]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/xen/mmu.c
58a0e46c404dc417c9af3cf9a08856096ebc99cf
[mirror_ubuntu-kernels.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50
51 #include <trace/events/xen.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
65
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
68
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
76
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
80
81 /*
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
84 */
85 DEFINE_SPINLOCK(xen_reservation_lock);
86
87 /*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99
100 /*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117
118 /*
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
121 */
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
123
124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
125 {
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
127
128 return PFN_DOWN(maddr.maddr);
129 }
130
131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
132 {
133 unsigned long address = (unsigned long)vaddr;
134 unsigned int level;
135 pte_t *pte;
136 unsigned offset;
137
138 /*
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
141 */
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
144
145 /* otherwise we have to do a (slower) full page-table walk */
146
147 pte = lookup_address(address, &level);
148 BUG_ON(pte == NULL);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
151 }
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
153
154 void make_lowmem_page_readonly(void *vaddr)
155 {
156 pte_t *pte, ptev;
157 unsigned long address = (unsigned long)vaddr;
158 unsigned int level;
159
160 pte = lookup_address(address, &level);
161 if (pte == NULL)
162 return; /* vaddr missing */
163
164 ptev = pte_wrprotect(*pte);
165
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 BUG();
168 }
169
170 void make_lowmem_page_readwrite(void *vaddr)
171 {
172 pte_t *pte, ptev;
173 unsigned long address = (unsigned long)vaddr;
174 unsigned int level;
175
176 pte = lookup_address(address, &level);
177 if (pte == NULL)
178 return; /* vaddr missing */
179
180 ptev = pte_mkwrite(*pte);
181
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 BUG();
184 }
185
186
187 static bool xen_page_pinned(void *ptr)
188 {
189 struct page *page = virt_to_page(ptr);
190
191 return PagePinned(page);
192 }
193
194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 {
196 struct multicall_space mcs;
197 struct mmu_update *u;
198
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
200
201 mcs = xen_mc_entry(sizeof(*u));
202 u = mcs.args;
203
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
207
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
211 }
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
213
214 static void xen_extend_mmu_update(const struct mmu_update *update)
215 {
216 struct multicall_space mcs;
217 struct mmu_update *u;
218
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
220
221 if (mcs.mc != NULL) {
222 mcs.mc->args[1]++;
223 } else {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
226 }
227
228 u = mcs.args;
229 *u = *update;
230 }
231
232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
233 {
234 struct multicall_space mcs;
235 struct mmuext_op *u;
236
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
238
239 if (mcs.mc != NULL) {
240 mcs.mc->args[1]++;
241 } else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 }
245
246 u = mcs.args;
247 *u = *op;
248 }
249
250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251 {
252 struct mmu_update u;
253
254 preempt_disable();
255
256 xen_mc_batch();
257
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
262
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
264
265 preempt_enable();
266 }
267
268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269 {
270 trace_xen_mmu_set_pmd(ptr, val);
271
272 /* If page is not pinned, we can just update the entry
273 directly */
274 if (!xen_page_pinned(ptr)) {
275 *ptr = val;
276 return;
277 }
278
279 xen_set_pmd_hyper(ptr, val);
280 }
281
282 /*
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
285 */
286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
287 {
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289 }
290
291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
292 {
293 struct mmu_update u;
294
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 return false;
297
298 xen_mc_batch();
299
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
303
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
305
306 return true;
307 }
308
309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310 {
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
313 }
314
315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
316 {
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
319 }
320
321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
323 {
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
326 }
327
328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
330 {
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 return *ptep;
334 }
335
336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
338 {
339 struct mmu_update u;
340
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 xen_mc_batch();
343
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
347
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349 }
350
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t pte_mfn_to_pfn(pteval_t val)
353 {
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 pteval_t flags = val & PTE_FLAGS_MASK;
357 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
358 }
359
360 return val;
361 }
362
363 static pteval_t pte_pfn_to_mfn(pteval_t val)
364 {
365 if (val & _PAGE_PRESENT) {
366 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
367 pteval_t flags = val & PTE_FLAGS_MASK;
368 unsigned long mfn;
369
370 if (!xen_feature(XENFEAT_auto_translated_physmap))
371 mfn = get_phys_to_machine(pfn);
372 else
373 mfn = pfn;
374 /*
375 * If there's no mfn for the pfn, then just create an
376 * empty non-present pte. Unfortunately this loses
377 * information about the original pfn, so
378 * pte_mfn_to_pfn is asymmetric.
379 */
380 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
381 mfn = 0;
382 flags = 0;
383 } else {
384 /*
385 * Paramount to do this test _after_ the
386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
387 * IDENTITY_FRAME_BIT resolves to true.
388 */
389 mfn &= ~FOREIGN_FRAME_BIT;
390 if (mfn & IDENTITY_FRAME_BIT) {
391 mfn &= ~IDENTITY_FRAME_BIT;
392 flags |= _PAGE_IOMAP;
393 }
394 }
395 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
396 }
397
398 return val;
399 }
400
401 static pteval_t iomap_pte(pteval_t val)
402 {
403 if (val & _PAGE_PRESENT) {
404 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
405 pteval_t flags = val & PTE_FLAGS_MASK;
406
407 /* We assume the pte frame number is a MFN, so
408 just use it as-is. */
409 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
410 }
411
412 return val;
413 }
414
415 static pteval_t xen_pte_val(pte_t pte)
416 {
417 pteval_t pteval = pte.pte;
418
419 /* If this is a WC pte, convert back from Xen WC to Linux WC */
420 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
421 WARN_ON(!pat_enabled);
422 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
423 }
424
425 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
426 return pteval;
427
428 return pte_mfn_to_pfn(pteval);
429 }
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
431
432 static pgdval_t xen_pgd_val(pgd_t pgd)
433 {
434 return pte_mfn_to_pfn(pgd.pgd);
435 }
436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
437
438 /*
439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
440 * are reserved for now, to correspond to the Intel-reserved PAT
441 * types.
442 *
443 * We expect Linux's PAT set as follows:
444 *
445 * Idx PTE flags Linux Xen Default
446 * 0 WB WB WB
447 * 1 PWT WC WT WT
448 * 2 PCD UC- UC- UC-
449 * 3 PCD PWT UC UC UC
450 * 4 PAT WB WC WB
451 * 5 PAT PWT WC WP WT
452 * 6 PAT PCD UC- UC UC-
453 * 7 PAT PCD PWT UC UC UC
454 */
455
456 void xen_set_pat(u64 pat)
457 {
458 /* We expect Linux to use a PAT setting of
459 * UC UC- WC WB (ignoring the PAT flag) */
460 WARN_ON(pat != 0x0007010600070106ull);
461 }
462
463 static pte_t xen_make_pte(pteval_t pte)
464 {
465 phys_addr_t addr = (pte & PTE_PFN_MASK);
466
467 /* If Linux is trying to set a WC pte, then map to the Xen WC.
468 * If _PAGE_PAT is set, then it probably means it is really
469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
470 * things work out OK...
471 *
472 * (We should never see kernel mappings with _PAGE_PSE set,
473 * but we could see hugetlbfs mappings, I think.).
474 */
475 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
476 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
477 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
478 }
479
480 /*
481 * Unprivileged domains are allowed to do IOMAPpings for
482 * PCI passthrough, but not map ISA space. The ISA
483 * mappings are just dummy local mappings to keep other
484 * parts of the kernel happy.
