]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/xen/mmu.c
xen: whitespace/checkpatch cleanup
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/paravirt.h>
51 #include <asm/linkage.h>
52
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55
56 #include <xen/page.h>
57 #include <xen/interface/xen.h>
58
59 #include "multicalls.h"
60 #include "mmu.h"
61 #include "debugfs.h"
62
63 #define MMU_UPDATE_HISTO 30
64
65 #ifdef CONFIG_XEN_DEBUG_FS
66
67 static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96 } mmu_stats;
97
98 static u8 zero_stats;
99
100 static inline void check_zero(void)
101 {
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106 }
107
108 #define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111 #else /* !CONFIG_XEN_DEBUG_FS */
112
113 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115 #endif /* CONFIG_XEN_DEBUG_FS */
116
117 /*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
124 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
125 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
126
127 /* Placeholder for holes in the address space */
128 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
132 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
134
135 /* Arrays of p2m arrays expressed in mfns used for save/restore */
136 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
137
138 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
140
141 static inline unsigned p2m_top_index(unsigned long pfn)
142 {
143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
144 return pfn / P2M_ENTRIES_PER_PAGE;
145 }
146
147 static inline unsigned p2m_index(unsigned long pfn)
148 {
149 return pfn % P2M_ENTRIES_PER_PAGE;
150 }
151
152 /* Build the parallel p2m_top_mfn structures */
153 void xen_setup_mfn_list_list(void)
154 {
155 unsigned pfn, idx;
156
157 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173 }
174
175 /* Set up p2m_top to point to the domain-builder provided p2m pages */
176 void __init xen_build_dynamic_phys_to_machine(void)
177 {
178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
180 unsigned pfn;
181
182 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187 }
188
189 unsigned long get_phys_to_machine(unsigned long pfn)
190 {
191 unsigned topidx, idx;
192
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
196 topidx = p2m_top_index(pfn);
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199 }
200 EXPORT_SYMBOL_GPL(get_phys_to_machine);
201
202 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
203 {
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
214 free_page((unsigned long)p);
215 else
216 *mfnp = virt_to_mfn(p);
217 }
218
219 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220 {
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
234 if (p2m_top[topidx] == p2m_missing) {
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243 }
244
245 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
246 {
247 unsigned long address = (unsigned long)vaddr;
248 unsigned int level;
249 pte_t *pte;
250 unsigned offset;
251
252 /*
253 * if the PFN is in the linear mapped vaddr range, we can just use
254 * the (quick) virt_to_machine() p2m lookup
255 */
256 if (virt_addr_valid(vaddr))
257 return virt_to_machine(vaddr);
258
259 /* otherwise we have to do a (slower) full page-table walk */
260
261 pte = lookup_address(address, &level);
262 BUG_ON(pte == NULL);
263 offset = address & ~PAGE_MASK;
264 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
265 }
266
267 void make_lowmem_page_readonly(void *vaddr)
268 {
269 pte_t *pte, ptev;
270 unsigned long address = (unsigned long)vaddr;
271 unsigned int level;
272
273 pte = lookup_address(address, &level);
274 BUG_ON(pte == NULL);
275
276 ptev = pte_wrprotect(*pte);
277
278 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 BUG();
280 }
281
282 void make_lowmem_page_readwrite(void *vaddr)
283 {
284 pte_t *pte, ptev;
285 unsigned long address = (unsigned long)vaddr;
286 unsigned int level;
287
288 pte = lookup_address(address, &level);
289 BUG_ON(pte == NULL);
290
291 ptev = pte_mkwrite(*pte);
292
293 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 BUG();
295 }
296
297
298 static bool xen_page_pinned(void *ptr)
299 {
300 struct page *page = virt_to_page(ptr);
301
302 return PagePinned(page);
303 }
304
305 static void xen_extend_mmu_update(const struct mmu_update *update)
306 {
307 struct multicall_space mcs;
308 struct mmu_update *u;
309
310 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
311
312 if (mcs.mc != NULL) {
313 ADD_STATS(mmu_update_extended, 1);
314 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
315
316 mcs.mc->args[1]++;
317
318 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 else
321 ADD_STATS(mmu_update_histo[0], 1);
322 } else {
323 ADD_STATS(mmu_update, 1);
324 mcs = __xen_mc_entry(sizeof(*u));
325 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
326 ADD_STATS(mmu_update_histo[1], 1);
327 }
328
329 u = mcs.args;
330 *u = *update;
331 }
332
333 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
334 {
335 struct mmu_update u;
336
337 preempt_disable();
338
339 xen_mc_batch();
340
341 /* ptr may be ioremapped for 64-bit pagetable setup */
342 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
343 u.val = pmd_val_ma(val);
344 xen_extend_mmu_update(&u);
345
346 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
347
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349
350 preempt_enable();
351 }
352
353 void xen_set_pmd(pmd_t *ptr, pmd_t val)
354 {
355 ADD_STATS(pmd_update, 1);
356
357 /* If page is not pinned, we can just update the entry
358 directly */
359 if (!xen_page_pinned(ptr)) {
360 *ptr = val;
361 return;
362 }
363
364 ADD_STATS(pmd_update_pinned, 1);
365
366 xen_set_pmd_hyper(ptr, val);
367 }
368
369 /*
370 * Associate a virtual page frame with a given physical page frame
371 * and protection flags for that frame.
