]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/xen/enlighten_pv.c
Merge branch 'drm-next-4.12' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / xen / enlighten_pv.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89
90 void *xen_initial_gdt;
91
92 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
96
97 struct tls_descs {
98 struct desc_struct desc[3];
99 };
100
101 /*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110 /*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115 void xen_vcpu_restore(void)
116 {
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137 }
138
139 static void __init xen_banner(void)
140 {
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
145 pr_info("Booting paravirtualized kernel %son %s\n",
146 xen_feature(XENFEAT_auto_translated_physmap) ?
147 "with PVH extensions " : "", pv_info.name);
148 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
149 version >> 16, version & 0xffff, extra.extraversion,
150 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
151 }
152 /* Check if running on Xen version (major, minor) or later */
153 bool
154 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155 {
156 unsigned int version;
157
158 if (!xen_domain())
159 return false;
160
161 version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 ((version >> 16) > major))
164 return true;
165 return false;
166 }
167
168 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
169 static __read_mostly unsigned int cpuid_leaf5_edx_val;
170
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 unsigned int *cx, unsigned int *dx)
173 {
174 unsigned maskebx = ~0;
175
176 /*
177 * Mask out inconvenient features, to try and disable as many
178 * unsupported kernel subsystems as possible.
179 */
180 switch (*ax) {
181 case CPUID_MWAIT_LEAF:
182 /* Synthesize the values.. */
183 *ax = 0;
184 *bx = 0;
185 *cx = cpuid_leaf5_ecx_val;
186 *dx = cpuid_leaf5_edx_val;
187 return;
188
189 case 0xb:
190 /* Suppress extended topology stuff */
191 maskebx = 0;
192 break;
193 }
194
195 asm(XEN_EMULATE_PREFIX "cpuid"
196 : "=a" (*ax),
197 "=b" (*bx),
198 "=c" (*cx),
199 "=d" (*dx)
200 : "0" (*ax), "2" (*cx));
201
202 *bx &= maskebx;
203 }
204 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
205
206 static bool __init xen_check_mwait(void)
207 {
208 #ifdef CONFIG_ACPI
209 struct xen_platform_op op = {
210 .cmd = XENPF_set_processor_pminfo,
211 .u.set_pminfo.id = -1,
212 .u.set_pminfo.type = XEN_PM_PDC,
213 };
214 uint32_t buf[3];
215 unsigned int ax, bx, cx, dx;
216 unsigned int mwait_mask;
217
218 /* We need to determine whether it is OK to expose the MWAIT
219 * capability to the kernel to harvest deeper than C3 states from ACPI
220 * _CST using the processor_harvest_xen.c module. For this to work, we
221 * need to gather the MWAIT_LEAF values (which the cstate.c code
222 * checks against). The hypervisor won't expose the MWAIT flag because
223 * it would break backwards compatibility; so we will find out directly
224 * from the hardware and hypercall.
225 */
226 if (!xen_initial_domain())
227 return false;
228
229 /*
230 * When running under platform earlier than Xen4.2, do not expose
231 * mwait, to avoid the risk of loading native acpi pad driver
232 */
233 if (!xen_running_on_version_or_later(4, 2))
234 return false;
235
236 ax = 1;
237 cx = 0;
238
239 native_cpuid(&ax, &bx, &cx, &dx);
240
241 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
242 (1 << (X86_FEATURE_MWAIT % 32));
243
244 if ((cx & mwait_mask) != mwait_mask)
245 return false;
246
247 /* We need to emulate the MWAIT_LEAF and for that we need both
248 * ecx and edx. The hypercall provides only partial information.
249 */
250
251 ax = CPUID_MWAIT_LEAF;
252 bx = 0;
253 cx = 0;
254 dx = 0;
255
256 native_cpuid(&ax, &bx, &cx, &dx);
257
258 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
259 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
260 */
261 buf[0] = ACPI_PDC_REVISION_ID;
262 buf[1] = 1;
263 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
264
265 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
266
267 if ((HYPERVISOR_platform_op(&op) == 0) &&
268 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
269 cpuid_leaf5_ecx_val = cx;
270 cpuid_leaf5_edx_val = dx;
271 }
272 return true;
273 #else
274 return false;
275 #endif
276 }
277
278 static bool __init xen_check_xsave(void)
279 {
280 unsigned int err, eax, edx;
281
282 /*
283 * Xen 4.0 and older accidentally leaked the host XSAVE flag into guest
284 * view, despite not being able to support guests using the
285 * functionality. Probe for the actual availability of XSAVE by seeing
286 * whether xgetbv executes successfully or raises #UD.
