]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/mmu.c
ecbdcf0d45d4bd60fc0d3c3e96ad4d319cb42e0d
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/fixmap.h>
52 #include <asm/mmu_context.h>
53 #include <asm/setup.h>
54 #include <asm/paravirt.h>
55 #include <asm/e820.h>
56 #include <asm/linkage.h>
57 #include <asm/page.h>
58
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61
62 #include <xen/xen.h>
63 #include <xen/page.h>
64 #include <xen/interface/xen.h>
65 #include <xen/interface/hvm/hvm_op.h>
66 #include <xen/interface/version.h>
67 #include <xen/interface/memory.h>
68 #include <xen/hvc-console.h>
69
70 #include "multicalls.h"
71 #include "mmu.h"
72 #include "debugfs.h"
73
74 #define MMU_UPDATE_HISTO 30
75
76 /*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81 DEFINE_SPINLOCK(xen_reservation_lock);
82
83 #ifdef CONFIG_XEN_DEBUG_FS
84
85 static struct {
86 u32 pgd_update;
87 u32 pgd_update_pinned;
88 u32 pgd_update_batched;
89
90 u32 pud_update;
91 u32 pud_update_pinned;
92 u32 pud_update_batched;
93
94 u32 pmd_update;
95 u32 pmd_update_pinned;
96 u32 pmd_update_batched;
97
98 u32 pte_update;
99 u32 pte_update_pinned;
100 u32 pte_update_batched;
101
102 u32 mmu_update;
103 u32 mmu_update_extended;
104 u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106 u32 prot_commit;
107 u32 prot_commit_batched;
108
109 u32 set_pte_at;
110 u32 set_pte_at_batched;
111 u32 set_pte_at_pinned;
112 u32 set_pte_at_current;
113 u32 set_pte_at_kernel;
114 } mmu_stats;
115
116 static u8 zero_stats;
117
118 static inline void check_zero(void)
119 {
120 if (unlikely(zero_stats)) {
121 memset(&mmu_stats, 0, sizeof(mmu_stats));
122 zero_stats = 0;
123 }
124 }
125
126 #define ADD_STATS(elem, val) \
127 do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129 #else /* !CONFIG_XEN_DEBUG_FS */
130
131 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
132
133 #endif /* CONFIG_XEN_DEBUG_FS */
134
135
136 /*
137 * Identity map, in addition to plain kernel map. This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142
143 #ifdef CONFIG_X86_64
144 /* l3 pud for userspace vsyscall mapping */
145 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146 #endif /* CONFIG_X86_64 */
147
148 /*
149 * Note about cr3 (pagetable base) values:
150 *
151 * xen_cr3 contains the current logical cr3 value; it contains the
152 * last set cr3. This may not be the current effective cr3, because
153 * its update may be being lazily deferred. However, a vcpu looking
154 * at its own cr3 can use this value knowing that it everything will
155 * be self-consistent.
156 *
157 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158 * hypercall to set the vcpu cr3 is complete (so it may be a little
159 * out of date, but it will never be set early). If one vcpu is
160 * looking at another vcpu's cr3 value, it should use this variable.
161 */
162 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
163 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
164
165
166 /*
167 * Just beyond the highest usermode address. STACK_TOP_MAX has a
168 * redzone above it, so round it up to a PGD boundary.
169 */
170 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171
172
173 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
174 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
175
176 /* Placeholder for holes in the address space */
177 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_ENTRIES_PER_PAGE);
178
179 /* Array of pointers to pages containing p2m entries */
180 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top, TOP_ENTRIES);
181
182 /* Arrays of p2m arrays expressed in mfns used for save/restore */
183 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, TOP_ENTRIES);
184
185 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn_list,
186 (TOP_ENTRIES / P2M_ENTRIES_PER_PAGE));
187
188 static inline unsigned p2m_top_index(unsigned long pfn)
189 {
190 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
191 return pfn / P2M_ENTRIES_PER_PAGE;
192 }
193
194 static inline unsigned p2m_index(unsigned long pfn)
195 {
196 return pfn % P2M_ENTRIES_PER_PAGE;
197 }
198
199 /* Build the parallel p2m_top_mfn structures */
200 void xen_build_mfn_list_list(void)
201 {
202 unsigned pfn, idx;
203
204 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
205 unsigned topidx = p2m_top_index(pfn);
206
207 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
208 }
209
210 for (idx = 0; idx < TOP_ENTRIES/P2M_ENTRIES_PER_PAGE; idx++) {
211 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
212 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
213 }
214 }
215
216 void xen_setup_mfn_list_list(void)
217 {
218 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
219
220 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
221 virt_to_mfn(p2m_top_mfn_list);
222 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
223 }
224
225 /* Set up p2m_top to point to the domain-builder provided p2m pages */
226 void __init xen_build_dynamic_phys_to_machine(void)
227 {
228 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
229 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
230 unsigned pfn;
231 unsigned i;
232
233 p2m_missing = extend_brk(sizeof(*p2m_missing) * P2M_ENTRIES_PER_PAGE,
234 PAGE_SIZE);
235 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
236 p2m_missing[i] = ~0UL;
237
238 p2m_top = extend_brk(sizeof(*p2m_top) * TOP_ENTRIES,
239 PAGE_SIZE);
240 for (i = 0; i < TOP_ENTRIES; i++)
241 p2m_top[i] = p2m_missing;
242
243 p2m_top_mfn = extend_brk(sizeof(*p2m_top_mfn) * TOP_ENTRIES, PAGE_SIZE);
244 p2m_top_mfn_list = extend_brk(sizeof(*p2m_top_mfn_list) *
245 (TOP_ENTRIES / P2M_ENTRIES_PER_PAGE),
246 PAGE_SIZE);
247
248 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
249 unsigned topidx = p2m_top_index(pfn);
250
251 p2m_top[topidx] = &mfn_list[pfn];
252 }
253
254 xen_build_mfn_list_list();
255 }
256
257 unsigned long get_phys_to_machine(unsigned long pfn)
258 {
259 unsigned topidx, idx;
260
261 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
262 return INVALID_P2M_ENTRY;
263
264 topidx = p2m_top_index(pfn);
265 idx = p2m_index(pfn);
266 return p2m_top[topidx][idx];
267 }
268 EXPORT_SYMBOL_GPL(get_phys_to_machine);
269
270 /* install a new p2m_top page */
271 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
272 {
273 unsigned topidx = p2m_top_index(pfn);
274 unsigned long **pfnp, *mfnp;
275 unsigned i;
276
277 pfnp = &p2m_top[topidx];
278 mfnp = &p2m_top_mfn[topidx];
279
280 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
281 p[i] = INVALID_P2M_ENTRY;
282
283 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
284 *mfnp = virt_to_mfn(p);
285 return true;
286 }
287
288 return false;
289 }
290
291 static void alloc_p2m(unsigned long pfn)
292 {
293 unsigned long *p;
294
295 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
296 BUG_ON(p == NULL);
297
298 if (!install_p2mtop_page(pfn, p))
299 free_page((unsigned long)p);
300 }
301
302 /* Try to install p2m mapping; fail if intermediate bits missing */
303 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
304 {
305 unsigned topidx, idx;
306
307 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
308 BUG_ON(mfn != INVALID_P2M_ENTRY);
309 return true;
310 }
311
312 topidx = p2m_top_index(pfn);
313 if (p2m_top[topidx] == p2m_missing) {
314 if (mfn == INVALID_P2M_ENTRY)
315 return true;
316 return false;
317 }
318
319 idx = p2m_index(pfn);
320 p2m_top[topidx][idx] = mfn;
