]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/xen/mmu.c
[ARM] pxa: add e750 MFP config
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/paravirt.h>
51 #include <asm/linkage.h>
52
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55
56 #include <xen/page.h>
57 #include <xen/interface/xen.h>
58
59 #include "multicalls.h"
60 #include "mmu.h"
61 #include "debugfs.h"
62
63 #define MMU_UPDATE_HISTO 30
64
65 #ifdef CONFIG_XEN_DEBUG_FS
66
67 static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96 } mmu_stats;
97
98 static u8 zero_stats;
99
100 static inline void check_zero(void)
101 {
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106 }
107
108 #define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111 #else /* !CONFIG_XEN_DEBUG_FS */
112
113 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115 #endif /* CONFIG_XEN_DEBUG_FS */
116
117 /*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
124 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
125 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
126
127 /* Placeholder for holes in the address space */
128 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
132 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
134
135 /* Arrays of p2m arrays expressed in mfns used for save/restore */
136 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
137
138 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
140
141 static inline unsigned p2m_top_index(unsigned long pfn)
142 {
143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
144 return pfn / P2M_ENTRIES_PER_PAGE;
145 }
146
147 static inline unsigned p2m_index(unsigned long pfn)
148 {
149 return pfn % P2M_ENTRIES_PER_PAGE;
150 }
151
152 /* Build the parallel p2m_top_mfn structures */
153 void xen_setup_mfn_list_list(void)
154 {
155 unsigned pfn, idx;
156
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173 }
174
175 /* Set up p2m_top to point to the domain-builder provided p2m pages */
176 void __init xen_build_dynamic_phys_to_machine(void)
177 {
178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
180 unsigned pfn;
181
182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187 }
188
189 unsigned long get_phys_to_machine(unsigned long pfn)
190 {
191 unsigned topidx, idx;
192
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
196 topidx = p2m_top_index(pfn);
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199 }
200 EXPORT_SYMBOL_GPL(get_phys_to_machine);
201
202 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
203 {
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
214 free_page((unsigned long)p);
215 else
216 *mfnp = virt_to_mfn(p);
217 }
218
219 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220 {
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
234 if (p2m_top[topidx] == p2m_missing) {
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243 }
244
245 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
246 {
247 unsigned long address = (unsigned long)vaddr;
248 unsigned int level;
249 pte_t *pte;
250 unsigned offset;
251
252 /*
253 * if the PFN is in the linear mapped vaddr range, we can just use
254 * the (quick) virt_to_machine() p2m lookup
255 */
256 if (virt_addr_valid(vaddr))
257 return virt_to_machine(vaddr);
258
259 /* otherwise we have to do a (slower) full page-table walk */
260
261 pte = lookup_address(address, &level);
262 BUG_ON(pte == NULL);
263 offset = address & ~PAGE_MASK;
264 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
265 }
266
267 void make_lowmem_page_readonly(void *vaddr)
268 {
269 pte_t *pte, ptev;
270 unsigned long address = (unsigned long)vaddr;
271 unsigned int level;
272
273 pte = lookup_address(address, &level);
274 BUG_ON(pte == NULL);
275
276 ptev = pte_wrprotect(*pte);
277
278 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 BUG();
280 }
281
282 void make_lowmem_page_readwrite(void *vaddr)
283 {
284 pte_t *pte, ptev;
285 unsigned long address = (unsigned long)vaddr;
286 unsigned int level;
287
288 pte = lookup_address(address, &level);
289 BUG_ON(pte == NULL);
290
291 ptev = pte_mkwrite(*pte);
292
293 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 BUG();
295 }
296
297
298 static bool xen_page_pinned(void *ptr)
299 {
300 struct page *page = virt_to_page(ptr);
301
302 return PagePinned(page);
303 }
304
305 static void xen_extend_mmu_update(const struct mmu_update *update)
306 {
307 struct multicall_space mcs;
308 struct mmu_update *u;
309
310 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
311
312 if (mcs.mc != NULL) {
313 ADD_STATS(mmu_update_extended, 1);
314 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
315
316 mcs.mc->args[1]++;
317
318 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 else
321 ADD_STATS(mmu_update_histo[0], 1);
322 } else {
323 ADD_STATS(mmu_update, 1);
324 mcs = __xen_mc_entry(sizeof(*u));
325 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
326 ADD_STATS(mmu_update_histo[1], 1);
327 }
328
329 u = mcs.args;
330 *u = *update;
331 }
332
333 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
334 {
335 struct mmu_update u;
336
337 preempt_disable();
338
339 xen_mc_batch();
340
341 /* ptr may be ioremapped for 64-bit pagetable setup */
342 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
343 u.val = pmd_val_ma(val);
344 xen_extend_mmu_update(&u);
345
346 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
347
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349
350 preempt_enable();
351 }
352
353 void xen_set_pmd(pmd_t *ptr, pmd_t val)
354 {
355 ADD_STATS(pmd_update, 1);
356
357 /* If page is not pinned, we can just update the entry
358 directly */
359 if (!xen_page_pinned(ptr)) {
360 *ptr = val;
361 return;
362 }
363
364 ADD_STATS(pmd_update_pinned, 1);
365
366 xen_set_pmd_hyper(ptr, val);
367 }
368
369 /*
370 * Associate a virtual page frame with a given physical page frame
371 * and protection flags for that frame.
