val);
874 }
875 #endif
876
877 static u64 xen_read_msr_safe(unsigned int msr, int *err)
878 {
879 u64 val;
880
881 if (pmu_msr_read(msr, &val, err))
882 return val;
883
884 val = native_read_msr_safe(msr, err);
885 switch (msr) {
886 case MSR_IA32_APICBASE:
887 #ifdef CONFIG_X86_X2APIC
888 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
889 #endif
890 val &= ~X2APIC_ENABLE;
891 break;
892 }
893 return val;
894 }
895
896 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
897 {
898 int ret;
899
900 ret = 0;
901
902 switch (msr) {
903 #ifdef CONFIG_X86_64
904 unsigned which;
905 u64 base;
906
907 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
908 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
909 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
910
911 set:
912 base = ((u64)high << 32) | low;
913 if (HYPERVISOR_set_segment_base(which, base) != 0)
914 ret = -EIO;
915 break;
916 #endif
917
918 case MSR_STAR:
919 case MSR_CSTAR:
920 case MSR_LSTAR:
921 case MSR_SYSCALL_MASK:
922 case MSR_IA32_SYSENTER_CS:
923 case MSR_IA32_SYSENTER_ESP:
924 case MSR_IA32_SYSENTER_EIP:
925 /* Fast syscall setup is all done in hypercalls, so
926 these are all ignored. Stub them out here to stop
927 Xen console noise. */
928 break;
929
930 default:
931 if (!pmu_msr_write(msr, low, high, &ret))
932 ret = native_write_msr_safe(msr, low, high);
933 }
934
935 return ret;
936 }
937
938 static u64 xen_read_msr(unsigned int msr)
939 {
940 /*
941 * This will silently swallow a #GP from RDMSR. It may be worth
942 * changing that.
943 */
944 int err;
945
946 return xen_read_msr_safe(msr, &err);
947 }
948
949 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
950 {
951 /*
952 * This will silently swallow a #GP from WRMSR. It may be worth
953 * changing that.
954 */
955 xen_write_msr_safe(msr, low, high);
956 }
957
958 void xen_setup_shared_info(void)
959 {
960 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
961 set_fixmap(FIX_PARAVIRT_BOOTMAP,
962 xen_start_info->shared_info);
963
964 HYPERVISOR_shared_info =
965 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
966 } else
967 HYPERVISOR_shared_info =
968 (struct shared_info *)__va(xen_start_info->shared_info);
969
970 #ifndef CONFIG_SMP
971 /* In UP this is as good a place as any to set up shared info */
972 xen_setup_vcpu_info_placement();
973 #endif
974
975 xen_setup_mfn_list_list();
976
977 /*
978 * Now that shared info is set up we can start using routines that
979 * point to pvclock area.
980 */
981 if (system_state == SYSTEM_BOOTING)
982 xen_init_time_ops();
983 }
984
985 /* This is called once we have the cpu_possible_mask */
986 void xen_setup_vcpu_info_placement(void)
987 {
988 int cpu;
989
990 for_each_possible_cpu(cpu) {
991 /* Set up direct vCPU id mapping for PV guests. */
992 per_cpu(xen_vcpu_id, cpu) = cpu;
993 xen_vcpu_setup(cpu);
994 }
995
996 /*
997 * xen_vcpu_setup managed to place the vcpu_info within the
998 * percpu area for all cpus, so make use of it.
999 */
1000 if (xen_have_vcpu_info_placement) {
1001 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1002 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1003 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1004 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1005 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1006 }
1007 }
1008
1009 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1010 unsigned long addr, unsigned len)
1011 {
1012 char *start, *end, *reloc;
1013 unsigned ret;
1014
1015 start = end = reloc = NULL;
1016
1017 #define SITE(op, x) \
1018 case PARAVIRT_PATCH(op.x): \
1019 if (xen_have_vcpu_info_placement) { \
1020 start = (char *)xen_##x##_direct; \
1021 end = xen_##x##_direct_end; \
1022 reloc = xen_##x##_direct_reloc; \
1023 } \
1024 goto patch_site
1025
1026 switch (type) {
1027 SITE(pv_irq_ops, irq_enable);
1028 SITE(pv_irq_ops, irq_disable);
1029 SITE(pv_irq_ops, save_fl);
1030 SITE(pv_irq_ops, restore_fl);
1031 #undef SITE
1032
1033 patch_site:
1034 if (start == NULL || (end-start) > len)
1035 goto default_patch;