321
322 return true;
323 }
324
325 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
326 {
327 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
328 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
329 return;
330 }
331
332 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
333 alloc_p2m(pfn);
334
335 if (!__set_phys_to_machine(pfn, mfn))
336 BUG();
337 }
338 }
339
340 unsigned long arbitrary_virt_to_mfn(void *vaddr)
341 {
342 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
343
344 return PFN_DOWN(maddr.maddr);
345 }
346
347 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
348 {
349 unsigned long address = (unsigned long)vaddr;
350 unsigned int level;
351 pte_t *pte;
352 unsigned offset;
353
354 /*
355 * if the PFN is in the linear mapped vaddr range, we can just use
356 * the (quick) virt_to_machine() p2m lookup
357 */
358 if (virt_addr_valid(vaddr))
359 return virt_to_machine(vaddr);
360
361 /* otherwise we have to do a (slower) full page-table walk */
362
363 pte = lookup_address(address, &level);
364 BUG_ON(pte == NULL);
365 offset = address & ~PAGE_MASK;
366 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
367 }
368
369 void make_lowmem_page_readonly(void *vaddr)
370 {
371 pte_t *pte, ptev;
372 unsigned long address = (unsigned long)vaddr;
373 unsigned int level;
374
375 pte = lookup_address(address, &level);
376 BUG_ON(pte == NULL);
377
378 ptev = pte_wrprotect(*pte);
379
380 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
381 BUG();
382 }
383
384 void make_lowmem_page_readwrite(void *vaddr)
385 {
386 pte_t *pte, ptev;
387 unsigned long address = (unsigned long)vaddr;
388 unsigned int level;
389
390 pte = lookup_address(address, &level);
391 BUG_ON(pte == NULL);
392
393 ptev = pte_mkwrite(*pte);
394
395 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
396 BUG();
397 }
398
399
400 static bool xen_page_pinned(void *ptr)
401 {
402 struct page *page = virt_to_page(ptr);
403
404 return PagePinned(page);
405 }
406
407 static bool xen_iomap_pte(pte_t pte)
408 {
409 return pte_flags(pte) & _PAGE_IOMAP;
410 }
411
412 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
413 {
414 struct multicall_space mcs;
415 struct mmu_update *u;
416
417 mcs = xen_mc_entry(sizeof(*u));
418 u = mcs.args;
419
420 /* ptep might be kmapped when using 32-bit HIGHPTE */
421 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
422 u->val = pte_val_ma(pteval);
423
424 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
425
426 xen_mc_issue(PARAVIRT_LAZY_MMU);
427 }
428
429 static void xen_extend_mmu_update(const struct mmu_update *update)
430 {
431 struct multicall_space mcs;
432 struct mmu_update *u;
433
434 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
435
436 if (mcs.mc != NULL) {
437 ADD_STATS(mmu_update_extended, 1);
438 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
439
440 mcs.mc->args[1]++;
441
442 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
443 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
444 else
445 ADD_STATS(mmu_update_histo[0], 1);
446 } else {
447 ADD_STATS(mmu_update, 1);
448 mcs = __xen_mc_entry(sizeof(*u));
449 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
450 ADD_STATS(mmu_update_histo[1], 1);
451 }
452
453 u = mcs.args;
454 *u = *update;
455 }
456
457 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
458 {
459 struct mmu_update u;
460
461 preempt_disable();
462
463 xen_mc_batch();
464
465 /* ptr may be ioremapped for 64-bit pagetable setup */
466 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
467 u.val = pmd_val_ma(val);
468 xen_extend_mmu_update(&u);
469
470 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
471
472 xen_mc_issue(PARAVIRT_LAZY_MMU);
473
474 preempt_enable();
475 }
476
477 void xen_set_pmd(pmd_t *ptr, pmd_t val)
478 {
479 ADD_STATS(pmd_update, 1);
480
481 /* If page is not pinned, we can just update the entry
482 directly */
483 if (!xen_page_pinned(ptr)) {
484 *ptr = val;
485 return;
486 }
487
488 ADD_STATS(pmd_update_pinned, 1);
489
490 xen_set_pmd_hyper(ptr, val);
491 }
492
493 /*
494 * Associate a virtual page frame with a given physical page frame
495 * and protection flags for that frame.
496 */
497 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
498 {
499 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
500 }
501
502 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
503 pte_t *ptep, pte_t pteval)
504 {
505 if (xen_iomap_pte(pteval)) {
506 xen_set_iomap_pte(ptep, pteval);
507 goto out;
508 }
509
510 ADD_STATS(set_pte_at, 1);
511 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
512 ADD_STATS(set_pte_at_current, mm == current->mm);
513 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
514
515 if (mm == current->mm || mm == &init_mm) {
516 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
517 struct multicall_space mcs;
518 mcs = xen_mc_entry(0);
519
520 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
521 ADD_STATS(set_pte_at_batched, 1);
522 xen_mc_issue(PARAVIRT_LAZY_MMU);
523 goto out;
524 } else
525 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
526 goto out;
527 }
528 xen_set_pte(ptep, pteval);
529
530 out: return;
531 }
532
533 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
534 unsigned long addr, pte_t *ptep)
535 {
536 /* Just return the pte as-is. We preserve the bits on commit */
537 return *ptep;
538 }
539
540 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
541 pte_t *ptep, pte_t pte)
542 {
543 struct mmu_update u;
544
545 xen_mc_batch();
546
547 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
548 u.val = pte_val_ma(pte);
549 xen_extend_mmu_update(&u);
550
551 ADD_STATS(prot_commit, 1);
552 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
553
554 xen_mc_issue(PARAVIRT_LAZY_MMU);
555 }
556
557 /* Assume pteval_t is equivalent to all the other *val_t types. */
558 static pteval_t pte_mfn_to_pfn(pteval_t val)
559 {
560 if (val & _PAGE_PRESENT) {
561 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
562 pteval_t flags = val & PTE_FLAGS_MASK;
563 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
564 }
565
566 return val;
567 }
568
569 static pteval_t pte_pfn_to_mfn(pteval_t val)
570 {
571 if (val & _PAGE_PRESENT) {
572 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
573 pteval_t flags = val & PTE_FLAGS_MASK;
574 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
575 }
576
577 return val;
578 }
579
580 static pteval_t iomap_pte(pteval_t val)
581 {
582 if (val & _PAGE_PRESENT) {
583 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
584 pteval_t flags = val & PTE_FLAGS_MASK;
585
586 /* We assume the pte frame number is a MFN, so
587 just use it as-is. */
588 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
589 }
590
591 return val;
592 }
593
594 pteval_t xen_pte_val(pte_t pte)
595 {
596 if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
597 return pte.pte;
598
599 return pte_mfn_to_pfn(pte.pte);
600 }
601 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
602
603 pgdval_t xen_pgd_val(pgd_t pgd)
604 {
605 return pte_mfn_to_pfn(pgd.pgd);
606 }
607 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
608
609 pte_t xen_make_pte(pteval_t pte)
610 {
611 phys_addr_t addr = (pte & PTE_PFN_MASK);
612
613 /*
614 * Unprivileged domains are allowed to do IOMAPpings for
615 * PCI passthrough, but not map ISA space. The ISA
616 * mappings are just dummy local mappings to keep other
617 * parts of the kernel happy.