372 */
373 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
374 {
375 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
376 }
377
378 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 pte_t *ptep, pte_t pteval)
380 {
381 /* updates to init_mm may be done without lock */
382 if (mm == &init_mm)
383 preempt_disable();
384
385 ADD_STATS(set_pte_at, 1);
386 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 ADD_STATS(set_pte_at_current, mm == current->mm);
388 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
389
390 if (mm == current->mm || mm == &init_mm) {
391 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
392 struct multicall_space mcs;
393 mcs = xen_mc_entry(0);
394
395 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
396 ADD_STATS(set_pte_at_batched, 1);
397 xen_mc_issue(PARAVIRT_LAZY_MMU);
398 goto out;
399 } else
400 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
401 goto out;
402 }
403 xen_set_pte(ptep, pteval);
404
405 out:
406 if (mm == &init_mm)
407 preempt_enable();
408 }
409
410 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
411 unsigned long addr, pte_t *ptep)
412 {
413 /* Just return the pte as-is. We preserve the bits on commit */
414 return *ptep;
415 }
416
417 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
418 pte_t *ptep, pte_t pte)
419 {
420 struct mmu_update u;
421
422 xen_mc_batch();
423
424 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
425 u.val = pte_val_ma(pte);
426 xen_extend_mmu_update(&u);
427
428 ADD_STATS(prot_commit, 1);
429 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
430
431 xen_mc_issue(PARAVIRT_LAZY_MMU);
432 }
433
434 /* Assume pteval_t is equivalent to all the other *val_t types. */
435 static pteval_t pte_mfn_to_pfn(pteval_t val)
436 {
437 if (val & _PAGE_PRESENT) {
438 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
439 pteval_t flags = val & PTE_FLAGS_MASK;
440 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
441 }
442
443 return val;
444 }
445
446 static pteval_t pte_pfn_to_mfn(pteval_t val)
447 {
448 if (val & _PAGE_PRESENT) {
449 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
450 pteval_t flags = val & PTE_FLAGS_MASK;
451 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
452 }
453
454 return val;
455 }
456
457 pteval_t xen_pte_val(pte_t pte)
458 {
459 return pte_mfn_to_pfn(pte.pte);
460 }
461
462 pgdval_t xen_pgd_val(pgd_t pgd)
463 {
464 return pte_mfn_to_pfn(pgd.pgd);
465 }
466
467 pte_t xen_make_pte(pteval_t pte)
468 {
469 pte = pte_pfn_to_mfn(pte);
470 return native_make_pte(pte);
471 }
472
473 pgd_t xen_make_pgd(pgdval_t pgd)
474 {
475 pgd = pte_pfn_to_mfn(pgd);
476 return native_make_pgd(pgd);
477 }
478
479 pmdval_t xen_pmd_val(pmd_t pmd)
480 {
481 return pte_mfn_to_pfn(pmd.pmd);
482 }
483
484 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
485 {
486 struct mmu_update u;
487
488 preempt_disable();
489
490 xen_mc_batch();
491
492 /* ptr may be ioremapped for 64-bit pagetable setup */
493 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
494 u.val = pud_val_ma(val);
495 xen_extend_mmu_update(&u);
496
497 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
498
499 xen_mc_issue(PARAVIRT_LAZY_MMU);
500
501 preempt_enable();
502 }
503
504 void xen_set_pud(pud_t *ptr, pud_t val)
505 {
506 ADD_STATS(pud_update, 1);
507
508 /* If page is not pinned, we can just update the entry
509 directly */
510 if (!xen_page_pinned(ptr)) {
511 *ptr = val;
512 return;
513 }
514
515 ADD_STATS(pud_update_pinned, 1);