287 */
288 asm volatile("1: .byte 0x0f,0x01,0xd0\n\t" /* xgetbv */
289 "xor %[err], %[err]\n"
290 "2:\n\t"
291 ".pushsection .fixup,\"ax\"\n\t"
292 "3: movl $1,%[err]\n\t"
293 "jmp 2b\n\t"
294 ".popsection\n\t"
295 _ASM_EXTABLE(1b, 3b)
296 : [err] "=r" (err), "=a" (eax), "=d" (edx)
297 : "c" (0));
298
299 return err == 0;
300 }
301
302 static void __init xen_init_capabilities(void)
303 {
304 setup_clear_cpu_cap(X86_BUG_SYSRET_SS_ATTRS);
305 setup_force_cpu_cap(X86_FEATURE_XENPV);
306 setup_clear_cpu_cap(X86_FEATURE_DCA);
307 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
308 setup_clear_cpu_cap(X86_FEATURE_MTRR);
309 setup_clear_cpu_cap(X86_FEATURE_ACC);
310 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
311
312 if (!xen_initial_domain())
313 setup_clear_cpu_cap(X86_FEATURE_ACPI);
314
315 if (xen_check_mwait())
316 setup_force_cpu_cap(X86_FEATURE_MWAIT);
317 else
318 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
319
320 if (xen_check_xsave()) {
321 setup_force_cpu_cap(X86_FEATURE_XSAVE);
322 setup_force_cpu_cap(X86_FEATURE_OSXSAVE);
323 } else {
324 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
325 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
326 }
327 }
328
329 static void xen_set_debugreg(int reg, unsigned long val)
330 {
331 HYPERVISOR_set_debugreg(reg, val);
332 }
333
334 static unsigned long xen_get_debugreg(int reg)
335 {
336 return HYPERVISOR_get_debugreg(reg);
337 }
338
339 static void xen_end_context_switch(struct task_struct *next)
340 {
341 xen_mc_flush();
342 paravirt_end_context_switch(next);
343 }
344
345 static unsigned long xen_store_tr(void)
346 {
347 return 0;
348 }
349
350 /*
351 * Set the page permissions for a particular virtual address. If the
352 * address is a vmalloc mapping (or other non-linear mapping), then
353 * find the linear mapping of the page and also set its protections to
354 * match.
355 */
356 static void set_aliased_prot(void *v, pgprot_t prot)
357 {
358 int level;
359 pte_t *ptep;
360 pte_t pte;
361 unsigned long pfn;
362 struct page *page;
363 unsigned char dummy;
364
365 ptep = lookup_address((unsigned long)v, &level);
366 BUG_ON(ptep == NULL);
367
368 pfn = pte_pfn(*ptep);
369 page = pfn_to_page(pfn);
370
371 pte = pfn_pte(pfn, prot);
372
373 /*
374 * Careful: update_va_mapping() will fail if the virtual address
375 * we're poking isn't populated in the page tables. We don't
376 * need to worry about the direct map (that's always in the page
377 * tables), but we need to be careful about vmap space. In
378 * particular, the top level page table can lazily propagate
379 * entries between processes, so if we've switched mms since we
380 * vmapped the target in the first place, we might not have the
381 * top-level page table entry populated.
382 *
383 * We disable preemption because we want the same mm active when
384 * we probe the target and when we issue the hypercall. We'll
385 * have the same nominal mm, but if we're a kernel thread, lazy
386 * mm dropping could change our pgd.
387 *
388 * Out of an abundance of caution, this uses __get_user() to fault
389 * in the target address just in case there's some obscure case
390 * in which the target address isn't readable.
391 */
392
393 preempt_disable();
394
395 probe_kernel_read(&dummy, v, 1);
396
397 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
398 BUG();
399
400 if (!PageHighMem(page)) {
401 void *av = __va(PFN_PHYS(pfn));
402
403 if (av != v)
404 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
405 BUG();
406 } else
407 kmap_flush_unused();
408
409 preempt_enable();
410 }
411
412 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
413 {
414 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
415 int i;
416
417 /*
418 * We need to mark the all aliases of the LDT pages RO. We
419 * don't need to call vm_flush_aliases(), though, since that's
420 * only responsible for flushing aliases out the TLBs, not the
421 * page tables, and Xen will flush the TLB for us if needed.
422 *
423 * To avoid confusing future readers: none of this is necessary
424 * to load the LDT. The hypervisor only checks this when the
425 * LDT is faulted in due to subsequent descriptor access.
426 */
427
428 for (i = 0; i < entries; i += entries_per_page)
429 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
430 }
431
432 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 int i;
436
437 for (i = 0; i < entries; i += entries_per_page)
438 set_aliased_prot(ldt + i, PAGE_KERNEL);
439 }
440
441 static void xen_set_ldt(const void *addr, unsigned entries)
442 {
443 struct mmuext_op *op;
444 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
445
446 trace_xen_cpu_set_ldt(addr, entries);
447
448 op = mcs.args;
449 op->cmd = MMUEXT_SET_LDT;
450 op->arg1.linear_addr = (unsigned long)addr;
451 op->arg2.nr_ents = entries;
452
453 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
454
455 xen_mc_issue(PARAVIRT_LAZY_CPU);
456 }
457
458 static void xen_load_gdt(const struct desc_ptr *dtr)
459 {
460 unsigned long va = dtr->address;
461 unsigned int size = dtr->size + 1;
462 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
463 unsigned long frames[pages];
464 int f;
465
466 /*
467 * A GDT can be up to 64k in size, which corresponds to 8192
468 * 8-byte entries, or 16 4k pages..