485 */
486 if (unlikely(pte & _PAGE_IOMAP) &&
487 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
488 pte = iomap_pte(pte);
489 } else {
490 pte &= ~_PAGE_IOMAP;
491 pte = pte_pfn_to_mfn(pte);
492 }
493
494 return native_make_pte(pte);
495 }
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
497
498 static pgd_t xen_make_pgd(pgdval_t pgd)
499 {
500 pgd = pte_pfn_to_mfn(pgd);
501 return native_make_pgd(pgd);
502 }
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
504
505 static pmdval_t xen_pmd_val(pmd_t pmd)
506 {
507 return pte_mfn_to_pfn(pmd.pmd);
508 }
509 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
510
511 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
512 {
513 struct mmu_update u;
514
515 preempt_disable();
516
517 xen_mc_batch();
518
519 /* ptr may be ioremapped for 64-bit pagetable setup */
520 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
521 u.val = pud_val_ma(val);
522 xen_extend_mmu_update(&u);
523
524 xen_mc_issue(PARAVIRT_LAZY_MMU);
525
526 preempt_enable();
527 }
528
529 static void xen_set_pud(pud_t *ptr, pud_t val)
530 {
531 trace_xen_mmu_set_pud(ptr, val);
532
533 /* If page is not pinned, we can just update the entry
534 directly */
535 if (!xen_page_pinned(ptr)) {
536 *ptr = val;
537 return;
538 }
539
540 xen_set_pud_hyper(ptr, val);
541 }
542
543 #ifdef CONFIG_X86_PAE
544 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
545 {
546 trace_xen_mmu_set_pte_atomic(ptep, pte);
547 set_64bit((u64 *)ptep, native_pte_val(pte));
548 }
549
550 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
551 {
552 trace_xen_mmu_pte_clear(mm, addr, ptep);
553 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
554 native_pte_clear(mm, addr, ptep);
555 }
556
557 static void xen_pmd_clear(pmd_t *pmdp)
558 {
559 trace_xen_mmu_pmd_clear(pmdp);
560 set_pmd(pmdp, __pmd(0));
561 }
562 #endif /* CONFIG_X86_PAE */
563
564 static pmd_t xen_make_pmd(pmdval_t pmd)
565 {
566 pmd = pte_pfn_to_mfn(pmd);
567 return native_make_pmd(pmd);
568 }
569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
570
571 #if PAGETABLE_LEVELS == 4
572 static pudval_t xen_pud_val(pud_t pud)
573 {
574 return pte_mfn_to_pfn(pud.pud);
575 }
576 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
577
578 static pud_t xen_make_pud(pudval_t pud)
579 {
580 pud = pte_pfn_to_mfn(pud);
581
582 return native_make_pud(pud);
583 }
584 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
585
586 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
587 {
588 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
589 unsigned offset = pgd - pgd_page;
590 pgd_t *user_ptr = NULL;
591
592 if (offset < pgd_index(USER_LIMIT)) {
593 struct page *page = virt_to_page(pgd_page);
594 user_ptr = (pgd_t *)page->private;
595 if (user_ptr)
596 user_ptr += offset;
597 }
598
599 return user_ptr;
600 }
601
602 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
603 {
604 struct mmu_update u;
605
606 u.ptr = virt_to_machine(ptr).maddr;
607 u.val = pgd_val_ma(val);
608 xen_extend_mmu_update(&u);
609 }
610
611 /*
612 * Raw hypercall-based set_pgd, intended for in early boot before
613 * there's a page structure. This implies:
614 * 1. The only existing pagetable is the kernel's
615 * 2. It is always pinned
616 * 3. It has no user pagetable attached to it
617 */
618 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
619 {
620 preempt_disable();
621
622 xen_mc_batch();
623
624 __xen_set_pgd_hyper(ptr, val);
625
626 xen_mc_issue(PARAVIRT_LAZY_MMU);
627
628 preempt_enable();
629 }
630
631 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
632 {
633 pgd_t *user_ptr = xen_get_user_pgd(ptr);
634
635 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
636
637 /* If page is not pinned, we can just update the entry
638 directly */
639 if (!xen_page_pinned(ptr)) {
640 *ptr = val;
641 if (user_ptr) {
642 WARN_ON(xen_page_pinned(user_ptr));
643 *user_ptr = val;
644 }
645 return;
646 }
647
648 /* If it's pinned, then we can at least batch the kernel and
649 user updates together. */
650 xen_mc_batch();
651
652 __xen_set_pgd_hyper(ptr, val);
653 if (user_ptr)
654 __xen_set_pgd_hyper(user_ptr, val);
655
656 xen_mc_issue(PARAVIRT_LAZY_MMU);
657 }
658 #endif /* PAGETABLE_LEVELS == 4 */
659
660 /*
661 * (Yet another) pagetable walker. This one is intended for pinning a
662 * pagetable. This means that it walks a pagetable and calls the
663 * callback function on each page it finds making up the page table,
664 * at every level. It walks the entire pagetable, but it only bothers
665 * pinning pte pages which are below limit. In the normal case this
666 * will be STACK_TOP_MAX, but at boot we need to pin up to
667 * FIXADDR_TOP.
668 *
669 * For 32-bit the important bit is that we don't pin beyond there,
670 * because then we start getting into Xen's ptes.
671 *
672 * For 64-bit, we must skip the Xen hole in the middle of the address
673 * space, just after the big x86-64 virtual hole.
674 */
675 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
676 int (*func)(struct mm_struct *mm, struct page *,
677 enum pt_level),
678 unsigned long limit)
679 {
680 int flush = 0;
681 unsigned hole_low, hole_high;
682 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
683 unsigned pgdidx, pudidx, pmdidx;
684
685 /* The limit is the last byte to be touched */
686 limit--;
687 BUG_ON(limit >= FIXADDR_TOP);
688
689 if (xen_feature(XENFEAT_auto_translated_physmap))
690 return 0;
691
692 /*
693 * 64-bit has a great big hole in the middle of the address
694 * space, which contains the Xen mappings. On 32-bit these
695 * will end up making a zero-sized hole and so is a no-op.