516
517 xen_set_pud_hyper(ptr, val);
518 }
519
520 void xen_set_pte(pte_t *ptep, pte_t pte)
521 {
522 ADD_STATS(pte_update, 1);
523 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
524 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
525
526 #ifdef CONFIG_X86_PAE
527 ptep->pte_high = pte.pte_high;
528 smp_wmb();
529 ptep->pte_low = pte.pte_low;
530 #else
531 *ptep = pte;
532 #endif
533 }
534
535 #ifdef CONFIG_X86_PAE
536 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
537 {
538 set_64bit((u64 *)ptep, native_pte_val(pte));
539 }
540
541 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
542 {
543 ptep->pte_low = 0;
544 smp_wmb(); /* make sure low gets written first */
545 ptep->pte_high = 0;
546 }
547
548 void xen_pmd_clear(pmd_t *pmdp)
549 {
550 set_pmd(pmdp, __pmd(0));
551 }
552 #endif /* CONFIG_X86_PAE */
553
554 pmd_t xen_make_pmd(pmdval_t pmd)
555 {
556 pmd = pte_pfn_to_mfn(pmd);
557 return native_make_pmd(pmd);
558 }
559
560 #if PAGETABLE_LEVELS == 4
561 pudval_t xen_pud_val(pud_t pud)
562 {
563 return pte_mfn_to_pfn(pud.pud);
564 }
565
566 pud_t xen_make_pud(pudval_t pud)
567 {
568 pud = pte_pfn_to_mfn(pud);
569
570 return native_make_pud(pud);
571 }
572
573 pgd_t *xen_get_user_pgd(pgd_t *pgd)
574 {
575 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
576 unsigned offset = pgd - pgd_page;
577 pgd_t *user_ptr = NULL;
578
579 if (offset < pgd_index(USER_LIMIT)) {
580 struct page *page = virt_to_page(pgd_page);
581 user_ptr = (pgd_t *)page->private;
582 if (user_ptr)
583 user_ptr += offset;
584 }
585
586 return user_ptr;
587 }
588
589 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
590 {
591 struct mmu_update u;
592
593 u.ptr = virt_to_machine(ptr).maddr;
594 u.val = pgd_val_ma(val);
595 xen_extend_mmu_update(&u);
596 }
597
598 /*
599 * Raw hypercall-based set_pgd, intended for in early boot before
600 * there's a page structure. This implies:
601 * 1. The only existing pagetable is the kernel's
602 * 2. It is always pinned
603 * 3. It has no user pagetable attached to it
604 */
605 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
606 {
607 preempt_disable();
608
609 xen_mc_batch();
610
611 __xen_set_pgd_hyper(ptr, val);
612
613 xen_mc_issue(PARAVIRT_LAZY_MMU);
614
615 preempt_enable();
616 }
617
618 void xen_set_pgd(pgd_t *ptr, pgd_t val)
619 {
620 pgd_t *user_ptr = xen_get_user_pgd(ptr);
621
622 ADD_STATS(pgd_update, 1);
623
624 /* If page is not pinned, we can just update the entry
625 directly */
626 if (!xen_page_pinned(ptr)) {
627 *ptr = val;
628 if (user_ptr) {
629 WARN_ON(xen_page_pinned(user_ptr));
630 *user_ptr = val;
631 }
632 return;
633 }
634
635 ADD_STATS(pgd_update_pinned, 1);
636 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
637
638 /* If it's pinned, then we can at least batch the kernel and
639 user updates together. */
640 xen_mc_batch();
641
642 __xen_set_pgd_hyper(ptr, val);
643 if (user_ptr)
644 __xen_set_pgd_hyper(user_ptr, val);
645
646 xen_mc_issue(PARAVIRT_LAZY_MMU);
647 }
648 #endif /* PAGETABLE_LEVELS == 4 */
649
650 /*
651 * (Yet another) pagetable walker. This one is intended for pinning a
652 * pagetable. This means that it walks a pagetable and calls the
653 * callback function on each page it finds making up the page table,
654 * at every level. It walks the entire pagetable, but it only bothers
655 * pinning pte pages which are below limit. In the normal case this
656 * will be STACK_TOP_MAX, but at boot we need to pin up to
657 * FIXADDR_TOP.