469 */
470
471 BUG_ON(size > 65536);
472 BUG_ON(va & ~PAGE_MASK);
473
474 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
475 int level;
476 pte_t *ptep;
477 unsigned long pfn, mfn;
478 void *virt;
479
480 /*
481 * The GDT is per-cpu and is in the percpu data area.
482 * That can be virtually mapped, so we need to do a
483 * page-walk to get the underlying MFN for the
484 * hypercall. The page can also be in the kernel's
485 * linear range, so we need to RO that mapping too.
486 */
487 ptep = lookup_address(va, &level);
488 BUG_ON(ptep == NULL);
489
490 pfn = pte_pfn(*ptep);
491 mfn = pfn_to_mfn(pfn);
492 virt = __va(PFN_PHYS(pfn));
493
494 frames[f] = mfn;
495
496 make_lowmem_page_readonly((void *)va);
497 make_lowmem_page_readonly(virt);
498 }
499
500 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 BUG();
502 }
503
504 /*
505 * load_gdt for early boot, when the gdt is only mapped once
506 */
507 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
508 {
509 unsigned long va = dtr->address;
510 unsigned int size = dtr->size + 1;
511 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
512 unsigned long frames[pages];
513 int f;
514
515 /*
516 * A GDT can be up to 64k in size, which corresponds to 8192
517 * 8-byte entries, or 16 4k pages..
518 */
519
520 BUG_ON(size > 65536);
521 BUG_ON(va & ~PAGE_MASK);
522
523 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
524 pte_t pte;
525 unsigned long pfn, mfn;
526
527 pfn = virt_to_pfn(va);
528 mfn = pfn_to_mfn(pfn);
529
530 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
531
532 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
533 BUG();
534
535 frames[f] = mfn;
536 }
537
538 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
539 BUG();
540 }
541
542 static inline bool desc_equal(const struct desc_struct *d1,
543 const struct desc_struct *d2)
544 {
545 return d1->a == d2->a && d1->b == d2->b;
546 }
547
548 static void load_TLS_descriptor(struct thread_struct *t,
549 unsigned int cpu, unsigned int i)
550 {
551 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
552 struct desc_struct *gdt;
553 xmaddr_t maddr;
554 struct multicall_space mc;
555
556 if (desc_equal(shadow, &t->tls_array[i]))
557 return;
558
559 *shadow = t->tls_array[i];
560
561 gdt = get_cpu_gdt_rw(cpu);
562 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
563 mc = __xen_mc_entry(0);
564
565 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
566 }
567
568 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
569 {
570 /*
571 * XXX sleazy hack: If we're being called in a lazy-cpu zone
572 * and lazy gs handling is enabled, it means we're in a
573 * context switch, and %gs has just been saved. This means we
574 * can zero it out to prevent faults on exit from the
575 * hypervisor if the next process has no %gs. Either way, it
576 * has been saved, and the new value will get loaded properly.
577 * This will go away as soon as Xen has been modified to not
578 * save/restore %gs for normal hypercalls.
579 *
580 * On x86_64, this hack is not used for %gs, because gs points
581 * to KERNEL_GS_BASE (and uses it for PDA references), so we
582 * must not zero %gs on x86_64
583 *
584 * For x86_64, we need to zero %fs, otherwise we may get an
585 * exception between the new %fs descriptor being loaded and
586 * %fs being effectively cleared at __switch_to().
587 */
588 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
589 #ifdef CONFIG_X86_32
590 lazy_load_gs(0);
591 #else
592 loadsegment(fs, 0);
593 #endif
594 }
595
596 xen_mc_batch();
597
598 load_TLS_descriptor(t, cpu, 0);
599 load_TLS_descriptor(t, cpu, 1);
600 load_TLS_descriptor(t, cpu, 2);
601
602 xen_mc_issue(PARAVIRT_LAZY_CPU);
603 }
604
605 #ifdef CONFIG_X86_64
606 static void xen_load_gs_index(unsigned int idx)
607 {
608 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
609 BUG();
610 }
611 #endif
612
613 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
614 const void *ptr)
615 {
616 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
617 u64 entry = *(u64 *)ptr;
618
619 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
620
621 preempt_disable();
622
623 xen_mc_flush();
624 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
625 BUG();
626
627 preempt_enable();
628 }
629
630 static int cvt_gate_to_trap(int vector, const gate_desc *val,
631 struct trap_info *info)
632 {
633 unsigned long addr;
634
635 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
636 return 0;
637
638 info->vector = vector;
639
640 addr = gate_offset(*val);
641 #ifdef CONFIG_X86_64
642 /*
643 * Look for known traps using IST, and substitute them
644 * appropriately. The debugger ones are the only ones we care
645 * about. Xen will handle faults like double_fault,
646 * so we should never see them. Warn if
647 * there's an unexpected IST-using fault handler.