696 */
697 hole_low = pgd_index(USER_LIMIT);
698 hole_high = pgd_index(PAGE_OFFSET);
699
700 pgdidx_limit = pgd_index(limit);
701 #if PTRS_PER_PUD > 1
702 pudidx_limit = pud_index(limit);
703 #else
704 pudidx_limit = 0;
705 #endif
706 #if PTRS_PER_PMD > 1
707 pmdidx_limit = pmd_index(limit);
708 #else
709 pmdidx_limit = 0;
710 #endif
711
712 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
713 pud_t *pud;
714
715 if (pgdidx >= hole_low && pgdidx < hole_high)
716 continue;
717
718 if (!pgd_val(pgd[pgdidx]))
719 continue;
720
721 pud = pud_offset(&pgd[pgdidx], 0);
722
723 if (PTRS_PER_PUD > 1) /* not folded */
724 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
725
726 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
727 pmd_t *pmd;
728
729 if (pgdidx == pgdidx_limit &&
730 pudidx > pudidx_limit)
731 goto out;
732
733 if (pud_none(pud[pudidx]))
734 continue;
735
736 pmd = pmd_offset(&pud[pudidx], 0);
737
738 if (PTRS_PER_PMD > 1) /* not folded */
739 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
740
741 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
742 struct page *pte;
743
744 if (pgdidx == pgdidx_limit &&
745 pudidx == pudidx_limit &&
746 pmdidx > pmdidx_limit)
747 goto out;
748
749 if (pmd_none(pmd[pmdidx]))
750 continue;
751
752 pte = pmd_page(pmd[pmdidx]);
753 flush |= (*func)(mm, pte, PT_PTE);
754 }
755 }
756 }
757
758 out:
759 /* Do the top level last, so that the callbacks can use it as
760 a cue to do final things like tlb flushes. */
761 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
762
763 return flush;
764 }
765
766 static int xen_pgd_walk(struct mm_struct *mm,
767 int (*func)(struct mm_struct *mm, struct page *,
768 enum pt_level),
769 unsigned long limit)
770 {
771 return __xen_pgd_walk(mm, mm->pgd, func, limit);
772 }
773
774 /* If we're using split pte locks, then take the page's lock and
775 return a pointer to it. Otherwise return NULL. */
776 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
777 {
778 spinlock_t *ptl = NULL;
779
780 #if USE_SPLIT_PTLOCKS
781 ptl = __pte_lockptr(page);
782 spin_lock_nest_lock(ptl, &mm->page_table_lock);
783 #endif
784
785 return ptl;
786 }
787
788 static void xen_pte_unlock(void *v)
789 {
790 spinlock_t *ptl = v;
791 spin_unlock(ptl);
792 }
793
794 static void xen_do_pin(unsigned level, unsigned long pfn)
795 {
796 struct mmuext_op op;
797
798 op.cmd = level;
799 op.arg1.mfn = pfn_to_mfn(pfn);
800
801 xen_extend_mmuext_op(&op);
802 }
803
804 static int xen_pin_page(struct mm_struct *mm, struct page *page,
805 enum pt_level level)
806 {
807 unsigned pgfl = TestSetPagePinned(page);
808 int flush;
809
810 if (pgfl)
811 flush = 0; /* already pinned */
812 else if (PageHighMem(page))
813 /* kmaps need flushing if we found an unpinned
814 highpage */
815 flush = 1;
816 else {
817 void *pt = lowmem_page_address(page);
818 unsigned long pfn = page_to_pfn(page);
819 struct multicall_space mcs = __xen_mc_entry(0);
820 spinlock_t *ptl;
821
822 flush = 0;
823
824 /*
825 * We need to hold the pagetable lock between the time
826 * we make the pagetable RO and when we actually pin
827 * it. If we don't, then other users may come in and
828 * attempt to update the pagetable by writing it,
829 * which will fail because the memory is RO but not
830 * pinned, so Xen won't do the trap'n'emulate.
831 *
832 * If we're using split pte locks, we can't hold the
833 * entire pagetable's worth of locks during the
834 * traverse, because we may wrap the preempt count (8
835 * bits). The solution is to mark RO and pin each PTE
836 * page while holding the lock. This means the number
837 * of locks we end up holding is never more than a
838 * batch size (~32 entries, at present).
839 *
840 * If we're not using split pte locks, we needn't pin
841 * the PTE pages independently, because we're
842 * protected by the overall pagetable lock.
843 */
844 ptl = NULL;
845 if (level == PT_PTE)
846 ptl = xen_pte_lock(page, mm);
847
848 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
849 pfn_pte(pfn, PAGE_KERNEL_RO),
850 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
851
852 if (ptl) {
853 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
854
855 /* Queue a deferred unlock for when this batch
856 is completed. */
857 xen_mc_callback(xen_pte_unlock, ptl);
858 }
859 }
860
861 return flush;
862 }
863
864 /* This is called just after a mm has been created, but it has not
865 been used yet. We need to make sure that its pagetable is all
866 read-only, and can be pinned. */
867 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
868 {
869 trace_xen_mmu_pgd_pin(mm, pgd);
870
871 xen_mc_batch();
872
873 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
874 /* re-enable interrupts for flushing */
875 xen_mc_issue(0);
876
877 kmap_flush_unused();
878
879 xen_mc_batch();
880 }
881
882 #ifdef CONFIG_X86_64
883 {
884 pgd_t *user_pgd = xen_get_user_pgd(pgd);
885
886 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
887
888 if (user_pgd) {
889 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
890 xen_do_pin(MMUEXT_PIN_L4_TABLE,
891 PFN_DOWN(__pa(user_pgd)));
892 }
893 }
894 #else /* CONFIG_X86_32 */
895 #ifdef CONFIG_X86_PAE
896 /* Need to make sure unshared kernel PMD is pinnable */
897 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
898 PT_PMD);
899 #endif
900 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
901 #endif /* CONFIG_X86_64 */
902 xen_mc_issue(0);
903 }
904
905 static void xen_pgd_pin(struct mm_struct *mm)
906 {
907 __xen_pgd_pin(mm, mm->pgd);
908 }
909
910 /*
911 * On save, we need to pin all pagetables to make sure they get their
912 * mfns turned into pfns. Search the list for any unpinned pgds and pin
913 * them (unpinned pgds are not currently in use, probably because the
914 * process is under construction or destruction).
915 *
916 * Expected to be called in stop_machine() ("equivalent to taking
917 * every spinlock in the system"), so the locking doesn't really
918 * matter all that much.
919 */
920 void xen_mm_pin_all(void)
921 {
922 struct page *page;
923
924 spin_lock(&pgd_lock);
925
926 list_for_each_entry(page, &pgd_list, lru) {
927 if (!PagePinned(page)) {
928 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
929 SetPageSavePinned(page);
930 }
931 }
932
933 spin_unlock(&pgd_lock);
934 }
935
936 /*
937 * The init_mm pagetable is really pinned as soon as its created, but
938 * that's before we have page structures to store the bits. So do all
939 * the book-keeping now.
940 */
941 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
942 enum pt_level level)
943 {
944 SetPagePinned(page);
945 return 0;
946 }
947
948 static void __init xen_mark_init_mm_pinned(void)
949 {
950 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
951 }
952
953 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
954 enum pt_level level)
955 {
956 unsigned pgfl = TestClearPagePinned(page);
957
958 if (pgfl && !PageHighMem(page)) {
959 void *pt = lowmem_page_address(page);
960 unsigned long pfn = page_to_pfn(page);
961 spinlock_t *ptl = NULL;
962 struct multicall_space mcs;
963
964 /*
965 * Do the converse to pin_page. If we're using split
966 * pte locks, we must be holding the lock for while
967 * the pte page is unpinned but still RO to prevent
968 * concurrent updates from seeing it in this
969 * partially-pinned state.
970 */
971 if (level == PT_PTE) {
972 ptl = xen_pte_lock(page, mm);
973
974 if (ptl)
975 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
976 }
977
978 mcs = __xen_mc_entry(0);
979
980 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
981 pfn_pte(pfn, PAGE_KERNEL),
982 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
983
984 if (ptl) {
985 /* unlock when batch completed */
986 xen_mc_callback(xen_pte_unlock, ptl);
987 }
988 }
989
990 return 0; /* never need to flush on unpin */
991 }
992
993 /* Release a pagetables pages back as normal RW */
994 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
995 {
996 trace_xen_mmu_pgd_unpin(mm, pgd);
997
998 xen_mc_batch();
999
1000 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1001
1002 #ifdef CONFIG_X86_64
1003 {
1004 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1005
1006 if (user_pgd) {
1007 xen_do_pin(MMUEXT_UNPIN_TABLE,
1008 PFN_DOWN(__pa(user_pgd)));
1009 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1010 }
1011 }
1012 #endif
1013
1014 #ifdef CONFIG_X86_PAE
1015 /* Need to make sure unshared kernel PMD is unpinned */
1016 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1017 PT_PMD);
1018 #endif
1019
1020 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1021
1022 xen_mc_issue(0);
1023 }
1024
1025 static void xen_pgd_unpin(struct mm_struct *mm)
1026 {
1027 __xen_pgd_unpin(mm, mm->pgd);
1028 }
1029
1030 /*
1031 * On resume, undo any pinning done at save, so that the rest of the
1032 * kernel doesn't see any unexpected pinned pagetables.