372 */
373 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
374 {
375 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
376 }
377
378 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 pte_t *ptep, pte_t pteval)
380 {
381 /* updates to init_mm may be done without lock */
382 if (mm == &init_mm)
383 preempt_disable();
384
385 ADD_STATS(set_pte_at, 1);
386 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 ADD_STATS(set_pte_at_current, mm == current->mm);
388 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
389
390 if (mm == current->mm || mm == &init_mm) {
391 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
392 struct multicall_space mcs;
393 mcs = xen_mc_entry(0);
394
395 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
396 ADD_STATS(set_pte_at_batched, 1);
397 xen_mc_issue(PARAVIRT_LAZY_MMU);
398 goto out;
399 } else
400 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
401 goto out;
402 }
403 xen_set_pte(ptep, pteval);
404
405 out:
406 if (mm == &init_mm)
407 preempt_enable();
408 }
409
410 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
411 {
412 /* Just return the pte as-is. We preserve the bits on commit */
413 return *ptep;
414 }
415
416 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
417 pte_t *ptep, pte_t pte)
418 {
419 struct mmu_update u;
420
421 xen_mc_batch();
422
423 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
424 u.val = pte_val_ma(pte);
425 xen_extend_mmu_update(&u);
426
427 ADD_STATS(prot_commit, 1);
428 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
429
430 xen_mc_issue(PARAVIRT_LAZY_MMU);
431 }
432
433 /* Assume pteval_t is equivalent to all the other *val_t types. */
434 static pteval_t pte_mfn_to_pfn(pteval_t val)
435 {
436 if (val & _PAGE_PRESENT) {
437 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
438 pteval_t flags = val & PTE_FLAGS_MASK;
439 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
440 }
441
442 return val;
443 }
444
445 static pteval_t pte_pfn_to_mfn(pteval_t val)
446 {
447 if (val & _PAGE_PRESENT) {
448 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
449 pteval_t flags = val & PTE_FLAGS_MASK;
450 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
451 }
452
453 return val;
454 }
455
456 pteval_t xen_pte_val(pte_t pte)
457 {
458 return pte_mfn_to_pfn(pte.pte);
459 }
460
461 pgdval_t xen_pgd_val(pgd_t pgd)
462 {
463 return pte_mfn_to_pfn(pgd.pgd);
464 }
465
466 pte_t xen_make_pte(pteval_t pte)
467 {
468 pte = pte_pfn_to_mfn(pte);
469 return native_make_pte(pte);
470 }
471
472 pgd_t xen_make_pgd(pgdval_t pgd)
473 {
474 pgd = pte_pfn_to_mfn(pgd);
475 return native_make_pgd(pgd);
476 }
477
478 pmdval_t xen_pmd_val(pmd_t pmd)
479 {
480 return pte_mfn_to_pfn(pmd.pmd);
481 }
482
483 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
484 {
485 struct mmu_update u;
486
487 preempt_disable();
488
489 xen_mc_batch();
490
491 /* ptr may be ioremapped for 64-bit pagetable setup */
492 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
493 u.val = pud_val_ma(val);
494 xen_extend_mmu_update(&u);
495
496 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
497
498 xen_mc_issue(PARAVIRT_LAZY_MMU);
499
500 preempt_enable();
501 }
502
503 void xen_set_pud(pud_t *ptr, pud_t val)
504 {
505 ADD_STATS(pud_update, 1);
506
507 /* If page is not pinned, we can just update the entry
508 directly */
509 if (!xen_page_pinned(ptr)) {
510 *ptr = val;
511 return;
512 }
513
514 ADD_STATS(pud_update_pinned, 1);
515
516 xen_set_pud_hyper(ptr, val);