618 */
619 if (unlikely(pte & _PAGE_IOMAP) &&
620 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
621 pte = iomap_pte(pte);
622 } else {
623 pte &= ~_PAGE_IOMAP;
624 pte = pte_pfn_to_mfn(pte);
625 }
626
627 return native_make_pte(pte);
628 }
629 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
630
631 pgd_t xen_make_pgd(pgdval_t pgd)
632 {
633 pgd = pte_pfn_to_mfn(pgd);
634 return native_make_pgd(pgd);
635 }
636 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
637
638 pmdval_t xen_pmd_val(pmd_t pmd)
639 {
640 return pte_mfn_to_pfn(pmd.pmd);
641 }
642 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
643
644 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
645 {
646 struct mmu_update u;
647
648 preempt_disable();
649
650 xen_mc_batch();
651
652 /* ptr may be ioremapped for 64-bit pagetable setup */
653 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
654 u.val = pud_val_ma(val);
655 xen_extend_mmu_update(&u);
656
657 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
658
659 xen_mc_issue(PARAVIRT_LAZY_MMU);
660
661 preempt_enable();
662 }
663
664 void xen_set_pud(pud_t *ptr, pud_t val)
665 {
666 ADD_STATS(pud_update, 1);
667
668 /* If page is not pinned, we can just update the entry
669 directly */
670 if (!xen_page_pinned(ptr)) {
671 *ptr = val;
672 return;
673 }
674
675 ADD_STATS(pud_update_pinned, 1);
676
677 xen_set_pud_hyper(ptr, val);
678 }
679
680 void xen_set_pte(pte_t *ptep, pte_t pte)
681 {
682 if (xen_iomap_pte(pte)) {
683 xen_set_iomap_pte(ptep, pte);
684 return;
685 }
686
687 ADD_STATS(pte_update, 1);
688 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
689 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
690
691 #ifdef CONFIG_X86_PAE
692 ptep->pte_high = pte.pte_high;
693 smp_wmb();
694 ptep->pte_low = pte.pte_low;
695 #else
696 *ptep = pte;
697 #endif
698 }
699
700 #ifdef CONFIG_X86_PAE
701 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
702 {
703 if (xen_iomap_pte(pte)) {
704 xen_set_iomap_pte(ptep, pte);
705 return;
706 }
707
708 set_64bit((u64 *)ptep, native_pte_val(pte));
709 }
710
711 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
712 {
713 ptep->pte_low = 0;
714 smp_wmb(); /* make sure low gets written first */
715 ptep->pte_high = 0;
716 }
717
718 void xen_pmd_clear(pmd_t *pmdp)
719 {
720 set_pmd(pmdp, __pmd(0));
721 }
722 #endif /* CONFIG_X86_PAE */
723
724 pmd_t xen_make_pmd(pmdval_t pmd)
725 {
726 pmd = pte_pfn_to_mfn(pmd);
727 return native_make_pmd(pmd);
728 }
729 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
730
731 #if PAGETABLE_LEVELS == 4
732 pudval_t xen_pud_val(pud_t pud)
733 {
734 return pte_mfn_to_pfn(pud.pud);
735 }
736 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
737
738 pud_t xen_make_pud(pudval_t pud)
739 {
740 pud = pte_pfn_to_mfn(pud);
741
742 return native_make_pud(pud);
743 }
744 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
745
746 pgd_t *xen_get_user_pgd(pgd_t *pgd)
747 {
748 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
749 unsigned offset = pgd - pgd_page;
750 pgd_t *user_ptr = NULL;
751
752 if (offset < pgd_index(USER_LIMIT)) {
753 struct page *page = virt_to_page(pgd_page);
754 user_ptr = (pgd_t *)page->private;
755 if (user_ptr)
756 user_ptr += offset;
757 }
758
759 return user_ptr;
760 }
761
762 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
763 {
764 struct mmu_update u;
765
766 u.ptr = virt_to_machine(ptr).maddr;
767 u.val = pgd_val_ma(val);
768 xen_extend_mmu_update(&u);
769 }
770
771 /*
772 * Raw hypercall-based set_pgd, intended for in early boot before
773 * there's a page structure. This implies:
774 * 1. The only existing pagetable is the kernel's
775 * 2. It is always pinned
776 * 3. It has no user pagetable attached to it
777 */
778 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
779 {
780 preempt_disable();
781
782 xen_mc_batch();
783
784 __xen_set_pgd_hyper(ptr, val);
785
786 xen_mc_issue(PARAVIRT_LAZY_MMU);
787
788 preempt_enable();
789 }
790
791 void xen_set_pgd(pgd_t *ptr, pgd_t val)
792 {
793 pgd_t *user_ptr = xen_get_user_pgd(ptr);
794
795 ADD_STATS(pgd_update, 1);
796
797 /* If page is not pinned, we can just update the entry
798 directly */
799 if (!xen_page_pinned(ptr)) {
800 *ptr = val;
801 if (user_ptr) {
802 WARN_ON(xen_page_pinned(user_ptr));
803 *user_ptr = val;
804 }
805 return;
806 }
807
808 ADD_STATS(pgd_update_pinned, 1);
809 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
810
811 /* If it's pinned, then we can at least batch the kernel and
812 user updates together. */
813 xen_mc_batch();
814
815 __xen_set_pgd_hyper(ptr, val);
816 if (user_ptr)
817 __xen_set_pgd_hyper(user_ptr, val);
818
819 xen_mc_issue(PARAVIRT_LAZY_MMU);
820 }
821 #endif /* PAGETABLE_LEVELS == 4 */
822
823 /*
824 * (Yet another) pagetable walker. This one is intended for pinning a
825 * pagetable. This means that it walks a pagetable and calls the
826 * callback function on each page it finds making up the page table,
827 * at every level. It walks the entire pagetable, but it only bothers
828 * pinning pte pages which are below limit. In the normal case this
829 * will be STACK_TOP_MAX, but at boot we need to pin up to
830 * FIXADDR_TOP.
831 *
832 * For 32-bit the important bit is that we don't pin beyond there,
833 * because then we start getting into Xen's ptes.
834 *
835 * For 64-bit, we must skip the Xen hole in the middle of the address
836 * space, just after the big x86-64 virtual hole.
837 */
838 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
839 int (*func)(struct mm_struct *mm, struct page *,
840 enum pt_level),
841 unsigned long limit)
842 {
843 int flush = 0;
844 unsigned hole_low, hole_high;
845 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
846 unsigned pgdidx, pudidx, pmdidx;
847
848 /* The limit is the last byte to be touched */
849 limit--;
850 BUG_ON(limit >= FIXADDR_TOP);
851
852 if (xen_feature(XENFEAT_auto_translated_physmap))
853 return 0;
854
855 /*
856 * 64-bit has a great big hole in the middle of the address
857 * space, which contains the Xen mappings. On 32-bit these
858 * will end up making a zero-sized hole and so is a no-op.
859 */
860 hole_low = pgd_index(USER_LIMIT);
861 hole_high = pgd_index(PAGE_OFFSET);
862
863 pgdidx_limit = pgd_index(limit);
864 #if PTRS_PER_PUD > 1
865 pudidx_limit = pud_index(limit);
866 #else
867 pudidx_limit = 0;
868 #endif
869 #if PTRS_PER_PMD > 1
870 pmdidx_limit = pmd_index(limit);
871 #else
872 pmdidx_limit = 0;
873 #endif
874
875 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
876 pud_t *pud;
877
878 if (pgdidx >= hole_low && pgdidx < hole_high)
879 continue;
880
881 if (!pgd_val(pgd[pgdidx]))
882 continue;
883
884 pud = pud_offset(&pgd[pgdidx], 0);
885
886 if (PTRS_PER_PUD > 1) /* not folded */
887 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
888
889 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
890 pmd_t *pmd;
891
892 if (pgdidx == pgdidx_limit &&
893 pudidx > pudidx_limit)
894 goto out;
895
896 if (pud_none(pud[pudidx]))
897 continue;
898
899 pmd = pmd_offset(&pud[pudidx], 0);
900
901 if (PTRS_PER_PMD > 1) /* not folded */
902 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
903
904 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
905 struct page *pte;
906
907 if (pgdidx == pgdidx_limit &&
908 pudidx == pudidx_limit &&
909 pmdidx > pmdidx_limit)
910 goto out;
911
912 if (pmd_none(pmd[pmdidx]))
913 continue;
914
915 pte = pmd_page(pmd[pmdidx]);
916 flush |= (*func)(mm, pte, PT_PTE);
917 }
918 }
919 }
920
921 out:
922 /* Do the top level last, so that the callbacks can use it as
923 a cue to do final things like tlb flushes. */
924 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
925
926 return flush;
927 }
928
929 static int xen_pgd_walk(struct mm_struct *mm,
930 int (*func)(struct mm_struct *mm, struct page *,
931 enum pt_level),
932 unsigned long limit)
933 {
934 return __xen_pgd_walk(mm, mm->pgd, func, limit);
935 }
936
937 /* If we're using split pte locks, then take the page's lock and
938 return a pointer to it. Otherwise return NULL. */
939 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
940 {
941 spinlock_t *ptl = NULL;
942
943 #if USE_SPLIT_PTLOCKS
944 ptl = __pte_lockptr(page);
945 spin_lock_nest_lock(ptl, &mm->page_table_lock);
946 #endif
947
948 return ptl;
949 }
950
951 static void xen_pte_unlock(void *v)
952 {
953 spinlock_t *ptl = v;
954 spin_unlock(ptl);
955 }
956
957 static void xen_do_pin(unsigned level, unsigned long pfn)
958 {
959 struct mmuext_op *op;
960 struct multicall_space mcs;
961
962 mcs = __xen_mc_entry(sizeof(*op));
963 op = mcs.args;
964 op->cmd = level;
965 op->arg1.mfn = pfn_to_mfn(pfn);
966 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
967 }
968
969 static int xen_pin_page(struct mm_struct *mm, struct page *page,
970 enum pt_level level)
971 {
972 unsigned pgfl = TestSetPagePinned(page);
973 int flush;
974
975 if (pgfl)
976 flush = 0; /* already pinned */
977 else if (PageHighMem(page))
978 /* kmaps need flushing if we found an unpinned
979 highpage */
980 flush = 1;
981 else {
982 void *pt = lowmem_page_address(page);
983 unsigned long pfn = page_to_pfn(page);
984 struct multicall_space mcs = __xen_mc_entry(0);
985 spinlock_t *ptl;
986
987 flush = 0;
988
989 /*
990 * We need to hold the pagetable lock between the time
991 * we make the pagetable RO and when we actually pin
992 * it. If we don't, then other users may come in and
993 * attempt to update the pagetable by writing it,
994 * which will fail because the memory is RO but not
995 * pinned, so Xen won't do the trap'n'emulate.
