]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/xen/mmu.c
xen/setup: Fix for incorrect xen_extra_mem_start.
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
62 #include <asm/smp.h>
63
64 #include <asm/xen/hypercall.h>
65 #include <asm/xen/hypervisor.h>
66
67 #include <xen/xen.h>
68 #include <xen/page.h>
69 #include <xen/interface/xen.h>
70 #include <xen/interface/hvm/hvm_op.h>
71 #include <xen/interface/version.h>
72 #include <xen/interface/memory.h>
73 #include <xen/hvc-console.h>
74
75 #include "multicalls.h"
76 #include "mmu.h"
77 #include "debugfs.h"
78
79 /*
80 * Protects atomic reservation decrease/increase against concurrent increases.
81 * Also protects non-atomic updates of current_pages and balloon lists.
82 */
83 DEFINE_SPINLOCK(xen_reservation_lock);
84
85 /*
86 * Identity map, in addition to plain kernel map. This needs to be
87 * large enough to allocate page table pages to allocate the rest.
88 * Each page can map 2MB.
89 */
90 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
91 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
92
93 #ifdef CONFIG_X86_64
94 /* l3 pud for userspace vsyscall mapping */
95 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
96 #endif /* CONFIG_X86_64 */
97
98 /*
99 * Note about cr3 (pagetable base) values:
100 *
101 * xen_cr3 contains the current logical cr3 value; it contains the
102 * last set cr3. This may not be the current effective cr3, because
103 * its update may be being lazily deferred. However, a vcpu looking
104 * at its own cr3 can use this value knowing that it everything will
105 * be self-consistent.
106 *
107 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
108 * hypercall to set the vcpu cr3 is complete (so it may be a little
109 * out of date, but it will never be set early). If one vcpu is
110 * looking at another vcpu's cr3 value, it should use this variable.
111 */
112 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
113 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
114
115
116 /*
117 * Just beyond the highest usermode address. STACK_TOP_MAX has a
118 * redzone above it, so round it up to a PGD boundary.
119 */
120 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
121
122 unsigned long arbitrary_virt_to_mfn(void *vaddr)
123 {
124 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
125
126 return PFN_DOWN(maddr.maddr);
127 }
128
129 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
130 {
131 unsigned long address = (unsigned long)vaddr;
132 unsigned int level;
133 pte_t *pte;
134 unsigned offset;
135
136 /*
137 * if the PFN is in the linear mapped vaddr range, we can just use
138 * the (quick) virt_to_machine() p2m lookup
139 */
140 if (virt_addr_valid(vaddr))
141 return virt_to_machine(vaddr);
142
143 /* otherwise we have to do a (slower) full page-table walk */
144
145 pte = lookup_address(address, &level);
146 BUG_ON(pte == NULL);
147 offset = address & ~PAGE_MASK;
148 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
149 }
150 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
151
152 void make_lowmem_page_readonly(void *vaddr)
153 {
154 pte_t *pte, ptev;
155 unsigned long address = (unsigned long)vaddr;
156 unsigned int level;
157
158 pte = lookup_address(address, &level);
159 if (pte == NULL)
160 return; /* vaddr missing */
161
162 ptev = pte_wrprotect(*pte);
163
164 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
165 BUG();
166 }
167
168 void make_lowmem_page_readwrite(void *vaddr)
169 {
170 pte_t *pte, ptev;
171 unsigned long address = (unsigned long)vaddr;
172 unsigned int level;
173
174 pte = lookup_address(address, &level);
175 if (pte == NULL)
176 return; /* vaddr missing */
177
178 ptev = pte_mkwrite(*pte);
179
180 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
181 BUG();
182 }
183
184
185 static bool xen_page_pinned(void *ptr)
186 {
187 struct page *page = virt_to_page(ptr);
188
189 return PagePinned(page);
190 }
191
192 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
193 {
194 struct multicall_space mcs;