517 }
518
519 void xen_set_pte(pte_t *ptep, pte_t pte)
520 {
521 ADD_STATS(pte_update, 1);
522 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
523 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
524
525 #ifdef CONFIG_X86_PAE
526 ptep->pte_high = pte.pte_high;
527 smp_wmb();
528 ptep->pte_low = pte.pte_low;
529 #else
530 *ptep = pte;
531 #endif
532 }
533
534 #ifdef CONFIG_X86_PAE
535 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
536 {
537 set_64bit((u64 *)ptep, native_pte_val(pte));
538 }
539
540 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
541 {
542 ptep->pte_low = 0;
543 smp_wmb(); /* make sure low gets written first */
544 ptep->pte_high = 0;
545 }
546
547 void xen_pmd_clear(pmd_t *pmdp)
548 {
549 set_pmd(pmdp, __pmd(0));
550 }
551 #endif /* CONFIG_X86_PAE */
552
553 pmd_t xen_make_pmd(pmdval_t pmd)
554 {
555 pmd = pte_pfn_to_mfn(pmd);
556 return native_make_pmd(pmd);
557 }
558
559 #if PAGETABLE_LEVELS == 4
560 pudval_t xen_pud_val(pud_t pud)
561 {
562 return pte_mfn_to_pfn(pud.pud);
563 }
564
565 pud_t xen_make_pud(pudval_t pud)
566 {
567 pud = pte_pfn_to_mfn(pud);
568
569 return native_make_pud(pud);
570 }
571
572 pgd_t *xen_get_user_pgd(pgd_t *pgd)
573 {
574 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
575 unsigned offset = pgd - pgd_page;
576 pgd_t *user_ptr = NULL;
577
578 if (offset < pgd_index(USER_LIMIT)) {
579 struct page *page = virt_to_page(pgd_page);
580 user_ptr = (pgd_t *)page->private;
581 if (user_ptr)
582 user_ptr += offset;
583 }
584
585 return user_ptr;
586 }
587
588 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
589 {
590 struct mmu_update u;
591
592 u.ptr = virt_to_machine(ptr).maddr;
593 u.val = pgd_val_ma(val);
594 xen_extend_mmu_update(&u);
595 }
596
597 /*
598 * Raw hypercall-based set_pgd, intended for in early boot before
599 * there's a page structure. This implies:
600 * 1. The only existing pagetable is the kernel's
601 * 2. It is always pinned
602 * 3. It has no user pagetable attached to it
603 */
604 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
605 {
606 preempt_disable();
607
608 xen_mc_batch();
609
610 __xen_set_pgd_hyper(ptr, val);
611
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
613
614 preempt_enable();
615 }
616
617 void xen_set_pgd(pgd_t *ptr, pgd_t val)
618 {
619 pgd_t *user_ptr = xen_get_user_pgd(ptr);
620
621 ADD_STATS(pgd_update, 1);
622
623 /* If page is not pinned, we can just update the entry
624 directly */
625 if (!xen_page_pinned(ptr)) {
626 *ptr = val;
627 if (user_ptr) {
628 WARN_ON(xen_page_pinned(user_ptr));
629 *user_ptr = val;
630 }
631 return;
632 }
633
634 ADD_STATS(pgd_update_pinned, 1);
635 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
636
637 /* If it's pinned, then we can at least batch the kernel and
638 user updates together. */
639 xen_mc_batch();
640
641 __xen_set_pgd_hyper(ptr, val);
642 if (user_ptr)
643 __xen_set_pgd_hyper(user_ptr, val);
644
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
646 }
647 #endif /* PAGETABLE_LEVELS == 4 */
648
649 /*
650 * (Yet another) pagetable walker. This one is intended for pinning a
651 * pagetable. This means that it walks a pagetable and calls the
652 * callback function on each page it finds making up the page table,
653 * at every level. It walks the entire pagetable, but it only bothers
654 * pinning pte pages which are below limit. In the normal case this
655 * will be STACK_TOP_MAX, but at boot we need to pin up to
656 * FIXADDR_TOP.