996 *
997 * If we're using split pte locks, we can't hold the
998 * entire pagetable's worth of locks during the
999 * traverse, because we may wrap the preempt count (8
1000 * bits). The solution is to mark RO and pin each PTE
1001 * page while holding the lock. This means the number
1002 * of locks we end up holding is never more than a
1003 * batch size (~32 entries, at present).
1004 *
1005 * If we're not using split pte locks, we needn't pin
1006 * the PTE pages independently, because we're
1007 * protected by the overall pagetable lock.
1008 */
1009 ptl = NULL;
1010 if (level == PT_PTE)
1011 ptl = xen_pte_lock(page, mm);
1012
1013 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1014 pfn_pte(pfn, PAGE_KERNEL_RO),
1015 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1016
1017 if (ptl) {
1018 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1019
1020 /* Queue a deferred unlock for when this batch
1021 is completed. */
1022 xen_mc_callback(xen_pte_unlock, ptl);
1023 }
1024 }
1025
1026 return flush;
1027 }
1028
1029 /* This is called just after a mm has been created, but it has not
1030 been used yet. We need to make sure that its pagetable is all
1031 read-only, and can be pinned. */
1032 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1033 {
1034 xen_mc_batch();
1035
1036 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1037 /* re-enable interrupts for flushing */
1038 xen_mc_issue(0);
1039
1040 kmap_flush_unused();
1041
1042 xen_mc_batch();
1043 }
1044
1045 #ifdef CONFIG_X86_64
1046 {
1047 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1048
1049 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1050
1051 if (user_pgd) {
1052 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1053 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1054 PFN_DOWN(__pa(user_pgd)));
1055 }
1056 }
1057 #else /* CONFIG_X86_32 */
1058 #ifdef CONFIG_X86_PAE
1059 /* Need to make sure unshared kernel PMD is pinnable */
1060 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1061 PT_PMD);
1062 #endif
1063 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1064 #endif /* CONFIG_X86_64 */
1065 xen_mc_issue(0);
1066 }
1067
1068 static void xen_pgd_pin(struct mm_struct *mm)
1069 {
1070 __xen_pgd_pin(mm, mm->pgd);
1071 }
1072
1073 /*
1074 * On save, we need to pin all pagetables to make sure they get their
1075 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1076 * them (unpinned pgds are not currently in use, probably because the
1077 * process is under construction or destruction).
1078 *
1079 * Expected to be called in stop_machine() ("equivalent to taking
1080 * every spinlock in the system"), so the locking doesn't really
1081 * matter all that much.
1082 */
1083 void xen_mm_pin_all(void)
1084 {
1085 unsigned long flags;
1086 struct page *page;
1087
1088 spin_lock_irqsave(&pgd_lock, flags);
1089
1090 list_for_each_entry(page, &pgd_list, lru) {
1091 if (!PagePinned(page)) {
1092 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1093 SetPageSavePinned(page);
1094 }
1095 }
1096
1097 spin_unlock_irqrestore(&pgd_lock, flags);
1098 }
1099
1100 /*
1101 * The init_mm pagetable is really pinned as soon as its created, but
1102 * that's before we have page structures to store the bits. So do all
1103 * the book-keeping now.
1104 */
1105 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1106 enum pt_level level)
1107 {
1108 SetPagePinned(page);
1109 return 0;
1110 }
1111
1112 static void __init xen_mark_init_mm_pinned(void)
1113 {
1114 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1115 }
1116
1117 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1118 enum pt_level level)
1119 {
1120 unsigned pgfl = TestClearPagePinned(page);
1121
1122 if (pgfl && !PageHighMem(page)) {
1123 void *pt = lowmem_page_address(page);
1124 unsigned long pfn = page_to_pfn(page);
1125 spinlock_t *ptl = NULL;
1126 struct multicall_space mcs;
1127
1128 /*
1129 * Do the converse to pin_page. If we're using split
1130 * pte locks, we must be holding the lock for while
1131 * the pte page is unpinned but still RO to prevent
1132 * concurrent updates from seeing it in this
1133 * partially-pinned state.
1134 */
1135 if (level == PT_PTE) {
1136 ptl = xen_pte_lock(page, mm);
1137
1138 if (ptl)
1139 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1140 }
1141
1142 mcs = __xen_mc_entry(0);
1143
1144 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1145 pfn_pte(pfn, PAGE_KERNEL),
1146 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1147
1148 if (ptl) {
1149 /* unlock when batch completed */
1150 xen_mc_callback(xen_pte_unlock, ptl);
1151 }
1152 }
1153
1154 return 0; /* never need to flush on unpin */
1155 }
1156
1157 /* Release a pagetables pages back as normal RW */
1158 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1159 {
1160 xen_mc_batch();
1161
1162 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1163
1164 #ifdef CONFIG_X86_64
1165 {
1166 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1167
1168 if (user_pgd) {
1169 xen_do_pin(MMUEXT_UNPIN_TABLE,
1170 PFN_DOWN(__pa(user_pgd)));
1171 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1172 }
1173 }
1174 #endif
1175
1176 #ifdef CONFIG_X86_PAE
1177 /* Need to make sure unshared kernel PMD is unpinned */
1178 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1179 PT_PMD);
1180 #endif
1181
1182 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1183
1184 xen_mc_issue(0);
1185 }
1186
1187 static void xen_pgd_unpin(struct mm_struct *mm)
1188 {
1189 __xen_pgd_unpin(mm, mm->pgd);
1190 }
1191
1192 /*
1193 * On resume, undo any pinning done at save, so that the rest of the
1194 * kernel doesn't see any unexpected pinned pagetables.