648 */
649 if (addr == (unsigned long)debug)
650 addr = (unsigned long)xen_debug;
651 else if (addr == (unsigned long)int3)
652 addr = (unsigned long)xen_int3;
653 else if (addr == (unsigned long)stack_segment)
654 addr = (unsigned long)xen_stack_segment;
655 else if (addr == (unsigned long)double_fault) {
656 /* Don't need to handle these */
657 return 0;
658 #ifdef CONFIG_X86_MCE
659 } else if (addr == (unsigned long)machine_check) {
660 /*
661 * when xen hypervisor inject vMCE to guest,
662 * use native mce handler to handle it
663 */
664 ;
665 #endif
666 } else if (addr == (unsigned long)nmi)
667 /*
668 * Use the native version as well.
669 */
670 ;
671 else {
672 /* Some other trap using IST? */
673 if (WARN_ON(val->ist != 0))
674 return 0;
675 }
676 #endif /* CONFIG_X86_64 */
677 info->address = addr;
678
679 info->cs = gate_segment(*val);
680 info->flags = val->dpl;
681 /* interrupt gates clear IF */
682 if (val->type == GATE_INTERRUPT)
683 info->flags |= 1 << 2;
684
685 return 1;
686 }
687
688 /* Locations of each CPU's IDT */
689 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
690
691 /* Set an IDT entry. If the entry is part of the current IDT, then
692 also update Xen. */
693 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
694 {
695 unsigned long p = (unsigned long)&dt[entrynum];
696 unsigned long start, end;
697
698 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
699
700 preempt_disable();
701
702 start = __this_cpu_read(idt_desc.address);
703 end = start + __this_cpu_read(idt_desc.size) + 1;
704
705 xen_mc_flush();
706
707 native_write_idt_entry(dt, entrynum, g);
708
709 if (p >= start && (p + 8) <= end) {
710 struct trap_info info[2];
711
712 info[1].address = 0;
713
714 if (cvt_gate_to_trap(entrynum, g, &info[0]))
715 if (HYPERVISOR_set_trap_table(info))
716 BUG();
717 }
718
719 preempt_enable();
720 }
721
722 static void xen_convert_trap_info(const struct desc_ptr *desc,
723 struct trap_info *traps)
724 {
725 unsigned in, out, count;
726
727 count = (desc->size+1) / sizeof(gate_desc);
728 BUG_ON(count > 256);
729
730 for (in = out = 0; in < count; in++) {
731 gate_desc *entry = (gate_desc *)(desc->address) + in;
732
733 if (cvt_gate_to_trap(in, entry, &traps[out]))
734 out++;
735 }
736 traps[out].address = 0;
737 }
738
739 void xen_copy_trap_info(struct trap_info *traps)
740 {
741 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
742
743 xen_convert_trap_info(desc, traps);
744 }
745
746 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
747 hold a spinlock to protect the static traps[] array (static because
748 it avoids allocation, and saves stack space). */
749 static void xen_load_idt(const struct desc_ptr *desc)
750 {
751 static DEFINE_SPINLOCK(lock);
752 static struct trap_info traps[257];
753
754 trace_xen_cpu_load_idt(desc);
755
756 spin_lock(&lock);
757
758 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
759
760 xen_convert_trap_info(desc, traps);
761
762 xen_mc_flush();
763 if (HYPERVISOR_set_trap_table(traps))
764 BUG();
765
766 spin_unlock(&lock);
767 }
768
769 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
770 they're handled differently. */
771 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
772 const void *desc, int type)
773 {
774 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
775
776 preempt_disable();
777
778 switch (type) {
779 case DESC_LDT:
780 case DESC_TSS:
781 /* ignore */
782 break;
783
784 default: {
785 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
786
787 xen_mc_flush();
788 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
789 BUG();
790 }
791
792 }
793
794 preempt_enable();
795 }
796
797 /*
798 * Version of write_gdt_entry for use at early boot-time needed to
799 * update an entry as simply as possible.