1033 */
1034 void xen_mm_unpin_all(void)
1035 {
1036 struct page *page;
1037
1038 spin_lock(&pgd_lock);
1039
1040 list_for_each_entry(page, &pgd_list, lru) {
1041 if (PageSavePinned(page)) {
1042 BUG_ON(!PagePinned(page));
1043 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1044 ClearPageSavePinned(page);
1045 }
1046 }
1047
1048 spin_unlock(&pgd_lock);
1049 }
1050
1051 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1052 {
1053 spin_lock(&next->page_table_lock);
1054 xen_pgd_pin(next);
1055 spin_unlock(&next->page_table_lock);
1056 }
1057
1058 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1059 {
1060 spin_lock(&mm->page_table_lock);
1061 xen_pgd_pin(mm);
1062 spin_unlock(&mm->page_table_lock);
1063 }
1064
1065
1066 #ifdef CONFIG_SMP
1067 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1068 we need to repoint it somewhere else before we can unpin it. */
1069 static void drop_other_mm_ref(void *info)
1070 {
1071 struct mm_struct *mm = info;
1072 struct mm_struct *active_mm;
1073
1074 active_mm = percpu_read(cpu_tlbstate.active_mm);
1075
1076 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1077 leave_mm(smp_processor_id());
1078
1079 /* If this cpu still has a stale cr3 reference, then make sure
1080 it has been flushed. */
1081 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1082 load_cr3(swapper_pg_dir);
1083 }
1084
1085 static void xen_drop_mm_ref(struct mm_struct *mm)
1086 {
1087 cpumask_var_t mask;
1088 unsigned cpu;
1089
1090 if (current->active_mm == mm) {
1091 if (current->mm == mm)
1092 load_cr3(swapper_pg_dir);
1093 else
1094 leave_mm(smp_processor_id());
1095 }
1096
1097 /* Get the "official" set of cpus referring to our pagetable. */
1098 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1099 for_each_online_cpu(cpu) {
1100 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1101 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1102 continue;
1103 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1104 }
1105 return;
1106 }
1107 cpumask_copy(mask, mm_cpumask(mm));
1108
1109 /* It's possible that a vcpu may have a stale reference to our
1110 cr3, because its in lazy mode, and it hasn't yet flushed
1111 its set of pending hypercalls yet. In this case, we can
1112 look at its actual current cr3 value, and force it to flush
1113 if needed. */
1114 for_each_online_cpu(cpu) {
1115 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1116 cpumask_set_cpu(cpu, mask);
1117 }
1118
1119 if (!cpumask_empty(mask))
1120 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1121 free_cpumask_var(mask);
1122 }
1123 #else
1124 static void xen_drop_mm_ref(struct mm_struct *mm)
1125 {
1126 if (current->active_mm == mm)
1127 load_cr3(swapper_pg_dir);
1128 }
1129 #endif
1130
1131 /*
1132 * While a process runs, Xen pins its pagetables, which means that the
1133 * hypervisor forces it to be read-only, and it controls all updates
1134 * to it. This means that all pagetable updates have to go via the
1135 * hypervisor, which is moderately expensive.
1136 *
1137 * Since we're pulling the pagetable down, we switch to use init_mm,
1138 * unpin old process pagetable and mark it all read-write, which
1139 * allows further operations on it to be simple memory accesses.
1140 *
1141 * The only subtle point is that another CPU may be still using the
1142 * pagetable because of lazy tlb flushing. This means we need need to
1143 * switch all CPUs off this pagetable before we can unpin it.
1144 */
1145 static void xen_exit_mmap(struct mm_struct *mm)
1146 {
1147 get_cpu(); /* make sure we don't move around */
1148 xen_drop_mm_ref(mm);
1149 put_cpu();
1150
1151 spin_lock(&mm->page_table_lock);
1152
1153 /* pgd may not be pinned in the error exit path of execve */
1154 if (xen_page_pinned(mm->pgd))
1155 xen_pgd_unpin(mm);
1156
1157 spin_unlock(&mm->page_table_lock);
1158 }
1159
1160 static void __init xen_pagetable_setup_start(pgd_t *base)
1161 {
1162 }
1163
1164 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1165 {
1166 /* reserve the range used */
1167 native_pagetable_reserve(start, end);
1168
1169 /* set as RW the rest */
1170 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1171 PFN_PHYS(pgt_buf_top));
1172 while (end < PFN_PHYS(pgt_buf_top)) {
1173 make_lowmem_page_readwrite(__va(end));
1174 end += PAGE_SIZE;
1175 }
1176 }
1177
1178 static void xen_post_allocator_init(void);
1179
1180 static void __init xen_pagetable_setup_done(pgd_t *base)
1181 {
1182 xen_setup_shared_info();
1183 xen_post_allocator_init();
1184 }
1185
1186 static void xen_write_cr2(unsigned long cr2)
1187 {
1188 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1189 }
1190
1191 static unsigned long xen_read_cr2(void)
1192 {
1193 return percpu_read(xen_vcpu)->arch.cr2;
1194 }
1195
1196 unsigned long xen_read_cr2_direct(void)
1197 {
1198 return percpu_read(xen_vcpu_info.arch.cr2);
1199 }
1200
1201 static void xen_flush_tlb(void)
1202 {
1203 struct mmuext_op *op;
1204 struct multicall_space mcs;
1205
1206 trace_xen_mmu_flush_tlb(0);
1207
1208 preempt_disable();
1209
1210 mcs = xen_mc_entry(sizeof(*op));
1211
1212 op = mcs.args;
1213 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1214 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1215
1216 xen_mc_issue(PARAVIRT_LAZY_MMU);
1217
1218 preempt_enable();
1219 }
1220
1221 static void xen_flush_tlb_single(unsigned long addr)
1222 {
1223 struct mmuext_op *op;
1224 struct multicall_space mcs;
1225
1226 trace_xen_mmu_flush_tlb_single(addr);
1227
1228 preempt_disable();
1229
1230 mcs = xen_mc_entry(sizeof(*op));
1231 op = mcs.args;
1232 op->cmd = MMUEXT_INVLPG_LOCAL;
1233 op->arg1.linear_addr = addr & PAGE_MASK;
1234 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1235
1236 xen_mc_issue(PARAVIRT_LAZY_MMU);
1237
1238 preempt_enable();
1239 }
1240
1241 static void xen_flush_tlb_others(const struct cpumask *cpus,
1242 struct mm_struct *mm, unsigned long va)
1243 {
1244 struct {
1245 struct mmuext_op op;
1246 #ifdef CONFIG_SMP
1247 DECLARE_BITMAP(mask, num_processors);
1248 #else
1249 DECLARE_BITMAP(mask, NR_CPUS);
1250 #endif
1251 } *args;
1252 struct multicall_space mcs;
1253
1254 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1255
1256 if (cpumask_empty(cpus))
1257 return; /* nothing to do */
1258
1259 mcs = xen_mc_entry(sizeof(*args));
1260 args = mcs.args;
1261 args->op.arg2.vcpumask = to_cpumask(args->mask);
1262
1263 /* Remove us, and any offline CPUS. */
1264 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1265 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1266
1267 if (va == TLB_FLUSH_ALL) {
1268 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1269 } else {
1270 args->op.cmd = MMUEXT_INVLPG_MULTI;
1271 args->op.arg1.linear_addr = va;
1272 }
1273
1274 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1275
1276 xen_mc_issue(PARAVIRT_LAZY_MMU);
1277 }
1278
1279 static unsigned long xen_read_cr3(void)
1280 {
1281 return percpu_read(xen_cr3);
1282 }
1283
1284 static void set_current_cr3(void *v)
1285 {
1286 percpu_write(xen_current_cr3, (unsigned long)v);
1287 }
1288
1289 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1290 {
1291 struct mmuext_op op;
1292 unsigned long mfn;
1293
1294 trace_xen_mmu_write_cr3(kernel, cr3);
1295
1296 if (cr3)
1297 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1298 else
1299 mfn = 0;
1300
1301 WARN_ON(mfn == 0 && kernel);
1302
1303 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1304 op.arg1.mfn = mfn;
1305
1306 xen_extend_mmuext_op(&op);
1307
1308 if (kernel) {