1195 */
1196 void xen_mm_unpin_all(void)
1197 {
1198 unsigned long flags;
1199 struct page *page;
1200
1201 spin_lock_irqsave(&pgd_lock, flags);
1202
1203 list_for_each_entry(page, &pgd_list, lru) {
1204 if (PageSavePinned(page)) {
1205 BUG_ON(!PagePinned(page));
1206 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1207 ClearPageSavePinned(page);
1208 }
1209 }
1210
1211 spin_unlock_irqrestore(&pgd_lock, flags);
1212 }
1213
1214 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1215 {
1216 spin_lock(&next->page_table_lock);
1217 xen_pgd_pin(next);
1218 spin_unlock(&next->page_table_lock);
1219 }
1220
1221 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1222 {
1223 spin_lock(&mm->page_table_lock);
1224 xen_pgd_pin(mm);
1225 spin_unlock(&mm->page_table_lock);
1226 }
1227
1228
1229 #ifdef CONFIG_SMP
1230 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1231 we need to repoint it somewhere else before we can unpin it. */
1232 static void drop_other_mm_ref(void *info)
1233 {
1234 struct mm_struct *mm = info;
1235 struct mm_struct *active_mm;
1236
1237 active_mm = percpu_read(cpu_tlbstate.active_mm);
1238
1239 if (active_mm == mm)
1240 leave_mm(smp_processor_id());
1241
1242 /* If this cpu still has a stale cr3 reference, then make sure
1243 it has been flushed. */
1244 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1245 load_cr3(swapper_pg_dir);
1246 }
1247
1248 static void xen_drop_mm_ref(struct mm_struct *mm)
1249 {
1250 cpumask_var_t mask;
1251 unsigned cpu;
1252
1253 if (current->active_mm == mm) {
1254 if (current->mm == mm)
1255 load_cr3(swapper_pg_dir);
1256 else
1257 leave_mm(smp_processor_id());
1258 }
1259
1260 /* Get the "official" set of cpus referring to our pagetable. */
1261 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1262 for_each_online_cpu(cpu) {
1263 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1264 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1265 continue;
1266 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1267 }
1268 return;
1269 }
1270 cpumask_copy(mask, mm_cpumask(mm));
1271
1272 /* It's possible that a vcpu may have a stale reference to our
1273 cr3, because its in lazy mode, and it hasn't yet flushed
1274 its set of pending hypercalls yet. In this case, we can
1275 look at its actual current cr3 value, and force it to flush
1276 if needed. */
1277 for_each_online_cpu(cpu) {
1278 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1279 cpumask_set_cpu(cpu, mask);
1280 }
1281
1282 if (!cpumask_empty(mask))
1283 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1284 free_cpumask_var(mask);
1285 }
1286 #else
1287 static void xen_drop_mm_ref(struct mm_struct *mm)
1288 {
1289 if (current->active_mm == mm)
1290 load_cr3(swapper_pg_dir);
1291 }
1292 #endif
1293
1294 /*
1295 * While a process runs, Xen pins its pagetables, which means that the
1296 * hypervisor forces it to be read-only, and it controls all updates
1297 * to it. This means that all pagetable updates have to go via the
1298 * hypervisor, which is moderately expensive.
1299 *
1300 * Since we're pulling the pagetable down, we switch to use init_mm,
1301 * unpin old process pagetable and mark it all read-write, which
1302 * allows further operations on it to be simple memory accesses.
1303 *
1304 * The only subtle point is that another CPU may be still using the
1305 * pagetable because of lazy tlb flushing. This means we need need to
1306 * switch all CPUs off this pagetable before we can unpin it.
1307 */
1308 void xen_exit_mmap(struct mm_struct *mm)
1309 {
1310 get_cpu(); /* make sure we don't move around */
1311 xen_drop_mm_ref(mm);
1312 put_cpu();
1313
1314 spin_lock(&mm->page_table_lock);
1315
1316 /* pgd may not be pinned in the error exit path of execve */
1317 if (xen_page_pinned(mm->pgd))
1318 xen_pgd_unpin(mm);
1319
1320 spin_unlock(&mm->page_table_lock);
1321 }
1322
1323 static __init void xen_pagetable_setup_start(pgd_t *base)
1324 {
1325 }
1326
1327 static void xen_post_allocator_init(void);
1328
1329 static __init void xen_pagetable_setup_done(pgd_t *base)
1330 {
1331 xen_setup_shared_info();
1332 xen_post_allocator_init();
1333 }
1334
1335 static void xen_write_cr2(unsigned long cr2)
1336 {
1337 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1338 }
1339
1340 static unsigned long xen_read_cr2(void)
1341 {
1342 return percpu_read(xen_vcpu)->arch.cr2;
1343 }
1344
1345 unsigned long xen_read_cr2_direct(void)
1346 {
1347 return percpu_read(xen_vcpu_info.arch.cr2);
1348 }
1349
1350 static void xen_flush_tlb(void)
1351 {
1352 struct mmuext_op *op;
1353 struct multicall_space mcs;
1354
1355 preempt_disable();
1356
1357 mcs = xen_mc_entry(sizeof(*op));
1358
1359 op = mcs.args;
1360 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1361 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1362
1363 xen_mc_issue(PARAVIRT_LAZY_MMU);
1364
1365 preempt_enable();
1366 }
1367
1368 static void xen_flush_tlb_single(unsigned long addr)
1369 {
1370 struct mmuext_op *op;
1371 struct multicall_space mcs;
1372
1373 preempt_disable();
1374
1375 mcs = xen_mc_entry(sizeof(*op));
1376 op = mcs.args;
1377 op->cmd = MMUEXT_INVLPG_LOCAL;
1378 op->arg1.linear_addr = addr & PAGE_MASK;
1379 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1380
1381 xen_mc_issue(PARAVIRT_LAZY_MMU);
1382
1383 preempt_enable();
1384 }
1385
1386 static void xen_flush_tlb_others(const struct cpumask *cpus,
1387 struct mm_struct *mm, unsigned long va)
1388 {
1389 struct {
1390 struct mmuext_op op;
1391 DECLARE_BITMAP(mask, NR_CPUS);
1392 } *args;
1393 struct multicall_space mcs;
1394
1395 if (cpumask_empty(cpus))
1396 return; /* nothing to do */
1397
1398 mcs = xen_mc_entry(sizeof(*args));
1399 args = mcs.args;
1400 args->op.arg2.vcpumask = to_cpumask(args->mask);
1401
1402 /* Remove us, and any offline CPUS. */
1403 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1404 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1405
1406 if (va == TLB_FLUSH_ALL) {
1407 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1408 } else {
1409 args->op.cmd = MMUEXT_INVLPG_MULTI;
1410 args->op.arg1.linear_addr = va;
1411 }
1412
1413 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1414
1415 xen_mc_issue(PARAVIRT_LAZY_MMU);
1416 }
1417
1418 static unsigned long xen_read_cr3(void)
1419 {
1420 return percpu_read(xen_cr3);
1421 }
1422
1423 static void set_current_cr3(void *v)
1424 {
1425 percpu_write(xen_current_cr3, (unsigned long)v);
1426 }
1427
1428 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1429 {
1430 struct mmuext_op *op;
1431 struct multicall_space mcs;
1432 unsigned long mfn;
1433
1434 if (cr3)
1435 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1436 else
1437 mfn = 0;
1438
1439 WARN_ON(mfn == 0 && kernel);
1440
1441 mcs = __xen_mc_entry(sizeof(*op));
1442
1443 op = mcs.args;
1444 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1445 op->arg1.mfn = mfn;
1446
1447 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1448
1449 if (kernel) {
1450 percpu_write(xen_cr3, cr3);
1451
1452 /* Update xen_current_cr3 once the batch has actually
1453 been submitted. */
1454 xen_mc_callback(set_current_cr3, (void *)cr3);
1455 }
1456 }
1457
1458 static void xen_write_cr3(unsigned long cr3)
1459 {
1460 BUG_ON(preemptible());
1461
1462 xen_mc_batch(); /* disables interrupts */
1463
1464 /* Update while interrupts are disabled, so its atomic with
1465 respect to ipis */
1466 percpu_write(xen_cr3, cr3);
1467
1468 __xen_write_cr3(true, cr3);
1469
1470 #ifdef CONFIG_X86_64
1471 {
1472 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1473 if (user_pgd)
1474 __xen_write_cr3(false, __pa(user_pgd));
1475 else
1476 __xen_write_cr3(false, 0);
1477 }
1478 #endif
1479
1480 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1481 }
1482
1483 static int xen_pgd_alloc(struct mm_struct *mm)
1484 {
1485 pgd_t *pgd = mm->pgd;
1486 int ret = 0;