800 */
801 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
802 const void *desc, int type)
803 {
804 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
805
806 switch (type) {
807 case DESC_LDT:
808 case DESC_TSS:
809 /* ignore */
810 break;
811
812 default: {
813 xmaddr_t maddr = virt_to_machine(&dt[entry]);
814
815 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
816 dt[entry] = *(struct desc_struct *)desc;
817 }
818
819 }
820 }
821
822 static void xen_load_sp0(struct tss_struct *tss,
823 struct thread_struct *thread)
824 {
825 struct multicall_space mcs;
826
827 mcs = xen_mc_entry(0);
828 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
829 xen_mc_issue(PARAVIRT_LAZY_CPU);
830 tss->x86_tss.sp0 = thread->sp0;
831 }
832
833 void xen_set_iopl_mask(unsigned mask)
834 {
835 struct physdev_set_iopl set_iopl;
836
837 /* Force the change at ring 0. */
838 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
839 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
840 }
841
842 static void xen_io_delay(void)
843 {
844 }
845
846 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
847
848 static unsigned long xen_read_cr0(void)
849 {
850 unsigned long cr0 = this_cpu_read(xen_cr0_value);
851
852 if (unlikely(cr0 == 0)) {
853 cr0 = native_read_cr0();
854 this_cpu_write(xen_cr0_value, cr0);
855 }
856
857 return cr0;
858 }
859
860 static void xen_write_cr0(unsigned long cr0)
861 {
862 struct multicall_space mcs;
863
864 this_cpu_write(xen_cr0_value, cr0);
865
866 /* Only pay attention to cr0.TS; everything else is
867 ignored. */
868 mcs = xen_mc_entry(0);
869
870 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
871
872 xen_mc_issue(PARAVIRT_LAZY_CPU);
873 }
874
875 static void xen_write_cr4(unsigned long cr4)
876 {
877 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
878
879 native_write_cr4(cr4);
880 }
881 #ifdef CONFIG_X86_64
882 static inline unsigned long xen_read_cr8(void)
883 {
884 return 0;
885 }
886 static inline void xen_write_cr8(unsigned long val)
887 {
888 BUG_ON(val);
889 }
890 #endif
891
892 static u64 xen_read_msr_safe(unsigned int msr, int *err)
893 {
894 u64 val;
895
896 if (pmu_msr_read(msr, &val, err))
897 return val;
898
899 val = native_read_msr_safe(msr, err);
900 switch (msr) {
901 case MSR_IA32_APICBASE:
902 #ifdef CONFIG_X86_X2APIC
903 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
904 #endif
905 val &= ~X2APIC_ENABLE;
906 break;
907 }
908 return val;
909 }
910
911 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
912 {
913 int ret;
914
915 ret = 0;
916
917 switch (msr) {
918 #ifdef CONFIG_X86_64
919 unsigned which;
920 u64 base;
921
922 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
923 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
924 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
925
926 set:
927 base = ((u64)high << 32) | low;
928 if (HYPERVISOR_set_segment_base(which, base) != 0)
929 ret = -EIO;
930 break;
931 #endif
932
933 case MSR_STAR:
934 case MSR_CSTAR:
935 case MSR_LSTAR:
936 case MSR_SYSCALL_MASK:
937 case MSR_IA32_SYSENTER_CS:
938 case MSR_IA32_SYSENTER_ESP:
939 case MSR_IA32_SYSENTER_EIP:
940 /* Fast syscall setup is all done in hypercalls, so
941 these are all ignored. Stub them out here to stop
942 Xen console noise. */
943 break;
944
945 default:
946 if (!pmu_msr_write(msr, low, high, &ret))
947 ret = native_write_msr_safe(msr, low, high);
948 }
949
950 return ret;
951 }
952
953 static u64 xen_read_msr(unsigned int msr)
954 {
955 /*
956 * This will silently swallow a #GP from RDMSR. It may be worth
957 * changing that.
958 */
959 int err;
960
961 return xen_read_msr_safe(msr, &err);
962 }
963
964 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
965 {
966 /*
967 * This will silently swallow a #GP from WRMSR. It may be worth
968 * changing that.
969 */
970 xen_write_msr_safe(msr, low, high);
971 }
972
973 void xen_setup_shared_info(void)
974 {
975 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
976 set_fixmap(FIX_PARAVIRT_BOOTMAP,
977 xen_start_info->shared_info);
978
979 HYPERVISOR_shared_info =
980 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
981 } else
982 HYPERVISOR_shared_info =
983 (struct shared_info *)__va(xen_start_info->shared_info);
984
985 #ifndef CONFIG_SMP
986 /* In UP this is as good a place as any to set up shared info */
987 xen_setup_vcpu_info_placement();
988 #endif
989
990 xen_setup_mfn_list_list();
991 }
992
993 /* This is called once we have the cpu_possible_mask */
994 void xen_setup_vcpu_info_placement(void)
995 {
996 int cpu;
997
998 for_each_possible_cpu(cpu) {
999 /* Set up direct vCPU id mapping for PV guests. */
1000 per_cpu(xen_vcpu_id, cpu) = cpu;
1001 xen_vcpu_setup(cpu);
1002 }
1003
1004 /*
1005 * xen_vcpu_setup managed to place the vcpu_info within the
1006 * percpu area for all cpus, so make use of it.