658 *
659 * For 32-bit the important bit is that we don't pin beyond there,
660 * because then we start getting into Xen's ptes.
661 *
662 * For 64-bit, we must skip the Xen hole in the middle of the address
663 * space, just after the big x86-64 virtual hole.
664 */
665 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
666 int (*func)(struct mm_struct *mm, struct page *,
667 enum pt_level),
668 unsigned long limit)
669 {
670 int flush = 0;
671 unsigned hole_low, hole_high;
672 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
673 unsigned pgdidx, pudidx, pmdidx;
674
675 /* The limit is the last byte to be touched */
676 limit--;
677 BUG_ON(limit >= FIXADDR_TOP);
678
679 if (xen_feature(XENFEAT_auto_translated_physmap))
680 return 0;
681
682 /*
683 * 64-bit has a great big hole in the middle of the address
684 * space, which contains the Xen mappings. On 32-bit these
685 * will end up making a zero-sized hole and so is a no-op.
686 */
687 hole_low = pgd_index(USER_LIMIT);
688 hole_high = pgd_index(PAGE_OFFSET);
689
690 pgdidx_limit = pgd_index(limit);
691 #if PTRS_PER_PUD > 1
692 pudidx_limit = pud_index(limit);
693 #else
694 pudidx_limit = 0;
695 #endif
696 #if PTRS_PER_PMD > 1
697 pmdidx_limit = pmd_index(limit);
698 #else
699 pmdidx_limit = 0;
700 #endif
701
702 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
703 pud_t *pud;
704
705 if (pgdidx >= hole_low && pgdidx < hole_high)
706 continue;
707
708 if (!pgd_val(pgd[pgdidx]))
709 continue;
710
711 pud = pud_offset(&pgd[pgdidx], 0);
712
713 if (PTRS_PER_PUD > 1) /* not folded */
714 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
715
716 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
717 pmd_t *pmd;
718
719 if (pgdidx == pgdidx_limit &&
720 pudidx > pudidx_limit)
721 goto out;
722
723 if (pud_none(pud[pudidx]))
724 continue;
725
726 pmd = pmd_offset(&pud[pudidx], 0);
727
728 if (PTRS_PER_PMD > 1) /* not folded */
729 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
730
731 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
732 struct page *pte;
733
734 if (pgdidx == pgdidx_limit &&
735 pudidx == pudidx_limit &&
736 pmdidx > pmdidx_limit)
737 goto out;
738
739 if (pmd_none(pmd[pmdidx]))
740 continue;
741
742 pte = pmd_page(pmd[pmdidx]);
743 flush |= (*func)(mm, pte, PT_PTE);
744 }
745 }
746 }
747
748 out:
749 /* Do the top level last, so that the callbacks can use it as
750 a cue to do final things like tlb flushes. */
751 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
752
753 return flush;
754 }
755
756 static int xen_pgd_walk(struct mm_struct *mm,
757 int (*func)(struct mm_struct *mm, struct page *,
758 enum pt_level),
759 unsigned long limit)
760 {
761 return __xen_pgd_walk(mm, mm->pgd, func, limit);
762 }
763
764 /* If we're using split pte locks, then take the page's lock and
765 return a pointer to it. Otherwise return NULL. */
766 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
767 {
768 spinlock_t *ptl = NULL;
769
770 #if USE_SPLIT_PTLOCKS
771 ptl = __pte_lockptr(page);
772 spin_lock_nest_lock(ptl, &mm->page_table_lock);
773 #endif
774
775 return ptl;
776 }
777
778 static void xen_pte_unlock(void *v)
779 {
780 spinlock_t *ptl = v;
781 spin_unlock(ptl);
782 }
783
784 static void xen_do_pin(unsigned level, unsigned long pfn)
785 {
786 struct mmuext_op *op;
787 struct multicall_space mcs;
788
789 mcs = __xen_mc_entry(sizeof(*op));
790 op = mcs.args;
791 op->cmd = level;
792 op->arg1.mfn = pfn_to_mfn(pfn);
793 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