195 struct mmu_update *u;
196
197 mcs = xen_mc_entry(sizeof(*u));
198 u = mcs.args;
199
200 /* ptep might be kmapped when using 32-bit HIGHPTE */
201 u->ptr = virt_to_machine(ptep).maddr;
202 u->val = pte_val_ma(pteval);
203
204 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
205
206 xen_mc_issue(PARAVIRT_LAZY_MMU);
207 }
208 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
209
210 static void xen_extend_mmu_update(const struct mmu_update *update)
211 {
212 struct multicall_space mcs;
213 struct mmu_update *u;
214
215 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
216
217 if (mcs.mc != NULL) {
218 mcs.mc->args[1]++;
219 } else {
220 mcs = __xen_mc_entry(sizeof(*u));
221 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
222 }
223
224 u = mcs.args;
225 *u = *update;
226 }
227
228 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
229 {
230 struct mmu_update u;
231
232 preempt_disable();
233
234 xen_mc_batch();
235
236 /* ptr may be ioremapped for 64-bit pagetable setup */
237 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
238 u.val = pmd_val_ma(val);
239 xen_extend_mmu_update(&u);
240
241 xen_mc_issue(PARAVIRT_LAZY_MMU);
242
243 preempt_enable();
244 }
245
246 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
247 {
248 /* If page is not pinned, we can just update the entry
249 directly */
250 if (!xen_page_pinned(ptr)) {
251 *ptr = val;
252 return;
253 }
254
255 xen_set_pmd_hyper(ptr, val);
256 }
257
258 /*
259 * Associate a virtual page frame with a given physical page frame
260 * and protection flags for that frame.
261 */
262 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
263 {
264 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
265 }
266
267 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
268 {
269 struct mmu_update u;
270
271 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
272 return false;
273
274 xen_mc_batch();
275
276 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
277 u.val = pte_val_ma(pteval);
278 xen_extend_mmu_update(&u);
279
280 xen_mc_issue(PARAVIRT_LAZY_MMU);
281
282 return true;
283 }
284
285 static void xen_set_pte(pte_t *ptep, pte_t pteval)
286 {
287 if (!xen_batched_set_pte(ptep, pteval))
288 native_set_pte(ptep, pteval);
289 }
290
291 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
292 pte_t *ptep, pte_t pteval)
293 {
294 xen_set_pte(ptep, pteval);
295 }
296
297 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
298 unsigned long addr, pte_t *ptep)
299 {
300 /* Just return the pte as-is. We preserve the bits on commit */
301 return *ptep;
302 }
303
304 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
305 pte_t *ptep, pte_t pte)
306 {
307 struct mmu_update u;
308
309 xen_mc_batch();
310
311 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
312 u.val = pte_val_ma(pte);
313 xen_extend_mmu_update(&u);
314
315 xen_mc_issue(PARAVIRT_LAZY_MMU);
316 }
317
318 /* Assume pteval_t is equivalent to all the other *val_t types. */
319 static pteval_t pte_mfn_to_pfn(pteval_t val)
320 {
321 if (val & _PAGE_PRESENT) {
322 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
323 pteval_t flags = val & PTE_FLAGS_MASK;
324 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
325 }
326
327 return val;
328 }
329
330 static pteval_t pte_pfn_to_mfn(pteval_t val)
331 {
332 if (val & _PAGE_PRESENT) {
333 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
334 pteval_t flags = val & PTE_FLAGS_MASK;
335 unsigned long mfn;
336
337 if (!xen_feature(XENFEAT_auto_translated_physmap))
338 mfn = get_phys_to_machine(pfn);
339 else
340 mfn = pfn;
341 /*
342 * If there's no mfn for the pfn, then just create an
343 * empty non-present pte. Unfortunately this loses
344 * information about the original pfn, so
345 * pte_mfn_to_pfn is asymmetric.
346 */
347 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
348 mfn = 0;
349 flags = 0;
350 } else {
351 /*
352 * Paramount to do this test _after_ the
353 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
354 * IDENTITY_FRAME_BIT resolves to true.