1487
1488 BUG_ON(PagePinned(virt_to_page(pgd)));
1489
1490 #ifdef CONFIG_X86_64
1491 {
1492 struct page *page = virt_to_page(pgd);
1493 pgd_t *user_pgd;
1494
1495 BUG_ON(page->private != 0);
1496
1497 ret = -ENOMEM;
1498
1499 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1500 page->private = (unsigned long)user_pgd;
1501
1502 if (user_pgd != NULL) {
1503 user_pgd[pgd_index(VSYSCALL_START)] =
1504 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1505 ret = 0;
1506 }
1507
1508 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1509 }
1510 #endif
1511
1512 return ret;
1513 }
1514
1515 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1516 {
1517 #ifdef CONFIG_X86_64
1518 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1519
1520 if (user_pgd)
1521 free_page((unsigned long)user_pgd);
1522 #endif
1523 }
1524
1525 #ifdef CONFIG_X86_32
1526 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1527 {
1528 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1529 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1530 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1531 pte_val_ma(pte));
1532
1533 return pte;
1534 }
1535
1536 /* Init-time set_pte while constructing initial pagetables, which
1537 doesn't allow RO pagetable pages to be remapped RW */
1538 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1539 {
1540 pte = mask_rw_pte(ptep, pte);
1541
1542 xen_set_pte(ptep, pte);
1543 }
1544 #endif
1545
1546 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1547 {
1548 struct mmuext_op op;
1549 op.cmd = cmd;
1550 op.arg1.mfn = pfn_to_mfn(pfn);
1551 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1552 BUG();
1553 }
1554
1555 /* Early in boot, while setting up the initial pagetable, assume
1556 everything is pinned. */
1557 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1558 {
1559 #ifdef CONFIG_FLATMEM
1560 BUG_ON(mem_map); /* should only be used early */
1561 #endif
1562 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1563 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1564 }
1565
1566 /* Used for pmd and pud */
1567 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1568 {
1569 #ifdef CONFIG_FLATMEM
1570 BUG_ON(mem_map); /* should only be used early */
1571 #endif
1572 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1573 }
1574
1575 /* Early release_pte assumes that all pts are pinned, since there's
1576 only init_mm and anything attached to that is pinned. */
1577 static __init void xen_release_pte_init(unsigned long pfn)
1578 {
1579 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1580 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1581 }
1582
1583 static __init void xen_release_pmd_init(unsigned long pfn)
1584 {
1585 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1586 }
1587
1588 /* This needs to make sure the new pte page is pinned iff its being
1589 attached to a pinned pagetable. */
1590 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1591 {
1592 struct page *page = pfn_to_page(pfn);
1593
1594 if (PagePinned(virt_to_page(mm->pgd))) {
1595 SetPagePinned(page);
1596
1597 if (!PageHighMem(page)) {
1598 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1599 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1600 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1601 } else {
1602 /* make sure there are no stray mappings of
1603 this page */
1604 kmap_flush_unused();
1605 }
1606 }
1607 }
1608
1609 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1610 {
1611 xen_alloc_ptpage(mm, pfn, PT_PTE);
1612 }
1613
1614 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1615 {
1616 xen_alloc_ptpage(mm, pfn, PT_PMD);
1617 }
1618
1619 /* This should never happen until we're OK to use struct page */
1620 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1621 {
1622 struct page *page = pfn_to_page(pfn);
1623
1624 if (PagePinned(page)) {
1625 if (!PageHighMem(page)) {
1626 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1627 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1628 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1629 }
1630 ClearPagePinned(page);
1631 }
1632 }
1633
1634 static void xen_release_pte(unsigned long pfn)
1635 {
1636 xen_release_ptpage(pfn, PT_PTE);
1637 }
1638
1639 static void xen_release_pmd(unsigned long pfn)
1640 {
1641 xen_release_ptpage(pfn, PT_PMD);
1642 }
1643
1644 #if PAGETABLE_LEVELS == 4
1645 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1646 {
1647 xen_alloc_ptpage(mm, pfn, PT_PUD);
1648 }
1649
1650 static void xen_release_pud(unsigned long pfn)
1651 {
1652 xen_release_ptpage(pfn, PT_PUD);
1653 }
1654 #endif
1655
1656 void __init xen_reserve_top(void)
1657 {
1658 #ifdef CONFIG_X86_32
1659 unsigned long top = HYPERVISOR_VIRT_START;
1660 struct xen_platform_parameters pp;
1661
1662 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1663 top = pp.virt_start;
1664
1665 reserve_top_address(-top);
1666 #endif /* CONFIG_X86_32 */
1667 }
1668
1669 /*
1670 * Like __va(), but returns address in the kernel mapping (which is
1671 * all we have until the physical memory mapping has been set up.
1672 */
1673 static void *__ka(phys_addr_t paddr)
1674 {
1675 #ifdef CONFIG_X86_64
1676 return (void *)(paddr + __START_KERNEL_map);
1677 #else
1678 return __va(paddr);
1679 #endif
1680 }
1681
1682 /* Convert a machine address to physical address */
1683 static unsigned long m2p(phys_addr_t maddr)
1684 {
1685 phys_addr_t paddr;
1686
1687 maddr &= PTE_PFN_MASK;
1688 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1689
1690 return paddr;
1691 }
1692
1693 /* Convert a machine address to kernel virtual */
1694 static void *m2v(phys_addr_t maddr)
1695 {
1696 return __ka(m2p(maddr));
1697 }
1698
1699 static void set_page_prot(void *addr, pgprot_t prot)
1700 {
1701 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1702 pte_t pte = pfn_pte(pfn, prot);
1703
1704 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1705 BUG();
1706 }
1707
1708 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1709 {
1710 unsigned pmdidx, pteidx;
1711 unsigned ident_pte;
1712 unsigned long pfn;
1713
1714 ident_pte = 0;
1715 pfn = 0;
1716 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1717 pte_t *pte_page;
1718
1719 /* Reuse or allocate a page of ptes */
1720 if (pmd_present(pmd[pmdidx]))
1721 pte_page = m2v(pmd[pmdidx].pmd);
1722 else {
1723 /* Check for free pte pages */
1724 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1725 break;
1726
1727 pte_page = &level1_ident_pgt[ident_pte];
1728 ident_pte += PTRS_PER_PTE;
1729
1730 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1731 }
1732
1733 /* Install mappings */
1734 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1735 pte_t pte;
1736
1737 if (pfn > max_pfn_mapped)
1738 max_pfn_mapped = pfn;
1739
1740 if (!pte_none(pte_page[pteidx]))
1741 continue;
1742
1743 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1744 pte_page[pteidx] = pte;
1745 }
1746 }
1747
1748 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1749 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1750
1751 set_page_prot(pmd, PAGE_KERNEL_RO);
1752 }
1753
1754 #ifdef CONFIG_X86_64
1755 static void convert_pfn_mfn(void *v)
1756 {
1757 pte_t *pte = v;
1758 int i;
1759
1760 /* All levels are converted the same way, so just treat them
1761 as ptes. */
1762 for (i = 0; i < PTRS_PER_PTE; i++)
1763 pte[i] = xen_make_pte(pte[i].pte);
1764 }
1765
1766 /*
1767 * Set up the inital kernel pagetable.
1768 *
1769 * We can construct this by grafting the Xen provided pagetable into
1770 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1771 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1772 * means that only the kernel has a physical mapping to start with -
1773 * but that's enough to get __va working. We need to fill in the rest
1774 * of the physical mapping once some sort of allocator has been set
1775 * up.