1036
1037 ret = paravirt_patch_insns(insnbuf, len, start, end);
1038
1039 /* Note: because reloc is assigned from something that
1040 appears to be an array, gcc assumes it's non-null,
1041 but doesn't know its relationship with start and
1042 end. */
1043 if (reloc > start && reloc < end) {
1044 int reloc_off = reloc - start;
1045 long *relocp = (long *)(insnbuf + reloc_off);
1046 long delta = start - (char *)addr;
1047
1048 *relocp += delta;
1049 }
1050 break;
1051
1052 default_patch:
1053 default:
1054 ret = paravirt_patch_default(type, clobbers, insnbuf,
1055 addr, len);
1056 break;
1057 }
1058
1059 return ret;
1060 }
1061
1062 static const struct pv_info xen_info __initconst = {
1063 .shared_kernel_pmd = 0,
1064
1065 #ifdef CONFIG_X86_64
1066 .extra_user_64bit_cs = FLAT_USER_CS64,
1067 #endif
1068 .name = "Xen",
1069 };
1070
1071 static const struct pv_init_ops xen_init_ops __initconst = {
1072 .patch = xen_patch,
1073 };
1074
1075 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1076 .cpuid = xen_cpuid,
1077
1078 .set_debugreg = xen_set_debugreg,
1079 .get_debugreg = xen_get_debugreg,
1080
1081 .read_cr0 = xen_read_cr0,
1082 .write_cr0 = xen_write_cr0,
1083
1084 .read_cr4 = native_read_cr4,
1085 .write_cr4 = xen_write_cr4,
1086
1087 #ifdef CONFIG_X86_64
1088 .read_cr8 = xen_read_cr8,
1089 .write_cr8 = xen_write_cr8,
1090 #endif
1091
1092 .wbinvd = native_wbinvd,
1093
1094 .read_msr = xen_read_msr,
1095 .write_msr = xen_write_msr,
1096
1097 .read_msr_safe = xen_read_msr_safe,
1098 .write_msr_safe = xen_write_msr_safe,
1099
1100 .read_pmc = xen_read_pmc,
1101
1102 .iret = xen_iret,
1103 #ifdef CONFIG_X86_64
1104 .usergs_sysret64 = xen_sysret64,
1105 #endif
1106
1107 .load_tr_desc = paravirt_nop,
1108 .set_ldt = xen_set_ldt,
1109 .load_gdt = xen_load_gdt,
1110 .load_idt = xen_load_idt,
1111 .load_tls = xen_load_tls,
1112 #ifdef CONFIG_X86_64
1113 .load_gs_index = xen_load_gs_index,
1114 #endif
1115
1116 .alloc_ldt = xen_alloc_ldt,
1117 .free_ldt = xen_free_ldt,
1118
1119 .store_idt = native_store_idt,
1120 .store_tr = xen_store_tr,
1121
1122 .write_ldt_entry = xen_write_ldt_entry,
1123 .write_gdt_entry = xen_write_gdt_entry,
1124 .write_idt_entry = xen_write_idt_entry,
1125 .load_sp0 = xen_load_sp0,
1126
1127 .set_iopl_mask = xen_set_iopl_mask,
1128 .io_delay = xen_io_delay,
1129
1130 /* Xen takes care of %gs when switching to usermode for us */
1131 .swapgs = paravirt_nop,
1132
1133 .start_context_switch = paravirt_start_context_switch,
1134 .end_context_switch = xen_end_context_switch,
1135 };
1136
1137 static void xen_restart(char *msg)
1138 {
1139 xen_reboot(SHUTDOWN_reboot);
1140 }
1141
1142 static void xen_machine_halt(void)
1143 {
1144 xen_reboot(SHUTDOWN_poweroff);
1145 }
1146
1147 static void xen_machine_power_off(void)
1148 {
1149 if (pm_power_off)
1150 pm_power_off();
1151 xen_reboot(SHUTDOWN_poweroff);
1152 }
1153
1154 static void xen_crash_shutdown(struct pt_regs *regs)
1155 {
1156 xen_reboot(SHUTDOWN_crash);
1157 }
1158
1159 static const struct machine_ops xen_machine_ops __initconst = {
1160 .restart = xen_restart,
1161 .halt = xen_machine_halt,
1162 .power_off = xen_machine_power_off,
1163 .shutdown = xen_machine_halt,
1164 .crash_shutdown = xen_crash_shutdown,
1165 .emergency_restart = xen_emergency_restart,
1166 };
1167
1168 static unsigned char xen_get_nmi_reason(void)
1169 {
1170 unsigned char reason = 0;
1171
1172 /* Construct a value which looks like it came from port 0x61. */
1173 if (test_bit(_XEN_NMIREASON_io_error,
1174 &HYPERVISOR_shared_info->arch.nmi_reason))
1175 reason |= NMI_REASON_IOCHK;
1176 if (test_bit(_XEN_NMIREASON_pci_serr,
1177 &HYPERVISOR_shared_info->arch.nmi_reason))
1178 reason |= NMI_REASON_SERR;
1179
1180 return reason;
1181 }
1182
1183 static void __init xen_boot_params_init_edd(void)
1184 {
1185 #if IS_ENABLED(CONFIG_EDD)
1186 struct xen_platform_op op;
1187 struct edd_info *edd_info;
1188 u32 *mbr_signature;
1189 unsigned nr;
1190 int ret;
1191
1192 edd_info = boot_params.eddbuf;
1193 mbr_signature = boot_params.edd_mbr_sig_buffer;