794 }
795
796 static int xen_pin_page(struct mm_struct *mm, struct page *page,
797 enum pt_level level)
798 {
799 unsigned pgfl = TestSetPagePinned(page);
800 int flush;
801
802 if (pgfl)
803 flush = 0; /* already pinned */
804 else if (PageHighMem(page))
805 /* kmaps need flushing if we found an unpinned
806 highpage */
807 flush = 1;
808 else {
809 void *pt = lowmem_page_address(page);
810 unsigned long pfn = page_to_pfn(page);
811 struct multicall_space mcs = __xen_mc_entry(0);
812 spinlock_t *ptl;
813
814 flush = 0;
815
816 /*
817 * We need to hold the pagetable lock between the time
818 * we make the pagetable RO and when we actually pin
819 * it. If we don't, then other users may come in and
820 * attempt to update the pagetable by writing it,
821 * which will fail because the memory is RO but not
822 * pinned, so Xen won't do the trap'n'emulate.
823 *
824 * If we're using split pte locks, we can't hold the
825 * entire pagetable's worth of locks during the
826 * traverse, because we may wrap the preempt count (8
827 * bits). The solution is to mark RO and pin each PTE
828 * page while holding the lock. This means the number
829 * of locks we end up holding is never more than a
830 * batch size (~32 entries, at present).
831 *
832 * If we're not using split pte locks, we needn't pin
833 * the PTE pages independently, because we're
834 * protected by the overall pagetable lock.
835 */
836 ptl = NULL;
837 if (level == PT_PTE)
838 ptl = xen_pte_lock(page, mm);
839
840 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
841 pfn_pte(pfn, PAGE_KERNEL_RO),
842 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
843
844 if (ptl) {
845 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
846
847 /* Queue a deferred unlock for when this batch
848 is completed. */
849 xen_mc_callback(xen_pte_unlock, ptl);
850 }
851 }
852
853 return flush;
854 }
855
856 /* This is called just after a mm has been created, but it has not
857 been used yet. We need to make sure that its pagetable is all
858 read-only, and can be pinned. */
859 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
860 {
861 vm_unmap_aliases();
862
863 xen_mc_batch();
864
865 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
866 /* re-enable interrupts for flushing */
867 xen_mc_issue(0);
868
869 kmap_flush_unused();
870
871 xen_mc_batch();
872 }
873
874 #ifdef CONFIG_X86_64
875 {
876 pgd_t *user_pgd = xen_get_user_pgd(pgd);
877
878 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
879
880 if (user_pgd) {
881 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
882 xen_do_pin(MMUEXT_PIN_L4_TABLE,
883 PFN_DOWN(__pa(user_pgd)));
884 }
885 }
886 #else /* CONFIG_X86_32 */
887 #ifdef CONFIG_X86_PAE
888 /* Need to make sure unshared kernel PMD is pinnable */
889 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
890 PT_PMD);
891 #endif
892 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
893 #endif /* CONFIG_X86_64 */
894 xen_mc_issue(0);
895 }
896
897 static void xen_pgd_pin(struct mm_struct *mm)
898 {
899 __xen_pgd_pin(mm, mm->pgd);
900 }
901
902 /*
903 * On save, we need to pin all pagetables to make sure they get their
904 * mfns turned into pfns. Search the list for any unpinned pgds and pin
905 * them (unpinned pgds are not currently in use, probably because the
906 * process is under construction or destruction).
907 *
908 * Expected to be called in stop_machine() ("equivalent to taking
909 * every spinlock in the system"), so the locking doesn't really
910 * matter all that much.