1776 */
1777 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1778 unsigned long max_pfn)
1779 {
1780 pud_t *l3;
1781 pmd_t *l2;
1782
1783 /* Zap identity mapping */
1784 init_level4_pgt[0] = __pgd(0);
1785
1786 /* Pre-constructed entries are in pfn, so convert to mfn */
1787 convert_pfn_mfn(init_level4_pgt);
1788 convert_pfn_mfn(level3_ident_pgt);
1789 convert_pfn_mfn(level3_kernel_pgt);
1790
1791 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1792 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1793
1794 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1795 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1796
1797 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1798 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1799 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1800
1801 /* Set up identity map */
1802 xen_map_identity_early(level2_ident_pgt, max_pfn);
1803
1804 /* Make pagetable pieces RO */
1805 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1806 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1807 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1808 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1809 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1810 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1811
1812 /* Pin down new L4 */
1813 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1814 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1815
1816 /* Unpin Xen-provided one */
1817 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1818
1819 /* Switch over */
1820 pgd = init_level4_pgt;
1821
1822 /*
1823 * At this stage there can be no user pgd, and no page
1824 * structure to attach it to, so make sure we just set kernel
1825 * pgd.
1826 */
1827 xen_mc_batch();
1828 __xen_write_cr3(true, __pa(pgd));
1829 xen_mc_issue(PARAVIRT_LAZY_CPU);
1830
1831 reserve_early(__pa(xen_start_info->pt_base),
1832 __pa(xen_start_info->pt_base +
1833 xen_start_info->nr_pt_frames * PAGE_SIZE),
1834 "XEN PAGETABLES");
1835
1836 return pgd;
1837 }
1838 #else /* !CONFIG_X86_64 */
1839 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1840
1841 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1842 unsigned long max_pfn)
1843 {
1844 pmd_t *kernel_pmd;
1845
1846 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1847 xen_start_info->nr_pt_frames * PAGE_SIZE +
1848 512*1024);
1849
1850 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1851 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1852
1853 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1854
1855 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1856 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1857 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1858
1859 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1860 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1861 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1862
1863 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1864
1865 xen_write_cr3(__pa(swapper_pg_dir));
1866
1867 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1868
1869 reserve_early(__pa(xen_start_info->pt_base),
1870 __pa(xen_start_info->pt_base +
1871 xen_start_info->nr_pt_frames * PAGE_SIZE),
1872 "XEN PAGETABLES");
1873
1874 return swapper_pg_dir;
1875 }
1876 #endif /* CONFIG_X86_64 */
1877
1878 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1879 {
1880 pte_t pte;
1881
1882 phys >>= PAGE_SHIFT;
1883
1884 switch (idx) {
1885 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1886 #ifdef CONFIG_X86_F00F_BUG
1887 case FIX_F00F_IDT:
1888 #endif
1889 #ifdef CONFIG_X86_32
1890 case FIX_WP_TEST:
1891 case FIX_VDSO:
1892 # ifdef CONFIG_HIGHMEM
1893 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1894 # endif
1895 #else
1896 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1897 #endif
1898 #ifdef CONFIG_X86_LOCAL_APIC
1899 case FIX_APIC_BASE: /* maps dummy local APIC */
1900 #endif
1901 case FIX_TEXT_POKE0:
1902 case FIX_TEXT_POKE1:
1903 /* All local page mappings */
1904 pte = pfn_pte(phys, prot);
1905 break;
1906
1907 case FIX_PARAVIRT_BOOTMAP:
1908 /* This is an MFN, but it isn't an IO mapping from the
1909 IO domain */
1910 pte = mfn_pte(phys, prot);
1911 break;
1912
1913 default:
1914 /* By default, set_fixmap is used for hardware mappings */
1915 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1916 break;
1917 }
1918
1919 __native_set_fixmap(idx, pte);
1920
1921 #ifdef CONFIG_X86_64
1922 /* Replicate changes to map the vsyscall page into the user
1923 pagetable vsyscall mapping. */
1924 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1925 unsigned long vaddr = __fix_to_virt(idx);
1926 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1927 }
1928 #endif
1929 }
1930
1931 static __init void xen_post_allocator_init(void)
1932 {
1933 pv_mmu_ops.set_pte = xen_set_pte;
1934 pv_mmu_ops.set_pmd = xen_set_pmd;
1935 pv_mmu_ops.set_pud = xen_set_pud;
1936 #if PAGETABLE_LEVELS == 4
1937 pv_mmu_ops.set_pgd = xen_set_pgd;
1938 #endif
1939
1940 /* This will work as long as patching hasn't happened yet
1941 (which it hasn't) */
1942 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1943 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1944 pv_mmu_ops.release_pte = xen_release_pte;
1945 pv_mmu_ops.release_pmd = xen_release_pmd;
1946 #if PAGETABLE_LEVELS == 4
1947 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1948 pv_mmu_ops.release_pud = xen_release_pud;
1949 #endif
1950
1951 #ifdef CONFIG_X86_64
1952 SetPagePinned(virt_to_page(level3_user_vsyscall));
1953 #endif
1954 xen_mark_init_mm_pinned();
1955 }
1956
1957 static void xen_leave_lazy_mmu(void)
1958 {
1959 preempt_disable();
1960 xen_mc_flush();
1961 paravirt_leave_lazy_mmu();
1962 preempt_enable();
1963 }
1964
1965 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1966 .read_cr2 = xen_read_cr2,
1967 .write_cr2 = xen_write_cr2,
1968
1969 .read_cr3 = xen_read_cr3,
1970 .write_cr3 = xen_write_cr3,
1971
1972 .flush_tlb_user = xen_flush_tlb,
1973 .flush_tlb_kernel = xen_flush_tlb,
1974 .flush_tlb_single = xen_flush_tlb_single,
1975 .flush_tlb_others = xen_flush_tlb_others,
1976
1977 .pte_update = paravirt_nop,
1978 .pte_update_defer = paravirt_nop,
1979
1980 .pgd_alloc = xen_pgd_alloc,
1981 .pgd_free = xen_pgd_free,
1982
1983 .alloc_pte = xen_alloc_pte_init,
1984 .release_pte = xen_release_pte_init,
1985 .alloc_pmd = xen_alloc_pmd_init,
1986 .alloc_pmd_clone = paravirt_nop,
1987 .release_pmd = xen_release_pmd_init,
1988
1989 #ifdef CONFIG_X86_64
1990 .set_pte = xen_set_pte,
1991 #else
1992 .set_pte = xen_set_pte_init,
1993 #endif
1994 .set_pte_at = xen_set_pte_at,
1995 .set_pmd = xen_set_pmd_hyper,
1996
1997 .ptep_modify_prot_start = __ptep_modify_prot_start,
1998 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1999
2000 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2001 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2002
2003 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2004 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2005
2006 #ifdef CONFIG_X86_PAE
2007 .set_pte_atomic = xen_set_pte_atomic,
2008 .pte_clear = xen_pte_clear,
2009 .pmd_clear = xen_pmd_clear,
2010 #endif /* CONFIG_X86_PAE */
2011 .set_pud = xen_set_pud_hyper,
2012
2013 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2014 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2015
2016 #if PAGETABLE_LEVELS == 4
2017 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2018 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2019 .set_pgd = xen_set_pgd_hyper,
2020
2021 .alloc_pud = xen_alloc_pmd_init,
2022 .release_pud = xen_release_pmd_init,
2023 #endif /* PAGETABLE_LEVELS == 4 */
2024
2025 .activate_mm = xen_activate_mm,
2026 .dup_mmap = xen_dup_mmap,
2027 .exit_mmap = xen_exit_mmap,
2028
2029 .lazy_mode = {
2030 .enter = paravirt_enter_lazy_mmu,
2031 .leave = xen_leave_lazy_mmu,
2032 },
2033
2034 .set_fixmap = xen_set_fixmap,
2035 };
2036
2037 void __init xen_init_mmu_ops(void)
2038 {
2039 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2040 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2041 pv_mmu_ops = xen_mmu_ops;
2042
2043 vmap_lazy_unmap = false;
2044 }
2045
2046 /* Protected by xen_reservation_lock. */
2047 #define MAX_CONTIG_ORDER 9 /* 2MB */
2048 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2049
2050 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2051 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2052 unsigned long *in_frames,
2053 unsigned long *out_frames)
2054 {
2055 int i;
2056 struct multicall_space mcs;
2057
2058 xen_mc_batch();
2059 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2060 mcs = __xen_mc_entry(0);
2061
2062 if (in_frames)
2063 in_frames[i] = virt_to_mfn(vaddr);
2064
2065 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2066 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2067
2068 if (out_frames)
2069 out_frames[i] = virt_to_pfn(vaddr);
2070 }
2071 xen_mc_issue(0);
2072 }
2073
2074 /*
2075 * Update the pfn-to-mfn mappings for a virtual address range, either to
2076 * point to an array of mfns, or contiguously from a single starting
2077 * mfn.