1309 percpu_write(xen_cr3, cr3);
1310
1311 /* Update xen_current_cr3 once the batch has actually
1312 been submitted. */
1313 xen_mc_callback(set_current_cr3, (void *)cr3);
1314 }
1315 }
1316
1317 static void xen_write_cr3(unsigned long cr3)
1318 {
1319 BUG_ON(preemptible());
1320
1321 xen_mc_batch(); /* disables interrupts */
1322
1323 /* Update while interrupts are disabled, so its atomic with
1324 respect to ipis */
1325 percpu_write(xen_cr3, cr3);
1326
1327 __xen_write_cr3(true, cr3);
1328
1329 #ifdef CONFIG_X86_64
1330 {
1331 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1332 if (user_pgd)
1333 __xen_write_cr3(false, __pa(user_pgd));
1334 else
1335 __xen_write_cr3(false, 0);
1336 }
1337 #endif
1338
1339 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1340 }
1341
1342 static int xen_pgd_alloc(struct mm_struct *mm)
1343 {
1344 pgd_t *pgd = mm->pgd;
1345 int ret = 0;
1346
1347 BUG_ON(PagePinned(virt_to_page(pgd)));
1348
1349 #ifdef CONFIG_X86_64
1350 {
1351 struct page *page = virt_to_page(pgd);
1352 pgd_t *user_pgd;
1353
1354 BUG_ON(page->private != 0);
1355
1356 ret = -ENOMEM;
1357
1358 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1359 page->private = (unsigned long)user_pgd;
1360
1361 if (user_pgd != NULL) {
1362 user_pgd[pgd_index(VSYSCALL_START)] =
1363 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1364 ret = 0;
1365 }
1366
1367 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1368 }
1369 #endif
1370
1371 return ret;
1372 }
1373
1374 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1375 {
1376 #ifdef CONFIG_X86_64
1377 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1378
1379 if (user_pgd)
1380 free_page((unsigned long)user_pgd);
1381 #endif
1382 }
1383
1384 #ifdef CONFIG_X86_32
1385 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1386 {
1387 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1388 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1389 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1390 pte_val_ma(pte));
1391
1392 return pte;
1393 }
1394 #else /* CONFIG_X86_64 */
1395 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1396 {
1397 unsigned long pfn = pte_pfn(pte);
1398
1399 /*
1400 * If the new pfn is within the range of the newly allocated
1401 * kernel pagetable, and it isn't being mapped into an
1402 * early_ioremap fixmap slot as a freshly allocated page, make sure
1403 * it is RO.
1404 */
1405 if (((!is_early_ioremap_ptep(ptep) &&
1406 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1407 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1408 pte = pte_wrprotect(pte);
1409
1410 return pte;
1411 }
1412 #endif /* CONFIG_X86_64 */
1413
1414 /* Init-time set_pte while constructing initial pagetables, which
1415 doesn't allow RO pagetable pages to be remapped RW */
1416 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1417 {
1418 pte = mask_rw_pte(ptep, pte);
1419
1420 xen_set_pte(ptep, pte);
1421 }
1422
1423 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1424 {
1425 struct mmuext_op op;
1426 op.cmd = cmd;
1427 op.arg1.mfn = pfn_to_mfn(pfn);
1428 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1429 BUG();
1430 }
1431
1432 /* Early in boot, while setting up the initial pagetable, assume
1433 everything is pinned. */
1434 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1435 {
1436 #ifdef CONFIG_FLATMEM
1437 BUG_ON(mem_map); /* should only be used early */
1438 #endif
1439 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1440 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1441 }
1442
1443 /* Used for pmd and pud */
1444 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1445 {
1446 #ifdef CONFIG_FLATMEM
1447 BUG_ON(mem_map); /* should only be used early */
1448 #endif
1449 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1450 }
1451
1452 /* Early release_pte assumes that all pts are pinned, since there's
1453 only init_mm and anything attached to that is pinned. */
1454 static void __init xen_release_pte_init(unsigned long pfn)
1455 {
1456 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1457 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1458 }
1459
1460 static void __init xen_release_pmd_init(unsigned long pfn)
1461 {
1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1463 }
1464
1465 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1466 {
1467 struct multicall_space mcs;
1468 struct mmuext_op *op;
1469
1470 mcs = __xen_mc_entry(sizeof(*op));
1471 op = mcs.args;
1472 op->cmd = cmd;
1473 op->arg1.mfn = pfn_to_mfn(pfn);
1474
1475 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1476 }
1477
1478 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1479 {
1480 struct multicall_space mcs;
1481 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1482
1483 mcs = __xen_mc_entry(0);
1484 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1485 pfn_pte(pfn, prot), 0);
1486 }
1487
1488 /* This needs to make sure the new pte page is pinned iff its being
1489 attached to a pinned pagetable. */
1490 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1491 unsigned level)
1492 {
1493 bool pinned = PagePinned(virt_to_page(mm->pgd));
1494
1495 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1496
1497 if (pinned) {
1498 struct page *page = pfn_to_page(pfn);
1499
1500 SetPagePinned(page);
1501
1502 if (!PageHighMem(page)) {
1503 xen_mc_batch();
1504
1505 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1506
1507 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1508 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1509
1510 xen_mc_issue(PARAVIRT_LAZY_MMU);
1511 } else {
1512 /* make sure there are no stray mappings of
1513 this page */
1514 kmap_flush_unused();
1515 }
1516 }
1517 }
1518
1519 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1520 {
1521 xen_alloc_ptpage(mm, pfn, PT_PTE);
1522 }
1523
1524 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1525 {
1526 xen_alloc_ptpage(mm, pfn, PT_PMD);
1527 }
1528
1529 /* This should never happen until we're OK to use struct page */
1530 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1531 {
1532 struct page *page = pfn_to_page(pfn);
1533 bool pinned = PagePinned(page);
1534
1535 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1536
1537 if (pinned) {
1538 if (!PageHighMem(page)) {
1539 xen_mc_batch();
1540
1541 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1542 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1543
1544 __set_pfn_prot(pfn, PAGE_KERNEL);
1545
1546 xen_mc_issue(PARAVIRT_LAZY_MMU);
1547 }
1548 ClearPagePinned(page);
1549 }
1550 }
1551
1552 static void xen_release_pte(unsigned long pfn)
1553 {
1554 xen_release_ptpage(pfn, PT_PTE);
1555 }
1556
1557 static void xen_release_pmd(unsigned long pfn)
1558 {
1559 xen_release_ptpage(pfn, PT_PMD);
1560 }
1561
1562 #if PAGETABLE_LEVELS == 4
1563 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1564 {
1565 xen_alloc_ptpage(mm, pfn, PT_PUD);
1566 }
1567
1568 static void xen_release_pud(unsigned long pfn)
1569 {
1570 xen_release_ptpage(pfn, PT_PUD);
1571 }
1572 #endif
1573
1574 void __init xen_reserve_top(void)
1575 {
1576 #ifdef CONFIG_X86_32
1577 unsigned long top = HYPERVISOR_VIRT_START;
1578 struct xen_platform_parameters pp;
1579
1580 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1581 top = pp.virt_start;
1582
1583 reserve_top_address(-top);
1584 #endif /* CONFIG_X86_32 */
1585 }
1586
1587 /*
1588 * Like __va(), but returns address in the kernel mapping (which is
1589 * all we have until the physical memory mapping has been set up.