911 */
912 void xen_mm_pin_all(void)
913 {
914 unsigned long flags;
915 struct page *page;
916
917 spin_lock_irqsave(&pgd_lock, flags);
918
919 list_for_each_entry(page, &pgd_list, lru) {
920 if (!PagePinned(page)) {
921 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
922 SetPageSavePinned(page);
923 }
924 }
925
926 spin_unlock_irqrestore(&pgd_lock, flags);
927 }
928
929 /*
930 * The init_mm pagetable is really pinned as soon as its created, but
931 * that's before we have page structures to store the bits. So do all
932 * the book-keeping now.
933 */
934 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
935 enum pt_level level)
936 {
937 SetPagePinned(page);
938 return 0;
939 }
940
941 void __init xen_mark_init_mm_pinned(void)
942 {
943 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
944 }
945
946 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
947 enum pt_level level)
948 {
949 unsigned pgfl = TestClearPagePinned(page);
950
951 if (pgfl && !PageHighMem(page)) {
952 void *pt = lowmem_page_address(page);
953 unsigned long pfn = page_to_pfn(page);
954 spinlock_t *ptl = NULL;
955 struct multicall_space mcs;
956
957 /*
958 * Do the converse to pin_page. If we're using split
959 * pte locks, we must be holding the lock for while
960 * the pte page is unpinned but still RO to prevent
961 * concurrent updates from seeing it in this
962 * partially-pinned state.
963 */
964 if (level == PT_PTE) {
965 ptl = xen_pte_lock(page, mm);
966
967 if (ptl)
968 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
969 }
970
971 mcs = __xen_mc_entry(0);
972
973 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
974 pfn_pte(pfn, PAGE_KERNEL),
975 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
976
977 if (ptl) {
978 /* unlock when batch completed */
979 xen_mc_callback(xen_pte_unlock, ptl);
980 }
981 }
982
983 return 0; /* never need to flush on unpin */
984 }
985
986 /* Release a pagetables pages back as normal RW */
987 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
988 {
989 xen_mc_batch();
990
991 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
992
993 #ifdef CONFIG_X86_64
994 {
995 pgd_t *user_pgd = xen_get_user_pgd(pgd);
996
997 if (user_pgd) {
998 xen_do_pin(MMUEXT_UNPIN_TABLE,
999 PFN_DOWN(__pa(user_pgd)));
1000 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1001 }
1002 }
1003 #endif
1004
1005 #ifdef CONFIG_X86_PAE
1006 /* Need to make sure unshared kernel PMD is unpinned */
1007 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1008 PT_PMD);
1009 #endif
1010
1011 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1012
1013 xen_mc_issue(0);
1014 }
1015
1016 static void xen_pgd_unpin(struct mm_struct *mm)
1017 {
1018 __xen_pgd_unpin(mm, mm->pgd);
1019 }
1020
1021 /*
1022 * On resume, undo any pinning done at save, so that the rest of the
1023 * kernel doesn't see any unexpected pinned pagetables.
1024 */
1025 void xen_mm_unpin_all(void)
1026 {
1027 unsigned long flags;
1028 struct page *page;
1029
1030 spin_lock_irqsave(&pgd_lock, flags);
1031
1032 list_for_each_entry(page, &pgd_list, lru) {
1033 if (PageSavePinned(page)) {
1034 BUG_ON(!PagePinned(page));
1035 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1036 ClearPageSavePinned(page);
1037 }
1038 }
1039
1040 spin_unlock_irqrestore(&pgd_lock, flags);
1041 }
1042
1043 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1044 {
1045 spin_lock(&next->page_table_lock);
1046 xen_pgd_pin(next);
1047 spin_unlock(&next->page_table_lock);
1048 }
1049
1050 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1051 {
1052 spin_lock(&mm->page_table_lock);
1053 xen_pgd_pin(mm);
1054 spin_unlock(&mm->page_table_lock);
1055 }
1056
1057
1058 #ifdef CONFIG_SMP
1059 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1060 we need to repoint it somewhere else before we can unpin it. */
1061 static void drop_other_mm_ref(void *info)
1062 {
1063 struct mm_struct *mm = info;
1064 struct mm_struct *active_mm;
1065
1066 #ifdef CONFIG_X86_64
1067 active_mm = read_pda(active_mm);
1068 #else
1069 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1070 #endif
1071
1072 if (active_mm == mm)
1073 leave_mm(smp_processor_id());
1074
1075 /* If this cpu still has a stale cr3 reference, then make sure
1076 it has been flushed. */
1077 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1078 load_cr3(swapper_pg_dir);
1079 arch_flush_lazy_cpu_mode();