657 *
658 * For 32-bit the important bit is that we don't pin beyond there,
659 * because then we start getting into Xen's ptes.
660 *
661 * For 64-bit, we must skip the Xen hole in the middle of the address
662 * space, just after the big x86-64 virtual hole.
663 */
664 static int xen_pgd_walk(struct mm_struct *mm,
665 int (*func)(struct mm_struct *mm, struct page *,
666 enum pt_level),
667 unsigned long limit)
668 {
669 pgd_t *pgd = mm->pgd;
670 int flush = 0;
671 unsigned hole_low, hole_high;
672 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
673 unsigned pgdidx, pudidx, pmdidx;
674
675 /* The limit is the last byte to be touched */
676 limit--;
677 BUG_ON(limit >= FIXADDR_TOP);
678
679 if (xen_feature(XENFEAT_auto_translated_physmap))
680 return 0;
681
682 /*
683 * 64-bit has a great big hole in the middle of the address
684 * space, which contains the Xen mappings. On 32-bit these
685 * will end up making a zero-sized hole and so is a no-op.
686 */
687 hole_low = pgd_index(USER_LIMIT);
688 hole_high = pgd_index(PAGE_OFFSET);
689
690 pgdidx_limit = pgd_index(limit);
691 #if PTRS_PER_PUD > 1
692 pudidx_limit = pud_index(limit);
693 #else
694 pudidx_limit = 0;
695 #endif
696 #if PTRS_PER_PMD > 1
697 pmdidx_limit = pmd_index(limit);
698 #else
699 pmdidx_limit = 0;
700 #endif
701
702 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
703 pud_t *pud;
704
705 if (pgdidx >= hole_low && pgdidx < hole_high)
706 continue;
707
708 if (!pgd_val(pgd[pgdidx]))
709 continue;
710
711 pud = pud_offset(&pgd[pgdidx], 0);
712
713 if (PTRS_PER_PUD > 1) /* not folded */
714 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
715
716 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
717 pmd_t *pmd;
718
719 if (pgdidx == pgdidx_limit &&
720 pudidx > pudidx_limit)
721 goto out;
722
723 if (pud_none(pud[pudidx]))
724 continue;
725
726 pmd = pmd_offset(&pud[pudidx], 0);
727
728 if (PTRS_PER_PMD > 1) /* not folded */
729 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
730
731 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
732 struct page *pte;
733
734 if (pgdidx == pgdidx_limit &&
735 pudidx == pudidx_limit &&
736 pmdidx > pmdidx_limit)
737 goto out;
738
739 if (pmd_none(pmd[pmdidx]))
740 continue;
741
742 pte = pmd_page(pmd[pmdidx]);
743 flush |= (*func)(mm, pte, PT_PTE);
744 }
745 }
746 }
747
748 out:
749 /* Do the top level last, so that the callbacks can use it as
750 a cue to do final things like tlb flushes. */
751 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
752
753 return flush;
754 }
755
756 /* If we're using split pte locks, then take the page's lock and
757 return a pointer to it. Otherwise return NULL. */
758 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
759 {
760 spinlock_t *ptl = NULL;
761
762 #if USE_SPLIT_PTLOCKS
763 ptl = __pte_lockptr(page);
764 spin_lock_nest_lock(ptl, &mm->page_table_lock);
765 #endif
766
767 return ptl;
768 }
769
770 static void xen_pte_unlock(void *v)
771 {
772 spinlock_t *ptl = v;
773 spin_unlock(ptl);
774 }
775
776 static void xen_do_pin(unsigned level, unsigned long pfn)
777 {
778 struct mmuext_op *op;
779 struct multicall_space mcs;
780
781 mcs = __xen_mc_entry(sizeof(*op));
782 op = mcs.args;
783 op->cmd = level;
784 op->arg1.mfn = pfn_to_mfn(pfn);
785 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
786 }
787
788 static int xen_pin_page(struct mm_struct *mm, struct page *page,