355 */
356 mfn &= ~FOREIGN_FRAME_BIT;
357 if (mfn & IDENTITY_FRAME_BIT) {
358 mfn &= ~IDENTITY_FRAME_BIT;
359 flags |= _PAGE_IOMAP;
360 }
361 }
362 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
363 }
364
365 return val;
366 }
367
368 static pteval_t iomap_pte(pteval_t val)
369 {
370 if (val & _PAGE_PRESENT) {
371 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 pteval_t flags = val & PTE_FLAGS_MASK;
373
374 /* We assume the pte frame number is a MFN, so
375 just use it as-is. */
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 }
378
379 return val;
380 }
381
382 static pteval_t xen_pte_val(pte_t pte)
383 {
384 pteval_t pteval = pte.pte;
385
386 /* If this is a WC pte, convert back from Xen WC to Linux WC */
387 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
388 WARN_ON(!pat_enabled);
389 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
390 }
391
392 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
393 return pteval;
394
395 return pte_mfn_to_pfn(pteval);
396 }
397 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
398
399 static pgdval_t xen_pgd_val(pgd_t pgd)
400 {
401 return pte_mfn_to_pfn(pgd.pgd);
402 }
403 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
404
405 /*
406 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
407 * are reserved for now, to correspond to the Intel-reserved PAT
408 * types.
409 *
410 * We expect Linux's PAT set as follows:
411 *
412 * Idx PTE flags Linux Xen Default
413 * 0 WB WB WB
414 * 1 PWT WC WT WT
415 * 2 PCD UC- UC- UC-
416 * 3 PCD PWT UC UC UC
417 * 4 PAT WB WC WB
418 * 5 PAT PWT WC WP WT
419 * 6 PAT PCD UC- UC UC-
420 * 7 PAT PCD PWT UC UC UC
421 */
422
423 void xen_set_pat(u64 pat)
424 {
425 /* We expect Linux to use a PAT setting of
426 * UC UC- WC WB (ignoring the PAT flag) */
427 WARN_ON(pat != 0x0007010600070106ull);
428 }
429
430 static pte_t xen_make_pte(pteval_t pte)
431 {
432 phys_addr_t addr = (pte & PTE_PFN_MASK);
433
434 /* If Linux is trying to set a WC pte, then map to the Xen WC.
435 * If _PAGE_PAT is set, then it probably means it is really
436 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
437 * things work out OK...
438 *
439 * (We should never see kernel mappings with _PAGE_PSE set,
440 * but we could see hugetlbfs mappings, I think.).
441 */
442 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
443 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
444 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
445 }
446
447 /*
448 * Unprivileged domains are allowed to do IOMAPpings for
449 * PCI passthrough, but not map ISA space. The ISA
450 * mappings are just dummy local mappings to keep other
451 * parts of the kernel happy.