1080 }
1081 }
1082
1083 static void xen_drop_mm_ref(struct mm_struct *mm)
1084 {
1085 cpumask_t mask;
1086 unsigned cpu;
1087
1088 if (current->active_mm == mm) {
1089 if (current->mm == mm)
1090 load_cr3(swapper_pg_dir);
1091 else
1092 leave_mm(smp_processor_id());
1093 arch_flush_lazy_cpu_mode();
1094 }
1095
1096 /* Get the "official" set of cpus referring to our pagetable. */
1097 mask = mm->cpu_vm_mask;
1098
1099 /* It's possible that a vcpu may have a stale reference to our
1100 cr3, because its in lazy mode, and it hasn't yet flushed
1101 its set of pending hypercalls yet. In this case, we can
1102 look at its actual current cr3 value, and force it to flush
1103 if needed. */
1104 for_each_online_cpu(cpu) {
1105 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1106 cpu_set(cpu, mask);
1107 }
1108
1109 if (!cpus_empty(mask))
1110 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
1111 }
1112 #else
1113 static void xen_drop_mm_ref(struct mm_struct *mm)
1114 {
1115 if (current->active_mm == mm)
1116 load_cr3(swapper_pg_dir);
1117 }
1118 #endif
1119
1120 /*
1121 * While a process runs, Xen pins its pagetables, which means that the
1122 * hypervisor forces it to be read-only, and it controls all updates
1123 * to it. This means that all pagetable updates have to go via the
1124 * hypervisor, which is moderately expensive.
1125 *
1126 * Since we're pulling the pagetable down, we switch to use init_mm,
1127 * unpin old process pagetable and mark it all read-write, which
1128 * allows further operations on it to be simple memory accesses.
1129 *
1130 * The only subtle point is that another CPU may be still using the
1131 * pagetable because of lazy tlb flushing. This means we need need to
1132 * switch all CPUs off this pagetable before we can unpin it.
1133 */
1134 void xen_exit_mmap(struct mm_struct *mm)
1135 {
1136 get_cpu(); /* make sure we don't move around */
1137 xen_drop_mm_ref(mm);
1138 put_cpu();
1139
1140 spin_lock(&mm->page_table_lock);
1141
1142 /* pgd may not be pinned in the error exit path of execve */
1143 if (xen_page_pinned(mm->pgd))
1144 xen_pgd_unpin(mm);
1145
1146 spin_unlock(&mm->page_table_lock);
1147 }
1148
1149 #ifdef CONFIG_XEN_DEBUG_FS
1150
1151 static struct dentry *d_mmu_debug;
1152
1153 static int __init xen_mmu_debugfs(void)
1154 {
1155 struct dentry *d_xen = xen_init_debugfs();
1156
1157 if (d_xen == NULL)
1158 return -ENOMEM;
1159
1160 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1161
1162 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1163
1164 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1165 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1166 &mmu_stats.pgd_update_pinned);
1167 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1168 &mmu_stats.pgd_update_pinned);
1169
1170 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1171 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1172 &mmu_stats.pud_update_pinned);
1173 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1174 &mmu_stats.pud_update_pinned);
1175
1176 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1177 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1178 &mmu_stats.pmd_update_pinned);
1179 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1180 &mmu_stats.pmd_update_pinned);
1181
1182 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1183 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1184 // &mmu_stats.pte_update_pinned);
1185 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1186 &mmu_stats.pte_update_pinned);
1187
1188 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1189 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1190 &mmu_stats.mmu_update_extended);
1191 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1192 mmu_stats.mmu_update_histo, 20);
1193
1194 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1195 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1196 &mmu_stats.set_pte_at_batched);
1197 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1198 &mmu_stats.set_pte_at_current);
1199 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1200 &mmu_stats.set_pte_at_kernel);
1201
1202 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1203 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1204 &mmu_stats.prot_commit_batched);
1205
1206 return 0;
1207 }
1208 fs_initcall(xen_mmu_debugfs);
1209
1210 #endif /* CONFIG_XEN_DEBUG_FS */