1194
1195 op.cmd = XENPF_firmware_info;
1196
1197 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1198 for (nr = 0; nr < EDDMAXNR; nr++) {
1199 struct edd_info *info = edd_info + nr;
1200
1201 op.u.firmware_info.index = nr;
1202 info->params.length = sizeof(info->params);
1203 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1204 &info->params);
1205 ret = HYPERVISOR_platform_op(&op);
1206 if (ret)
1207 break;
1208
1209 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1210 C(device);
1211 C(version);
1212 C(interface_support);
1213 C(legacy_max_cylinder);
1214 C(legacy_max_head);
1215 C(legacy_sectors_per_track);
1216 #undef C
1217 }
1218 boot_params.eddbuf_entries = nr;
1219
1220 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1221 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1222 op.u.firmware_info.index = nr;
1223 ret = HYPERVISOR_platform_op(&op);
1224 if (ret)
1225 break;
1226 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1227 }
1228 boot_params.edd_mbr_sig_buf_entries = nr;
1229 #endif
1230 }
1231
1232 /*
1233 * Set up the GDT and segment registers for -fstack-protector. Until
1234 * we do this, we have to be careful not to call any stack-protected
1235 * function, which is most of the kernel.
1236 */
1237 static void xen_setup_gdt(int cpu)
1238 {
1239 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1240 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1241
1242 setup_stack_canary_segment(0);
1243 switch_to_new_gdt(0);
1244
1245 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1246 pv_cpu_ops.load_gdt = xen_load_gdt;
1247 }
1248
1249 static void __init xen_dom0_set_legacy_features(void)
1250 {
1251 x86_platform.legacy.rtc = 1;
1252 }
1253
1254 /* First C function to be called on Xen boot */
1255 asmlinkage __visible void __init xen_start_kernel(void)
1256 {
1257 struct physdev_set_iopl set_iopl;
1258 unsigned long initrd_start = 0;
1259 int rc;
1260
1261 if (!xen_start_info)
1262 return;
1263
1264 xen_domain_type = XEN_PV_DOMAIN;
1265
1266 xen_setup_features();
1267
1268 xen_setup_machphys_mapping();
1269
1270 /* Install Xen paravirt ops */
1271 pv_info = xen_info;
1272 pv_init_ops = xen_init_ops;
1273 pv_cpu_ops = xen_cpu_ops;
1274
1275 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1276
1277 x86_init.resources.memory_setup = xen_memory_setup;
1278 x86_init.oem.arch_setup = xen_arch_setup;
1279 x86_init.oem.banner = xen_banner;
1280
1281 /*
1282 * Set up some pagetable state before starting to set any ptes.
1283 */
1284
1285 xen_init_mmu_ops();
1286
1287 /* Prevent unwanted bits from being set in PTEs. */
1288 __supported_pte_mask &= ~_PAGE_GLOBAL;
1289
1290 /*
1291 * Prevent page tables from being allocated in highmem, even
1292 * if CONFIG_HIGHPTE is enabled.
1293 */
1294 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1295
1296 /* Work out if we support NX */
1297 x86_configure_nx();
1298
1299 /* Get mfn list */
1300 xen_build_dynamic_phys_to_machine();
1301
1302 /*
1303 * Set up kernel GDT and segment registers, mainly so that
1304 * -fstack-protector code can be executed.
1305 */
1306 xen_setup_gdt(0);
1307
1308 xen_init_irq_ops();
1309 xen_init_capabilities();
1310
1311 #ifdef CONFIG_X86_LOCAL_APIC
1312 /*
1313 * set up the basic apic ops.
1314 */
1315 xen_init_apic();
1316 #endif
1317
1318 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1319 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1320 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1321 }
1322
1323 machine_ops = xen_machine_ops;
1324
1325 /*
1326 * The only reliable way to retain the initial address of the
1327 * percpu gdt_page is to remember it here, so we can go and
1328 * mark it RW later, when the initial percpu area is freed.
1329 */
1330 xen_initial_gdt = &per_cpu(gdt_page, 0);
1331
1332 xen_smp_init();
1333
1334 #ifdef CONFIG_ACPI_NUMA
1335 /*
1336 * The pages we from Xen are not related to machine pages, so
1337 * any NUMA information the kernel tries to get from ACPI will
1338 * be meaningless. Prevent it from trying.