1590 */
1591 static void *__ka(phys_addr_t paddr)
1592 {
1593 #ifdef CONFIG_X86_64
1594 return (void *)(paddr + __START_KERNEL_map);
1595 #else
1596 return __va(paddr);
1597 #endif
1598 }
1599
1600 /* Convert a machine address to physical address */
1601 static unsigned long m2p(phys_addr_t maddr)
1602 {
1603 phys_addr_t paddr;
1604
1605 maddr &= PTE_PFN_MASK;
1606 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1607
1608 return paddr;
1609 }
1610
1611 /* Convert a machine address to kernel virtual */
1612 static void *m2v(phys_addr_t maddr)
1613 {
1614 return __ka(m2p(maddr));
1615 }
1616
1617 /* Set the page permissions on an identity-mapped pages */
1618 static void set_page_prot(void *addr, pgprot_t prot)
1619 {
1620 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1621 pte_t pte = pfn_pte(pfn, prot);
1622
1623 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1624 BUG();
1625 }
1626
1627 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1628 {
1629 unsigned pmdidx, pteidx;
1630 unsigned ident_pte;
1631 unsigned long pfn;
1632
1633 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1634 PAGE_SIZE);
1635
1636 ident_pte = 0;
1637 pfn = 0;
1638 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1639 pte_t *pte_page;
1640
1641 /* Reuse or allocate a page of ptes */
1642 if (pmd_present(pmd[pmdidx]))
1643 pte_page = m2v(pmd[pmdidx].pmd);
1644 else {
1645 /* Check for free pte pages */
1646 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1647 break;
1648
1649 pte_page = &level1_ident_pgt[ident_pte];
1650 ident_pte += PTRS_PER_PTE;
1651
1652 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1653 }
1654
1655 /* Install mappings */
1656 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1657 pte_t pte;
1658
1659 #ifdef CONFIG_X86_32
1660 if (pfn > max_pfn_mapped)
1661 max_pfn_mapped = pfn;
1662 #endif
1663
1664 if (!pte_none(pte_page[pteidx]))
1665 continue;
1666
1667 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1668 pte_page[pteidx] = pte;
1669 }
1670 }
1671
1672 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1673 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1674
1675 set_page_prot(pmd, PAGE_KERNEL_RO);
1676 }
1677
1678 void __init xen_setup_machphys_mapping(void)
1679 {
1680 struct xen_machphys_mapping mapping;
1681
1682 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1683 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1684 machine_to_phys_nr = mapping.max_mfn + 1;
1685 } else {
1686 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1687 }
1688 #ifdef CONFIG_X86_32
1689 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1690 < machine_to_phys_mapping);
1691 #endif
1692 }
1693
1694 #ifdef CONFIG_X86_64
1695 static void convert_pfn_mfn(void *v)
1696 {
1697 pte_t *pte = v;
1698 int i;
1699
1700 /* All levels are converted the same way, so just treat them
1701 as ptes. */
1702 for (i = 0; i < PTRS_PER_PTE; i++)
1703 pte[i] = xen_make_pte(pte[i].pte);
1704 }
1705
1706 /*
1707 * Set up the initial kernel pagetable.
1708 *
1709 * We can construct this by grafting the Xen provided pagetable into
1710 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1711 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1712 * means that only the kernel has a physical mapping to start with -
1713 * but that's enough to get __va working. We need to fill in the rest
1714 * of the physical mapping once some sort of allocator has been set
1715 * up.
1716 */
1717 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1718 unsigned long max_pfn)
1719 {
1720 pud_t *l3;
1721 pmd_t *l2;
1722
1723 /* max_pfn_mapped is the last pfn mapped in the initial memory
1724 * mappings. Considering that on Xen after the kernel mappings we
1725 * have the mappings of some pages that don't exist in pfn space, we
1726 * set max_pfn_mapped to the last real pfn mapped. */
1727 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1728
1729 /* Zap identity mapping */
1730 init_level4_pgt[0] = __pgd(0);
1731
1732 /* Pre-constructed entries are in pfn, so convert to mfn */
1733 convert_pfn_mfn(init_level4_pgt);
1734 convert_pfn_mfn(level3_ident_pgt);
1735 convert_pfn_mfn(level3_kernel_pgt);
1736
1737 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1738 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1739
1740 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1741 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1742
1743 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1744 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1745 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1746
1747 /* Set up identity map */
1748 xen_map_identity_early(level2_ident_pgt, max_pfn);
1749
1750 /* Make pagetable pieces RO */
1751 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1752 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1753 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1754 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1755 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1756 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1757
1758 /* Pin down new L4 */
1759 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1760 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1761
1762 /* Unpin Xen-provided one */
1763 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1764
1765 /* Switch over */
1766 pgd = init_level4_pgt;
1767
1768 /*
1769 * At this stage there can be no user pgd, and no page
1770 * structure to attach it to, so make sure we just set kernel
1771 * pgd.
1772 */
1773 xen_mc_batch();
1774 __xen_write_cr3(true, __pa(pgd));
1775 xen_mc_issue(PARAVIRT_LAZY_CPU);
1776
1777 memblock_reserve(__pa(xen_start_info->pt_base),
1778 xen_start_info->nr_pt_frames * PAGE_SIZE);
1779
1780 return pgd;
1781 }
1782 #else /* !CONFIG_X86_64 */
1783 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1784 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1785
1786 static void __init xen_write_cr3_init(unsigned long cr3)
1787 {
1788 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1789
1790 BUG_ON(read_cr3() != __pa(initial_page_table));
1791 BUG_ON(cr3 != __pa(swapper_pg_dir));
1792
1793 /*
1794 * We are switching to swapper_pg_dir for the first time (from
1795 * initial_page_table) and therefore need to mark that page
1796 * read-only and then pin it.
1797 *
1798 * Xen disallows sharing of kernel PMDs for PAE
1799 * guests. Therefore we must copy the kernel PMD from
1800 * initial_page_table into a new kernel PMD to be used in
1801 * swapper_pg_dir.