1007 */
1008 if (xen_have_vcpu_info_placement) {
1009 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1010 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1011 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1012 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1013 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1014 }
1015 }
1016
1017 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1018 unsigned long addr, unsigned len)
1019 {
1020 char *start, *end, *reloc;
1021 unsigned ret;
1022
1023 start = end = reloc = NULL;
1024
1025 #define SITE(op, x) \
1026 case PARAVIRT_PATCH(op.x): \
1027 if (xen_have_vcpu_info_placement) { \
1028 start = (char *)xen_##x##_direct; \
1029 end = xen_##x##_direct_end; \
1030 reloc = xen_##x##_direct_reloc; \
1031 } \
1032 goto patch_site
1033
1034 switch (type) {
1035 SITE(pv_irq_ops, irq_enable);
1036 SITE(pv_irq_ops, irq_disable);
1037 SITE(pv_irq_ops, save_fl);
1038 SITE(pv_irq_ops, restore_fl);
1039 #undef SITE
1040
1041 patch_site:
1042 if (start == NULL || (end-start) > len)
1043 goto default_patch;
1044
1045 ret = paravirt_patch_insns(insnbuf, len, start, end);
1046
1047 /* Note: because reloc is assigned from something that
1048 appears to be an array, gcc assumes it's non-null,
1049 but doesn't know its relationship with start and
1050 end. */
1051 if (reloc > start && reloc < end) {
1052 int reloc_off = reloc - start;
1053 long *relocp = (long *)(insnbuf + reloc_off);
1054 long delta = start - (char *)addr;
1055
1056 *relocp += delta;
1057 }
1058 break;
1059
1060 default_patch:
1061 default:
1062 ret = paravirt_patch_default(type, clobbers, insnbuf,
1063 addr, len);
1064 break;
1065 }
1066
1067 return ret;
1068 }
1069
1070 static const struct pv_info xen_info __initconst = {
1071 .shared_kernel_pmd = 0,
1072
1073 #ifdef CONFIG_X86_64
1074 .extra_user_64bit_cs = FLAT_USER_CS64,
1075 #endif
1076 .name = "Xen",
1077 };
1078
1079 static const struct pv_init_ops xen_init_ops __initconst = {
1080 .patch = xen_patch,
1081 };
1082
1083 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1084 .cpuid = xen_cpuid,
1085
1086 .set_debugreg = xen_set_debugreg,
1087 .get_debugreg = xen_get_debugreg,
1088
1089 .read_cr0 = xen_read_cr0,
1090 .write_cr0 = xen_write_cr0,
1091
1092 .read_cr4 = native_read_cr4,
1093 .write_cr4 = xen_write_cr4,
1094
1095 #ifdef CONFIG_X86_64
1096 .read_cr8 = xen_read_cr8,
1097 .write_cr8 = xen_write_cr8,
1098 #endif
1099
1100 .wbinvd = native_wbinvd,
1101
1102 .read_msr = xen_read_msr,
1103 .write_msr = xen_write_msr,
1104
1105 .read_msr_safe = xen_read_msr_safe,
1106 .write_msr_safe = xen_write_msr_safe,
1107
1108 .read_pmc = xen_read_pmc,
1109
1110 .iret = xen_iret,
1111 #ifdef CONFIG_X86_64
1112 .usergs_sysret64 = xen_sysret64,
1113 #endif
1114
1115 .load_tr_desc = paravirt_nop,
1116 .set_ldt = xen_set_ldt,
1117 .load_gdt = xen_load_gdt,
1118 .load_idt = xen_load_idt,
1119 .load_tls = xen_load_tls,
1120 #ifdef CONFIG_X86_64
1121 .load_gs_index = xen_load_gs_index,
1122 #endif
1123
1124 .alloc_ldt = xen_alloc_ldt,
1125 .free_ldt = xen_free_ldt,
1126
1127 .store_idt = native_store_idt,
1128 .store_tr = xen_store_tr,
1129
1130 .write_ldt_entry = xen_write_ldt_entry,
1131 .write_gdt_entry = xen_write_gdt_entry,
1132 .write_idt_entry = xen_write_idt_entry,
1133 .load_sp0 = xen_load_sp0,
1134
1135 .set_iopl_mask = xen_set_iopl_mask,
1136 .io_delay = xen_io_delay,
1137
1138 /* Xen takes care of %gs when switching to usermode for us */
1139 .swapgs = paravirt_nop,
1140
1141 .start_context_switch = paravirt_start_context_switch,
1142 .end_context_switch = xen_end_context_switch,
1143 };
1144
1145 static void xen_restart(char *msg)
1146 {
1147 xen_reboot(SHUTDOWN_reboot);
1148 }
1149
1150 static void xen_machine_halt(void)
1151 {
1152 xen_reboot(SHUTDOWN_poweroff);
1153 }
1154
1155 static void xen_machine_power_off(void)
1156 {
1157 if (pm_power_off)
1158 pm_power_off();
1159 xen_reboot(SHUTDOWN_poweroff);
1160 }
1161
1162 static void xen_crash_shutdown(struct pt_regs *regs)
1163 {
1164 xen_reboot(SHUTDOWN_crash);
1165 }
1166
1167 static const struct machine_ops xen_machine_ops __initconst = {
1168 .restart = xen_restart,
1169 .halt = xen_machine_halt,
1170 .power_off = xen_machine_power_off,
1171 .shutdown = xen_machine_halt,
1172 .crash_shutdown = xen_crash_shutdown,
1173 .emergency_restart = xen_emergency_restart,
1174 };
1175
1176 static unsigned char xen_get_nmi_reason(void)
1177 {
1178 unsigned char reason = 0;
1179
1180 /* Construct a value which looks like it came from port 0x61. */
1181 if (test_bit(_XEN_NMIREASON_io_error,