789 enum pt_level level)
790 {
791 unsigned pgfl = TestSetPagePinned(page);
792 int flush;
793
794 if (pgfl)
795 flush = 0; /* already pinned */
796 else if (PageHighMem(page))
797 /* kmaps need flushing if we found an unpinned
798 highpage */
799 flush = 1;
800 else {
801 void *pt = lowmem_page_address(page);
802 unsigned long pfn = page_to_pfn(page);
803 struct multicall_space mcs = __xen_mc_entry(0);
804 spinlock_t *ptl;
805
806 flush = 0;
807
808 /*
809 * We need to hold the pagetable lock between the time
810 * we make the pagetable RO and when we actually pin
811 * it. If we don't, then other users may come in and
812 * attempt to update the pagetable by writing it,
813 * which will fail because the memory is RO but not
814 * pinned, so Xen won't do the trap'n'emulate.
815 *
816 * If we're using split pte locks, we can't hold the
817 * entire pagetable's worth of locks during the
818 * traverse, because we may wrap the preempt count (8
819 * bits). The solution is to mark RO and pin each PTE
820 * page while holding the lock. This means the number
821 * of locks we end up holding is never more than a
822 * batch size (~32 entries, at present).
823 *
824 * If we're not using split pte locks, we needn't pin
825 * the PTE pages independently, because we're
826 * protected by the overall pagetable lock.
827 */
828 ptl = NULL;
829 if (level == PT_PTE)
830 ptl = xen_pte_lock(page, mm);
831
832 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
833 pfn_pte(pfn, PAGE_KERNEL_RO),
834 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
835
836 if (ptl) {
837 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
838
839 /* Queue a deferred unlock for when this batch
840 is completed. */
841 xen_mc_callback(xen_pte_unlock, ptl);
842 }
843 }
844
845 return flush;
846 }
847
848 /* This is called just after a mm has been created, but it has not
849 been used yet. We need to make sure that its pagetable is all
850 read-only, and can be pinned. */
851 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
852 {
853 vm_unmap_aliases();
854
855 xen_mc_batch();
856
857 if (xen_pgd_walk(mm, xen_pin_page, USER_LIMIT)) {
858 /* re-enable interrupts for flushing */
859 xen_mc_issue(0);
860
861 kmap_flush_unused();
862
863 xen_mc_batch();
864 }
865
866 #ifdef CONFIG_X86_64
867 {
868 pgd_t *user_pgd = xen_get_user_pgd(pgd);
869
870 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
871
872 if (user_pgd) {
873 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
874 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
875 }
876 }
877 #else /* CONFIG_X86_32 */
878 #ifdef CONFIG_X86_PAE
879 /* Need to make sure unshared kernel PMD is pinnable */
880 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
881 PT_PMD);
882 #endif
883 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
884 #endif /* CONFIG_X86_64 */
885 xen_mc_issue(0);
886 }
887
888 static void xen_pgd_pin(struct mm_struct *mm)
889 {
890 __xen_pgd_pin(mm, mm->pgd);
891 }
892
893 /*
894 * On save, we need to pin all pagetables to make sure they get their
895 * mfns turned into pfns. Search the list for any unpinned pgds and pin
896 * them (unpinned pgds are not currently in use, probably because the
897 * process is under construction or destruction).
898 *
899 * Expected to be called in stop_machine() ("equivalent to taking
900 * every spinlock in the system"), so the locking doesn't really
901 * matter all that much.