1802 */
1803 swapper_kernel_pmd =
1804 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1805 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1806 sizeof(pmd_t) * PTRS_PER_PMD);
1807 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1808 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1809 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1810
1811 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1812 xen_write_cr3(cr3);
1813 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1814
1815 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1816 PFN_DOWN(__pa(initial_page_table)));
1817 set_page_prot(initial_page_table, PAGE_KERNEL);
1818 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1819
1820 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1821 }
1822
1823 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1824 unsigned long max_pfn)
1825 {
1826 pmd_t *kernel_pmd;
1827
1828 initial_kernel_pmd =
1829 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1830
1831 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1832 xen_start_info->nr_pt_frames * PAGE_SIZE +
1833 512*1024);
1834
1835 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1836 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1837
1838 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1839
1840 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1841 initial_page_table[KERNEL_PGD_BOUNDARY] =
1842 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1843
1844 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1845 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1846 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1847
1848 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1849
1850 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1851 PFN_DOWN(__pa(initial_page_table)));
1852 xen_write_cr3(__pa(initial_page_table));
1853
1854 memblock_reserve(__pa(xen_start_info->pt_base),
1855 xen_start_info->nr_pt_frames * PAGE_SIZE);
1856
1857 return initial_page_table;
1858 }
1859 #endif /* CONFIG_X86_64 */
1860
1861 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1862
1863 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1864 {
1865 pte_t pte;
1866
1867 phys >>= PAGE_SHIFT;
1868
1869 switch (idx) {
1870 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1871 #ifdef CONFIG_X86_F00F_BUG
1872 case FIX_F00F_IDT:
1873 #endif
1874 #ifdef CONFIG_X86_32
1875 case FIX_WP_TEST:
1876 case FIX_VDSO:
1877 # ifdef CONFIG_HIGHMEM
1878 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1879 # endif
1880 #else
1881 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1882 case VVAR_PAGE:
1883 #endif
1884 case FIX_TEXT_POKE0:
1885 case FIX_TEXT_POKE1:
1886 /* All local page mappings */
1887 pte = pfn_pte(phys, prot);
1888 break;
1889
1890 #ifdef CONFIG_X86_LOCAL_APIC
1891 case FIX_APIC_BASE: /* maps dummy local APIC */
1892 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1893 break;
1894 #endif
1895
1896 #ifdef CONFIG_X86_IO_APIC
1897 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1898 /*
1899 * We just don't map the IO APIC - all access is via
1900 * hypercalls. Keep the address in the pte for reference.
1901 */
1902 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1903 break;
1904 #endif
1905
1906 case FIX_PARAVIRT_BOOTMAP:
1907 /* This is an MFN, but it isn't an IO mapping from the
1908 IO domain */
1909 pte = mfn_pte(phys, prot);
1910 break;
1911
1912 default:
1913 /* By default, set_fixmap is used for hardware mappings */
1914 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1915 break;
1916 }
1917
1918 __native_set_fixmap(idx, pte);
1919
1920 #ifdef CONFIG_X86_64
1921 /* Replicate changes to map the vsyscall page into the user
1922 pagetable vsyscall mapping. */
1923 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1924 idx == VVAR_PAGE) {
1925 unsigned long vaddr = __fix_to_virt(idx);
1926 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1927 }
1928 #endif
1929 }
1930
1931 void __init xen_ident_map_ISA(void)
1932 {
1933 unsigned long pa;
1934
1935 /*
1936 * If we're dom0, then linear map the ISA machine addresses into
1937 * the kernel's address space.
1938 */
1939 if (!xen_initial_domain())
1940 return;
1941
1942 xen_raw_printk("Xen: setup ISA identity maps\n");
1943
1944 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1945 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1946
1947 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1948 BUG();
1949 }
1950
1951 xen_flush_tlb();
1952 }
1953
1954 static void __init xen_post_allocator_init(void)
1955 {
1956 pv_mmu_ops.set_pte = xen_set_pte;
1957 pv_mmu_ops.set_pmd = xen_set_pmd;
1958 pv_mmu_ops.set_pud = xen_set_pud;
1959 #if PAGETABLE_LEVELS == 4
1960 pv_mmu_ops.set_pgd = xen_set_pgd;
1961 #endif
1962
1963 /* This will work as long as patching hasn't happened yet
1964 (which it hasn't) */
1965 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1966 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1967 pv_mmu_ops.release_pte = xen_release_pte;
1968 pv_mmu_ops.release_pmd = xen_release_pmd;
1969 #if PAGETABLE_LEVELS == 4
1970 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1971 pv_mmu_ops.release_pud = xen_release_pud;
1972 #endif
1973
1974 #ifdef CONFIG_X86_64
1975 SetPagePinned(virt_to_page(level3_user_vsyscall));
1976 #endif
1977 xen_mark_init_mm_pinned();
1978 }
1979
1980 static void xen_leave_lazy_mmu(void)
1981 {
1982 preempt_disable();
1983 xen_mc_flush();
1984 paravirt_leave_lazy_mmu();
1985 preempt_enable();
1986 }
1987
1988 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1989 .read_cr2 = xen_read_cr2,
1990 .write_cr2 = xen_write_cr2,
1991
1992 .read_cr3 = xen_read_cr3,
1993 #ifdef CONFIG_X86_32
1994 .write_cr3 = xen_write_cr3_init,
1995 #else
1996 .write_cr3 = xen_write_cr3,
1997 #endif
1998
1999 .flush_tlb_user = xen_flush_tlb,
2000 .flush_tlb_kernel = xen_flush_tlb,
2001 .flush_tlb_single = xen_flush_tlb_single,
2002 .flush_tlb_others = xen_flush_tlb_others,
2003
2004 .pte_update = paravirt_nop,
2005 .pte_update_defer = paravirt_nop,
2006
2007 .pgd_alloc = xen_pgd_alloc,
2008 .pgd_free = xen_pgd_free,
2009
2010 .alloc_pte = xen_alloc_pte_init,
2011 .release_pte = xen_release_pte_init,
2012 .alloc_pmd = xen_alloc_pmd_init,
2013 .release_pmd = xen_release_pmd_init,
2014
2015 .set_pte = xen_set_pte_init,
2016 .set_pte_at = xen_set_pte_at,
2017 .set_pmd = xen_set_pmd_hyper,
2018
2019 .ptep_modify_prot_start = __ptep_modify_prot_start,
2020 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2021
2022 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2023 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2024
2025 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2026 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2027
2028 #ifdef CONFIG_X86_PAE
2029 .set_pte_atomic = xen_set_pte_atomic,
2030 .pte_clear = xen_pte_clear,
2031 .pmd_clear = xen_pmd_clear,
2032 #endif /* CONFIG_X86_PAE */
2033 .set_pud = xen_set_pud_hyper,
2034
2035 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2036 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2037
2038 #if PAGETABLE_LEVELS == 4
2039 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2040 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2041 .set_pgd = xen_set_pgd_hyper,
2042
2043 .alloc_pud = xen_alloc_pmd_init,
2044 .release_pud = xen_release_pmd_init,
2045 #endif /* PAGETABLE_LEVELS == 4 */
2046
2047 .activate_mm = xen_activate_mm,
2048 .dup_mmap = xen_dup_mmap,
2049 .exit_mmap = xen_exit_mmap,
2050
2051 .lazy_mode = {
2052 .enter = paravirt_enter_lazy_mmu,
2053 .leave = xen_leave_lazy_mmu,
2054 },
2055
2056 .set_fixmap = xen_set_fixmap,
2057 };
2058
2059 void __init xen_init_mmu_ops(void)
2060 {
2061 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2062 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2063 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2064 pv_mmu_ops = xen_mmu_ops;
2065
2066 memset(dummy_mapping, 0xff, PAGE_SIZE);
2067 }
2068
2069 /* Protected by xen_reservation_lock. */
2070 #define MAX_CONTIG_ORDER 9 /* 2MB */
2071 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2072
2073 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2074 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2075 unsigned long *in_frames,
2076 unsigned long *out_frames)
2077 {
2078 int i;
2079 struct multicall_space mcs;
2080
2081 xen_mc_batch();
2082 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2083 mcs = __xen_mc_entry(0);
2084
2085 if (in_frames)
2086 in_frames[i] = virt_to_mfn(vaddr);
2087
2088 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2089 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2090
2091 if (out_frames)
2092 out_frames[i] = virt_to_pfn(vaddr);
2093 }
2094 xen_mc_issue(0);
2095 }
2096
2097 /*
2098 * Update the pfn-to-mfn mappings for a virtual address range, either to
2099 * point to an array of mfns, or contiguously from a single starting
2100 * mfn.