1182 &HYPERVISOR_shared_info->arch.nmi_reason))
1183 reason |= NMI_REASON_IOCHK;
1184 if (test_bit(_XEN_NMIREASON_pci_serr,
1185 &HYPERVISOR_shared_info->arch.nmi_reason))
1186 reason |= NMI_REASON_SERR;
1187
1188 return reason;
1189 }
1190
1191 static void __init xen_boot_params_init_edd(void)
1192 {
1193 #if IS_ENABLED(CONFIG_EDD)
1194 struct xen_platform_op op;
1195 struct edd_info *edd_info;
1196 u32 *mbr_signature;
1197 unsigned nr;
1198 int ret;
1199
1200 edd_info = boot_params.eddbuf;
1201 mbr_signature = boot_params.edd_mbr_sig_buffer;
1202
1203 op.cmd = XENPF_firmware_info;
1204
1205 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1206 for (nr = 0; nr < EDDMAXNR; nr++) {
1207 struct edd_info *info = edd_info + nr;
1208
1209 op.u.firmware_info.index = nr;
1210 info->params.length = sizeof(info->params);
1211 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1212 &info->params);
1213 ret = HYPERVISOR_platform_op(&op);
1214 if (ret)
1215 break;
1216
1217 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1218 C(device);
1219 C(version);
1220 C(interface_support);
1221 C(legacy_max_cylinder);
1222 C(legacy_max_head);
1223 C(legacy_sectors_per_track);
1224 #undef C
1225 }
1226 boot_params.eddbuf_entries = nr;
1227
1228 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1229 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1230 op.u.firmware_info.index = nr;
1231 ret = HYPERVISOR_platform_op(&op);
1232 if (ret)
1233 break;
1234 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1235 }
1236 boot_params.edd_mbr_sig_buf_entries = nr;
1237 #endif
1238 }
1239
1240 /*
1241 * Set up the GDT and segment registers for -fstack-protector. Until
1242 * we do this, we have to be careful not to call any stack-protected
1243 * function, which is most of the kernel.
1244 */
1245 static void xen_setup_gdt(int cpu)
1246 {
1247 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1248 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1249
1250 setup_stack_canary_segment(0);
1251 switch_to_new_gdt(0);
1252
1253 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1254 pv_cpu_ops.load_gdt = xen_load_gdt;
1255 }
1256
1257 static void __init xen_dom0_set_legacy_features(void)
1258 {
1259 x86_platform.legacy.rtc = 1;
1260 }
1261
1262 /* First C function to be called on Xen boot */
1263 asmlinkage __visible void __init xen_start_kernel(void)
1264 {
1265 struct physdev_set_iopl set_iopl;
1266 unsigned long initrd_start = 0;
1267 int rc;
1268
1269 if (!xen_start_info)
1270 return;
1271
1272 xen_domain_type = XEN_PV_DOMAIN;
1273
1274 xen_setup_features();
1275
1276 xen_setup_machphys_mapping();
1277
1278 /* Install Xen paravirt ops */
1279 pv_info = xen_info;
1280 pv_init_ops = xen_init_ops;
1281 pv_cpu_ops = xen_cpu_ops;
1282
1283 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1284
1285 x86_init.resources.memory_setup = xen_memory_setup;
1286 x86_init.oem.arch_setup = xen_arch_setup;
1287 x86_init.oem.banner = xen_banner;
1288
1289 xen_init_time_ops();
1290
1291 /*
1292 * Set up some pagetable state before starting to set any ptes.
1293 */
1294
1295 xen_init_mmu_ops();
1296
1297 /* Prevent unwanted bits from being set in PTEs. */
1298 __supported_pte_mask &= ~_PAGE_GLOBAL;
1299
1300 /*
1301 * Prevent page tables from being allocated in highmem, even
1302 * if CONFIG_HIGHPTE is enabled.
1303 */
1304 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1305
1306 /* Work out if we support NX */
1307 x86_configure_nx();
1308
1309 /* Get mfn list */
1310 xen_build_dynamic_phys_to_machine();
1311
1312 /*
1313 * Set up kernel GDT and segment registers, mainly so that
1314 * -fstack-protector code can be executed.
1315 */
1316 xen_setup_gdt(0);
1317
1318 xen_init_irq_ops();
1319 xen_init_capabilities();
1320
1321 #ifdef CONFIG_X86_LOCAL_APIC
1322 /*
1323 * set up the basic apic ops.
1324 */
1325 xen_init_apic();
1326 #endif
1327
1328 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1329 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1330 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1331 }
1332
1333 machine_ops = xen_machine_ops;
1334
1335 /*
1336 * The only reliable way to retain the initial address of the
1337 * percpu gdt_page is to remember it here, so we can go and
1338 * mark it RW later, when the initial percpu area is freed.
1339 */
1340 xen_initial_gdt = &per_cpu(gdt_page, 0);
1341
1342 xen_smp_init();
1343
1344 #ifdef CONFIG_ACPI_NUMA
1345 /*
1346 * The pages we from Xen are not related to machine pages, so
1347 * any NUMA information the kernel tries to get from ACPI will
1348 * be meaningless. Prevent it from trying.