2078 */
2079 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2080 unsigned long *mfns,
2081 unsigned long first_mfn)
2082 {
2083 unsigned i, limit;
2084 unsigned long mfn;
2085
2086 xen_mc_batch();
2087
2088 limit = 1u << order;
2089 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2090 struct multicall_space mcs;
2091 unsigned flags;
2092
2093 mcs = __xen_mc_entry(0);
2094 if (mfns)
2095 mfn = mfns[i];
2096 else
2097 mfn = first_mfn + i;
2098
2099 if (i < (limit - 1))
2100 flags = 0;
2101 else {
2102 if (order == 0)
2103 flags = UVMF_INVLPG | UVMF_ALL;
2104 else
2105 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2106 }
2107
2108 MULTI_update_va_mapping(mcs.mc, vaddr,
2109 mfn_pte(mfn, PAGE_KERNEL), flags);
2110
2111 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2112 }
2113
2114 xen_mc_issue(0);
2115 }
2116
2117 /*
2118 * Perform the hypercall to exchange a region of our pfns to point to
2119 * memory with the required contiguous alignment. Takes the pfns as
2120 * input, and populates mfns as output.
2121 *
2122 * Returns a success code indicating whether the hypervisor was able to
2123 * satisfy the request or not.
2124 */
2125 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2126 unsigned long *pfns_in,
2127 unsigned long extents_out,
2128 unsigned int order_out,
2129 unsigned long *mfns_out,
2130 unsigned int address_bits)
2131 {
2132 long rc;
2133 int success;
2134
2135 struct xen_memory_exchange exchange = {
2136 .in = {
2137 .nr_extents = extents_in,
2138 .extent_order = order_in,
2139 .extent_start = pfns_in,
2140 .domid = DOMID_SELF
2141 },
2142 .out = {
2143 .nr_extents = extents_out,
2144 .extent_order = order_out,
2145 .extent_start = mfns_out,
2146 .address_bits = address_bits,
2147 .domid = DOMID_SELF
2148 }
2149 };
2150
2151 BUG_ON(extents_in << order_in != extents_out << order_out);
2152
2153 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2154 success = (exchange.nr_exchanged == extents_in);
2155
2156 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2157 BUG_ON(success && (rc != 0));
2158
2159 return success;
2160 }
2161
2162 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2163 unsigned int address_bits)
2164 {
2165 unsigned long *in_frames = discontig_frames, out_frame;
2166 unsigned long flags;
2167 int success;
2168
2169 /*
2170 * Currently an auto-translated guest will not perform I/O, nor will
2171 * it require PAE page directories below 4GB. Therefore any calls to
2172 * this function are redundant and can be ignored.
2173 */
2174
2175 if (xen_feature(XENFEAT_auto_translated_physmap))
2176 return 0;
2177
2178 if (unlikely(order > MAX_CONTIG_ORDER))
2179 return -ENOMEM;
2180
2181 memset((void *) vstart, 0, PAGE_SIZE << order);
2182
2183 spin_lock_irqsave(&xen_reservation_lock, flags);
2184
2185 /* 1. Zap current PTEs, remembering MFNs. */
2186 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2187
2188 /* 2. Get a new contiguous memory extent. */
2189 out_frame = virt_to_pfn(vstart);
2190 success = xen_exchange_memory(1UL << order, 0, in_frames,
2191 1, order, &out_frame,
2192 address_bits);
2193
2194 /* 3. Map the new extent in place of old pages. */
2195 if (success)
2196 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2197 else
2198 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2199
2200 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2201
2202 return success ? 0 : -ENOMEM;
2203 }
2204 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2205
2206 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2207 {
2208 unsigned long *out_frames = discontig_frames, in_frame;
2209 unsigned long flags;
2210 int success;
2211
2212 if (xen_feature(XENFEAT_auto_translated_physmap))
2213 return;
2214
2215 if (unlikely(order > MAX_CONTIG_ORDER))
2216 return;
2217
2218 memset((void *) vstart, 0, PAGE_SIZE << order);
2219
2220 spin_lock_irqsave(&xen_reservation_lock, flags);
2221
2222 /* 1. Find start MFN of contiguous extent. */
2223 in_frame = virt_to_mfn(vstart);
2224
2225 /* 2. Zap current PTEs. */
2226 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2227
2228 /* 3. Do the exchange for non-contiguous MFNs. */
2229 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2230 0, out_frames, 0);
2231
2232 /* 4. Map new pages in place of old pages. */
2233 if (success)
2234 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2235 else
2236 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2237
2238 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2239 }
2240 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2241
2242 #ifdef CONFIG_XEN_PVHVM
2243 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2244 {
2245 struct xen_hvm_pagetable_dying a;
2246 int rc;
2247
2248 a.domid = DOMID_SELF;
2249 a.gpa = __pa(mm->pgd);
2250 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2251 WARN_ON_ONCE(rc < 0);
2252 }
2253
2254 static int is_pagetable_dying_supported(void)
2255 {
2256 struct xen_hvm_pagetable_dying a;
2257 int rc = 0;
2258
2259 a.domid = DOMID_SELF;
2260 a.gpa = 0x00;
2261 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2262 if (rc < 0) {
2263 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2264 return 0;
2265 }
2266 return 1;
2267 }
2268
2269 void __init xen_hvm_init_mmu_ops(void)
2270 {
2271 if (is_pagetable_dying_supported())
2272 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2273 }
2274 #endif
2275
2276 #ifdef CONFIG_XEN_DEBUG_FS
2277
2278 static struct dentry *d_mmu_debug;
2279
2280 static int __init xen_mmu_debugfs(void)
2281 {
2282 struct dentry *d_xen = xen_init_debugfs();
2283
2284 if (d_xen == NULL)
2285 return -ENOMEM;
2286
2287 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2288
2289 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2290
2291 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2292 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2293 &mmu_stats.pgd_update_pinned);
2294 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2295 &mmu_stats.pgd_update_pinned);
2296
2297 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2298 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2299 &mmu_stats.pud_update_pinned);
2300 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2301 &mmu_stats.pud_update_pinned);
2302
2303 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2304 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2305 &mmu_stats.pmd_update_pinned);
2306 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2307 &mmu_stats.pmd_update_pinned);
2308
2309 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2310 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2311 // &mmu_stats.pte_update_pinned);
2312 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2313 &mmu_stats.pte_update_pinned);
2314
2315 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2316 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2317 &mmu_stats.mmu_update_extended);
2318 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2319 mmu_stats.mmu_update_histo, 20);
2320
2321 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2322 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2323 &mmu_stats.set_pte_at_batched);
2324 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2325 &mmu_stats.set_pte_at_current);
2326 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2327 &mmu_stats.set_pte_at_kernel);
2328
2329 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2330 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2331 &mmu_stats.prot_commit_batched);
2332
2333 return 0;
2334 }
2335 fs_initcall(xen_mmu_debugfs);
2336
2337 #endif /* CONFIG_XEN_DEBUG_FS */