1339 */
1340 acpi_numa = -1;
1341 #endif
1342 /* Don't do the full vcpu_info placement stuff until we have a
1343 possible map and a non-dummy shared_info. */
1344 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1345
1346 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1347
1348 local_irq_disable();
1349 early_boot_irqs_disabled = true;
1350
1351 xen_raw_console_write("mapping kernel into physical memory\n");
1352 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1353 xen_start_info->nr_pages);
1354 xen_reserve_special_pages();
1355
1356 /* keep using Xen gdt for now; no urgent need to change it */
1357
1358 #ifdef CONFIG_X86_32
1359 pv_info.kernel_rpl = 1;
1360 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1361 pv_info.kernel_rpl = 0;
1362 #else
1363 pv_info.kernel_rpl = 0;
1364 #endif
1365 /* set the limit of our address space */
1366 xen_reserve_top();
1367
1368 /*
1369 * We used to do this in xen_arch_setup, but that is too late
1370 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1371 * early_amd_init which pokes 0xcf8 port.
1372 */
1373 set_iopl.iopl = 1;
1374 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1375 if (rc != 0)
1376 xen_raw_printk("physdev_op failed %d\n", rc);
1377
1378 #ifdef CONFIG_X86_32
1379 /* set up basic CPUID stuff */
1380 cpu_detect(&new_cpu_data);
1381 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1382 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1383 #endif
1384
1385 if (xen_start_info->mod_start) {
1386 if (xen_start_info->flags & SIF_MOD_START_PFN)
1387 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1388 else
1389 initrd_start = __pa(xen_start_info->mod_start);
1390 }
1391
1392 /* Poke various useful things into boot_params */
1393 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1394 boot_params.hdr.ramdisk_image = initrd_start;
1395 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1396 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1397 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1398
1399 if (!xen_initial_domain()) {
1400 add_preferred_console("xenboot", 0, NULL);
1401 add_preferred_console("tty", 0, NULL);
1402 add_preferred_console("hvc", 0, NULL);
1403 if (pci_xen)
1404 x86_init.pci.arch_init = pci_xen_init;
1405 } else {
1406 const struct dom0_vga_console_info *info =
1407 (void *)((char *)xen_start_info +
1408 xen_start_info->console.dom0.info_off);
1409 struct xen_platform_op op = {
1410 .cmd = XENPF_firmware_info,
1411 .interface_version = XENPF_INTERFACE_VERSION,
1412 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1413 };
1414
1415 x86_platform.set_legacy_features =
1416 xen_dom0_set_legacy_features;
1417 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1418 xen_start_info->console.domU.mfn = 0;
1419 xen_start_info->console.domU.evtchn = 0;
1420
1421 if (HYPERVISOR_platform_op(&op) == 0)
1422 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1423
1424 /* Make sure ACS will be enabled */
1425 pci_request_acs();
1426
1427 xen_acpi_sleep_register();
1428
1429 /* Avoid searching for BIOS MP tables */
1430 x86_init.mpparse.find_smp_config = x86_init_noop;
1431 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1432
1433 xen_boot_params_init_edd();
1434 }
1435 #ifdef CONFIG_PCI
1436 /* PCI BIOS service won't work from a PV guest. */
1437 pci_probe &= ~PCI_PROBE_BIOS;
1438 #endif
1439 xen_raw_console_write("about to get started...\n");
1440
1441 /* Let's presume PV guests always boot on vCPU with id 0. */
1442 per_cpu(xen_vcpu_id, 0) = 0;
1443
1444 xen_setup_runstate_info(0);
1445
1446 xen_efi_init();
1447
1448 /* Start the world */
1449 #ifdef CONFIG_X86_32
1450 i386_start_kernel();
1451 #else
1452 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1453 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1454 #endif
1455 }
1456
1457 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1458 {
1459 int rc;
1460
1461 xen_setup_timer(cpu);
1462
1463 rc = xen_smp_intr_init(cpu);
1464 if (rc) {
1465 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1466 cpu, rc);
1467 return rc;
1468 }
1469
1470 rc = xen_smp_intr_init_pv(cpu);
1471 if (rc) {
1472 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1473 cpu, rc);
1474 return rc;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static int xen_cpu_dead_pv(unsigned int cpu)
1481 {
1482 xen_smp_intr_free(cpu);
1483 xen_smp_intr_free_pv(cpu);
1484
1485 xen_teardown_timer(cpu);
1486
1487 return 0;
1488 }
1489
1490 static uint32_t __init xen_platform_pv(void)
1491 {
1492 if (xen_pv_domain())
1493 return xen_cpuid_base();
1494
1495 return 0;
1496 }
1497
1498 const struct hypervisor_x86 x86_hyper_xen_pv = {
1499 .name = "Xen PV",
1500 .detect = xen_platform_pv,
1501 .pin_vcpu = xen_pin_vcpu,
1502 };
1503 EXPORT_SYMBOL(x86_hyper_xen_pv);