1349 */
1350 acpi_numa = -1;
1351 #endif
1352 /* Don't do the full vcpu_info placement stuff until we have a
1353 possible map and a non-dummy shared_info. */
1354 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1355
1356 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1357
1358 local_irq_disable();
1359 early_boot_irqs_disabled = true;
1360
1361 xen_raw_console_write("mapping kernel into physical memory\n");
1362 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1363 xen_start_info->nr_pages);
1364 xen_reserve_special_pages();
1365
1366 /* keep using Xen gdt for now; no urgent need to change it */
1367
1368 #ifdef CONFIG_X86_32
1369 pv_info.kernel_rpl = 1;
1370 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1371 pv_info.kernel_rpl = 0;
1372 #else
1373 pv_info.kernel_rpl = 0;
1374 #endif
1375 /* set the limit of our address space */
1376 xen_reserve_top();
1377
1378 /*
1379 * We used to do this in xen_arch_setup, but that is too late
1380 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1381 * early_amd_init which pokes 0xcf8 port.
1382 */
1383 set_iopl.iopl = 1;
1384 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1385 if (rc != 0)
1386 xen_raw_printk("physdev_op failed %d\n", rc);
1387
1388 #ifdef CONFIG_X86_32
1389 /* set up basic CPUID stuff */
1390 cpu_detect(&new_cpu_data);
1391 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1392 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1393 #endif
1394
1395 if (xen_start_info->mod_start) {
1396 if (xen_start_info->flags & SIF_MOD_START_PFN)
1397 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1398 else
1399 initrd_start = __pa(xen_start_info->mod_start);
1400 }
1401
1402 /* Poke various useful things into boot_params */
1403 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1404 boot_params.hdr.ramdisk_image = initrd_start;
1405 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1406 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1407 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1408
1409 if (!xen_initial_domain()) {
1410 add_preferred_console("xenboot", 0, NULL);
1411 add_preferred_console("tty", 0, NULL);
1412 add_preferred_console("hvc", 0, NULL);
1413 if (pci_xen)
1414 x86_init.pci.arch_init = pci_xen_init;
1415 } else {
1416 const struct dom0_vga_console_info *info =
1417 (void *)((char *)xen_start_info +
1418 xen_start_info->console.dom0.info_off);
1419 struct xen_platform_op op = {
1420 .cmd = XENPF_firmware_info,
1421 .interface_version = XENPF_INTERFACE_VERSION,
1422 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1423 };
1424
1425 x86_platform.set_legacy_features =
1426 xen_dom0_set_legacy_features;
1427 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1428 xen_start_info->console.domU.mfn = 0;
1429 xen_start_info->console.domU.evtchn = 0;
1430
1431 if (HYPERVISOR_platform_op(&op) == 0)
1432 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1433
1434 /* Make sure ACS will be enabled */
1435 pci_request_acs();
1436
1437 xen_acpi_sleep_register();
1438
1439 /* Avoid searching for BIOS MP tables */
1440 x86_init.mpparse.find_smp_config = x86_init_noop;
1441 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1442
1443 xen_boot_params_init_edd();
1444 }
1445 #ifdef CONFIG_PCI
1446 /* PCI BIOS service won't work from a PV guest. */
1447 pci_probe &= ~PCI_PROBE_BIOS;
1448 #endif
1449 xen_raw_console_write("about to get started...\n");
1450
1451 /* Let's presume PV guests always boot on vCPU with id 0. */
1452 per_cpu(xen_vcpu_id, 0) = 0;
1453
1454 xen_setup_runstate_info(0);
1455
1456 xen_efi_init();
1457
1458 /* Start the world */
1459 #ifdef CONFIG_X86_32
1460 i386_start_kernel();
1461 #else
1462 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1463 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1464 #endif
1465 }
1466
1467 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1468 {
1469 int rc;
1470
1471 xen_setup_timer(cpu);
1472
1473 rc = xen_smp_intr_init(cpu);
1474 if (rc) {
1475 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1476 cpu, rc);
1477 return rc;
1478 }
1479
1480 rc = xen_smp_intr_init_pv(cpu);
1481 if (rc) {
1482 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1483 cpu, rc);
1484 return rc;
1485 }
1486
1487 return 0;
1488 }
1489
1490 static int xen_cpu_dead_pv(unsigned int cpu)
1491 {
1492 xen_smp_intr_free(cpu);
1493 xen_smp_intr_free_pv(cpu);
1494
1495 xen_teardown_timer(cpu);
1496
1497 return 0;
1498 }
1499
1500 static uint32_t __init xen_platform_pv(void)
1501 {
1502 if (xen_pv_domain())
1503 return xen_cpuid_base();
1504
1505 return 0;
1506 }
1507
1508 const struct hypervisor_x86 x86_hyper_xen_pv = {
1509 .name = "Xen PV",
1510 .detect = xen_platform_pv,
1511 .pin_vcpu = xen_pin_vcpu,
1512 };
1513 EXPORT_SYMBOL(x86_hyper_xen_pv);