902 */
903 void xen_mm_pin_all(void)
904 {
905 unsigned long flags;
906 struct page *page;
907
908 spin_lock_irqsave(&pgd_lock, flags);
909
910 list_for_each_entry(page, &pgd_list, lru) {
911 if (!PagePinned(page)) {
912 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
913 SetPageSavePinned(page);
914 }
915 }
916
917 spin_unlock_irqrestore(&pgd_lock, flags);
918 }
919
920 /*
921 * The init_mm pagetable is really pinned as soon as its created, but
922 * that's before we have page structures to store the bits. So do all
923 * the book-keeping now.
924 */
925 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
926 enum pt_level level)
927 {
928 SetPagePinned(page);
929 return 0;
930 }
931
932 void __init xen_mark_init_mm_pinned(void)
933 {
934 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
935 }
936
937 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
938 enum pt_level level)
939 {
940 unsigned pgfl = TestClearPagePinned(page);
941
942 if (pgfl && !PageHighMem(page)) {
943 void *pt = lowmem_page_address(page);
944 unsigned long pfn = page_to_pfn(page);
945 spinlock_t *ptl = NULL;
946 struct multicall_space mcs;
947
948 /*
949 * Do the converse to pin_page. If we're using split
950 * pte locks, we must be holding the lock for while
951 * the pte page is unpinned but still RO to prevent
952 * concurrent updates from seeing it in this
953 * partially-pinned state.
954 */
955 if (level == PT_PTE) {
956 ptl = xen_pte_lock(page, mm);
957
958 if (ptl)
959 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
960 }
961
962 mcs = __xen_mc_entry(0);
963
964 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
965 pfn_pte(pfn, PAGE_KERNEL),
966 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
967
968 if (ptl) {
969 /* unlock when batch completed */
970 xen_mc_callback(xen_pte_unlock, ptl);
971 }
972 }
973
974 return 0; /* never need to flush on unpin */
975 }
976
977 /* Release a pagetables pages back as normal RW */
978 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
979 {
980 xen_mc_batch();
981
982 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
983
984 #ifdef CONFIG_X86_64
985 {
986 pgd_t *user_pgd = xen_get_user_pgd(pgd);
987
988 if (user_pgd) {
989 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
990 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
991 }
992 }
993 #endif
994
995 #ifdef CONFIG_X86_PAE
996 /* Need to make sure unshared kernel PMD is unpinned */
997 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
998 PT_PMD);
999 #endif
1000
1001 xen_pgd_walk(mm, xen_unpin_page, USER_LIMIT);
1002
1003 xen_mc_issue(0);
1004 }
1005
1006 static void xen_pgd_unpin(struct mm_struct *mm)
1007 {
1008 __xen_pgd_unpin(mm, mm->pgd);
1009 }
1010
1011 /*
1012 * On resume, undo any pinning done at save, so that the rest of the
1013 * kernel doesn't see any unexpected pinned pagetables.
1014 */
1015 void xen_mm_unpin_all(void)
1016 {
1017 unsigned long flags;
1018 struct page *page;
1019
1020 spin_lock_irqsave(&pgd_lock, flags);
1021
1022 list_for_each_entry(page, &pgd_list, lru) {
1023 if (PageSavePinned(page)) {
1024 BUG_ON(!PagePinned(page));
1025 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1026 ClearPageSavePinned(page);
1027 }
1028 }
1029
1030 spin_unlock_irqrestore(&pgd_lock, flags);
1031 }
1032
1033 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1034 {
1035 spin_lock(&next->page_table_lock);
1036 xen_pgd_pin(next);
1037 spin_unlock(&next->page_table_lock);
1038 }
1039
1040 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1041 {
1042 spin_lock(&mm->page_table_lock);
1043 xen_pgd_pin(mm);
1044 spin_unlock(&mm->page_table_lock);
1045 }
1046
1047
1048 #ifdef CONFIG_SMP
1049 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1050 we need to repoint it somewhere else before we can unpin it. */
1051 static void drop_other_mm_ref(void *info)
1052 {
1053 struct mm_struct *mm = info;
1054 struct mm_struct *active_mm;
1055
1056 #ifdef CONFIG_X86_64
1057 active_mm = read_pda(active_mm);
1058 #else
1059 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1060 #endif
1061
1062 if (active_mm == mm)
1063 leave_mm(smp_processor_id());
1064
1065 /* If this cpu still has a stale cr3 reference, then make sure
1066 it has been flushed. */
1067 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1068 load_cr3(swapper_pg_dir);
1069 arch_flush_lazy_cpu_mode();
1070 }
1071 }