2101 */
2102 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2103 unsigned long *mfns,
2104 unsigned long first_mfn)
2105 {
2106 unsigned i, limit;
2107 unsigned long mfn;
2108
2109 xen_mc_batch();
2110
2111 limit = 1u << order;
2112 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2113 struct multicall_space mcs;
2114 unsigned flags;
2115
2116 mcs = __xen_mc_entry(0);
2117 if (mfns)
2118 mfn = mfns[i];
2119 else
2120 mfn = first_mfn + i;
2121
2122 if (i < (limit - 1))
2123 flags = 0;
2124 else {
2125 if (order == 0)
2126 flags = UVMF_INVLPG | UVMF_ALL;
2127 else
2128 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2129 }
2130
2131 MULTI_update_va_mapping(mcs.mc, vaddr,
2132 mfn_pte(mfn, PAGE_KERNEL), flags);
2133
2134 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2135 }
2136
2137 xen_mc_issue(0);
2138 }
2139
2140 /*
2141 * Perform the hypercall to exchange a region of our pfns to point to
2142 * memory with the required contiguous alignment. Takes the pfns as
2143 * input, and populates mfns as output.
2144 *
2145 * Returns a success code indicating whether the hypervisor was able to
2146 * satisfy the request or not.
2147 */
2148 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2149 unsigned long *pfns_in,
2150 unsigned long extents_out,
2151 unsigned int order_out,
2152 unsigned long *mfns_out,
2153 unsigned int address_bits)
2154 {
2155 long rc;
2156 int success;
2157
2158 struct xen_memory_exchange exchange = {
2159 .in = {
2160 .nr_extents = extents_in,
2161 .extent_order = order_in,
2162 .extent_start = pfns_in,
2163 .domid = DOMID_SELF
2164 },
2165 .out = {
2166 .nr_extents = extents_out,
2167 .extent_order = order_out,
2168 .extent_start = mfns_out,
2169 .address_bits = address_bits,
2170 .domid = DOMID_SELF
2171 }
2172 };
2173
2174 BUG_ON(extents_in << order_in != extents_out << order_out);
2175
2176 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2177 success = (exchange.nr_exchanged == extents_in);
2178
2179 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2180 BUG_ON(success && (rc != 0));
2181
2182 return success;
2183 }
2184
2185 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2186 unsigned int address_bits)
2187 {
2188 unsigned long *in_frames = discontig_frames, out_frame;
2189 unsigned long flags;
2190 int success;
2191
2192 /*
2193 * Currently an auto-translated guest will not perform I/O, nor will
2194 * it require PAE page directories below 4GB. Therefore any calls to
2195 * this function are redundant and can be ignored.
2196 */
2197
2198 if (xen_feature(XENFEAT_auto_translated_physmap))
2199 return 0;
2200
2201 if (unlikely(order > MAX_CONTIG_ORDER))
2202 return -ENOMEM;
2203
2204 memset((void *) vstart, 0, PAGE_SIZE << order);
2205
2206 spin_lock_irqsave(&xen_reservation_lock, flags);
2207
2208 /* 1. Zap current PTEs, remembering MFNs. */
2209 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2210
2211 /* 2. Get a new contiguous memory extent. */
2212 out_frame = virt_to_pfn(vstart);
2213 success = xen_exchange_memory(1UL << order, 0, in_frames,
2214 1, order, &out_frame,
2215 address_bits);
2216
2217 /* 3. Map the new extent in place of old pages. */
2218 if (success)
2219 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2220 else
2221 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2222
2223 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2224
2225 return success ? 0 : -ENOMEM;
2226 }
2227 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2228
2229 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2230 {
2231 unsigned long *out_frames = discontig_frames, in_frame;
2232 unsigned long flags;
2233 int success;
2234
2235 if (xen_feature(XENFEAT_auto_translated_physmap))
2236 return;
2237
2238 if (unlikely(order > MAX_CONTIG_ORDER))
2239 return;
2240
2241 memset((void *) vstart, 0, PAGE_SIZE << order);
2242
2243 spin_lock_irqsave(&xen_reservation_lock, flags);
2244
2245 /* 1. Find start MFN of contiguous extent. */
2246 in_frame = virt_to_mfn(vstart);
2247
2248 /* 2. Zap current PTEs. */
2249 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2250
2251 /* 3. Do the exchange for non-contiguous MFNs. */
2252 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2253 0, out_frames, 0);
2254
2255 /* 4. Map new pages in place of old pages. */
2256 if (success)
2257 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2258 else
2259 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2260
2261 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2262 }
2263 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2264
2265 #ifdef CONFIG_XEN_PVHVM
2266 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2267 {
2268 struct xen_hvm_pagetable_dying a;
2269 int rc;
2270
2271 a.domid = DOMID_SELF;
2272 a.gpa = __pa(mm->pgd);
2273 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2274 WARN_ON_ONCE(rc < 0);
2275 }
2276
2277 static int is_pagetable_dying_supported(void)
2278 {
2279 struct xen_hvm_pagetable_dying a;
2280 int rc = 0;
2281
2282 a.domid = DOMID_SELF;
2283 a.gpa = 0x00;
2284 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2285 if (rc < 0) {
2286 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2287 return 0;
2288 }
2289 return 1;
2290 }
2291
2292 void __init xen_hvm_init_mmu_ops(void)
2293 {
2294 if (is_pagetable_dying_supported())
2295 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2296 }
2297 #endif
2298
2299 #define REMAP_BATCH_SIZE 16
2300
2301 struct remap_data {
2302 unsigned long mfn;
2303 pgprot_t prot;
2304 struct mmu_update *mmu_update;
2305 };
2306
2307 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2308 unsigned long addr, void *data)
2309 {
2310 struct remap_data *rmd = data;
2311 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2312
2313 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2314 rmd->mmu_update->val = pte_val_ma(pte);
2315 rmd->mmu_update++;
2316
2317 return 0;
2318 }
2319
2320 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2321 unsigned long addr,
2322 unsigned long mfn, int nr,
2323 pgprot_t prot, unsigned domid)
2324 {
2325 struct remap_data rmd;
2326 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2327 int batch;
2328 unsigned long range;
2329 int err = 0;
2330
2331 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2332
2333 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2334 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2335
2336 rmd.mfn = mfn;
2337 rmd.prot = prot;
2338
2339 while (nr) {
2340 batch = min(REMAP_BATCH_SIZE, nr);
2341 range = (unsigned long)batch << PAGE_SHIFT;
2342
2343 rmd.mmu_update = mmu_update;
2344 err = apply_to_page_range(vma->vm_mm, addr, range,
2345 remap_area_mfn_pte_fn, &rmd);
2346 if (err)
2347 goto out;
2348
2349 err = -EFAULT;
2350 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2351 goto out;
2352
2353 nr -= batch;
2354 addr += range;
2355 }
2356
2357 err = 0;
2358 out:
2359
2360 flush_tlb_all();
2361
2362 return err;
2363 }
2364 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);