1072
1073 static void xen_drop_mm_ref(struct mm_struct *mm)
1074 {
1075 cpumask_t mask;
1076 unsigned cpu;
1077
1078 if (current->active_mm == mm) {
1079 if (current->mm == mm)
1080 load_cr3(swapper_pg_dir);
1081 else
1082 leave_mm(smp_processor_id());
1083 arch_flush_lazy_cpu_mode();
1084 }
1085
1086 /* Get the "official" set of cpus referring to our pagetable. */
1087 mask = mm->cpu_vm_mask;
1088
1089 /* It's possible that a vcpu may have a stale reference to our
1090 cr3, because its in lazy mode, and it hasn't yet flushed
1091 its set of pending hypercalls yet. In this case, we can
1092 look at its actual current cr3 value, and force it to flush
1093 if needed. */
1094 for_each_online_cpu(cpu) {
1095 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1096 cpu_set(cpu, mask);
1097 }
1098
1099 if (!cpus_empty(mask))
1100 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
1101 }
1102 #else
1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1104 {
1105 if (current->active_mm == mm)
1106 load_cr3(swapper_pg_dir);
1107 }
1108 #endif
1109
1110 /*
1111 * While a process runs, Xen pins its pagetables, which means that the
1112 * hypervisor forces it to be read-only, and it controls all updates
1113 * to it. This means that all pagetable updates have to go via the
1114 * hypervisor, which is moderately expensive.
1115 *
1116 * Since we're pulling the pagetable down, we switch to use init_mm,
1117 * unpin old process pagetable and mark it all read-write, which
1118 * allows further operations on it to be simple memory accesses.
1119 *
1120 * The only subtle point is that another CPU may be still using the
1121 * pagetable because of lazy tlb flushing. This means we need need to
1122 * switch all CPUs off this pagetable before we can unpin it.
1123 */
1124 void xen_exit_mmap(struct mm_struct *mm)
1125 {
1126 get_cpu(); /* make sure we don't move around */
1127 xen_drop_mm_ref(mm);
1128 put_cpu();
1129
1130 spin_lock(&mm->page_table_lock);
1131
1132 /* pgd may not be pinned in the error exit path of execve */
1133 if (xen_page_pinned(mm->pgd))
1134 xen_pgd_unpin(mm);
1135
1136 spin_unlock(&mm->page_table_lock);
1137 }
1138
1139 #ifdef CONFIG_XEN_DEBUG_FS
1140
1141 static struct dentry *d_mmu_debug;
1142
1143 static int __init xen_mmu_debugfs(void)
1144 {
1145 struct dentry *d_xen = xen_init_debugfs();
1146
1147 if (d_xen == NULL)
1148 return -ENOMEM;
1149
1150 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1151
1152 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1153
1154 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1155 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1156 &mmu_stats.pgd_update_pinned);
1157 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1158 &mmu_stats.pgd_update_pinned);
1159
1160 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1161 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1162 &mmu_stats.pud_update_pinned);
1163 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1164 &mmu_stats.pud_update_pinned);
1165
1166 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1167 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1168 &mmu_stats.pmd_update_pinned);
1169 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1170 &mmu_stats.pmd_update_pinned);
1171
1172 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1173 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1174 // &mmu_stats.pte_update_pinned);
1175 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1176 &mmu_stats.pte_update_pinned);
1177
1178 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1179 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1180 &mmu_stats.mmu_update_extended);
1181 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1182 mmu_stats.mmu_update_histo, 20);
1183
1184 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1185 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1186 &mmu_stats.set_pte_at_batched);
1187 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1188 &mmu_stats.set_pte_at_current);
1189 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1190 &mmu_stats.set_pte_at_kernel);
1191
1192 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1193 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1194 &mmu_stats.prot_commit_batched);
1195
1196 return 0;
1197 }
1198 fs_initcall(xen_mmu_debugfs);
1199
1200 #endif /* CONFIG_XEN_DEBUG_FS */