452 */
453 if (unlikely(pte & _PAGE_IOMAP) &&
454 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
455 pte = iomap_pte(pte);
456 } else {
457 pte &= ~_PAGE_IOMAP;
458 pte = pte_pfn_to_mfn(pte);
459 }
460
461 return native_make_pte(pte);
462 }
463 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
464
465 #ifdef CONFIG_XEN_DEBUG
466 pte_t xen_make_pte_debug(pteval_t pte)
467 {
468 phys_addr_t addr = (pte & PTE_PFN_MASK);
469 phys_addr_t other_addr;
470 bool io_page = false;
471 pte_t _pte;
472
473 if (pte & _PAGE_IOMAP)
474 io_page = true;
475
476 _pte = xen_make_pte(pte);
477
478 if (!addr)
479 return _pte;
480
481 if (io_page &&
482 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
483 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
484 WARN_ONCE(addr != other_addr,
485 "0x%lx is using VM_IO, but it is 0x%lx!\n",
486 (unsigned long)addr, (unsigned long)other_addr);
487 } else {
488 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
489 other_addr = (_pte.pte & PTE_PFN_MASK);
490 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
491 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
492 (unsigned long)addr);
493 }
494
495 return _pte;
496 }
497 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
498 #endif
499
500 static pgd_t xen_make_pgd(pgdval_t pgd)
501 {
502 pgd = pte_pfn_to_mfn(pgd);
503 return native_make_pgd(pgd);
504 }
505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
506
507 static pmdval_t xen_pmd_val(pmd_t pmd)
508 {
509 return pte_mfn_to_pfn(pmd.pmd);
510 }
511 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
512
513 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
514 {
515 struct mmu_update u;
516
517 preempt_disable();
518
519 xen_mc_batch();
520
521 /* ptr may be ioremapped for 64-bit pagetable setup */
522 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
523 u.val = pud_val_ma(val);
524 xen_extend_mmu_update(&u);
525
526 xen_mc_issue(PARAVIRT_LAZY_MMU);
527
528 preempt_enable();
529 }
530
531 static void xen_set_pud(pud_t *ptr, pud_t val)
532 {
533 /* If page is not pinned, we can just update the entry
534 directly */
535 if (!xen_page_pinned(ptr)) {
536 *ptr = val;
537 return;
538 }
539
540 xen_set_pud_hyper(ptr, val);
541 }
542
543 #ifdef CONFIG_X86_PAE
544 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
545 {
546 set_64bit((u64 *)ptep, native_pte_val(pte));
547 }
548
549 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
550 {
551 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
552 native_pte_clear(mm, addr, ptep);
553 }
554
555 static void xen_pmd_clear(pmd_t *pmdp)
556 {
557 set_pmd(pmdp, __pmd(0));
558 }
559 #endif /* CONFIG_X86_PAE */
560
561 static pmd_t xen_make_pmd(pmdval_t pmd)
562 {
563 pmd = pte_pfn_to_mfn(pmd);
564 return native_make_pmd(pmd);
565 }
566 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
567
568 #if PAGETABLE_LEVELS == 4
569 static pudval_t xen_pud_val(pud_t pud)
570 {
571 return pte_mfn_to_pfn(pud.pud);
572 }
573 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
574
575 static pud_t xen_make_pud(pudval_t pud)
576 {
577 pud = pte_pfn_to_mfn(pud);
578
579 return native_make_pud(pud);
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
582
583 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
584 {
585 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
586 unsigned offset = pgd - pgd_page;
587 pgd_t *user_ptr = NULL;
588
589 if (offset < pgd_index(USER_LIMIT)) {
590 struct page *page = virt_to_page(pgd_page);
591 user_ptr = (pgd_t *)page->private;
592 if (user_ptr)
593 user_ptr += offset;
594 }
595
596 return user_ptr;
597 }
598
599 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
600 {
601 struct mmu_update u;
602
603 u.ptr = virt_to_machine(ptr).maddr;
604 u.val = pgd_val_ma(val);
605 xen_extend_mmu_update(&u);
606 }
607
608 /*
609 * Raw hypercall-based set_pgd, intended for in early boot before
610 * there's a page structure. This implies:
611 * 1. The only existing pagetable is the kernel's
612 * 2. It is always pinned
613 * 3. It has no user pagetable attached to it
614 */
615 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
616 {
617 preempt_disable();
618
619 xen_mc_batch();
620
621 __xen_set_pgd_hyper(ptr, val);
622
623 xen_mc_issue(PARAVIRT_LAZY_MMU);
624
625 preempt_enable();
626 }
627
628 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
629 {
630 pgd_t *user_ptr = xen_get_user_pgd(ptr);
631
632 /* If page is not pinned, we can just update the entry
633 directly */
634 if (!xen_page_pinned(ptr)) {
635 *ptr = val;
636 if (user_ptr) {
637 WARN_ON(xen_page_pinned(user_ptr));
638 *user_ptr = val;
639 }
640 return;
641 }
642
643 /* If it's pinned, then we can at least batch the kernel and
644 user updates together. */
645 xen_mc_batch();
646
647 __xen_set_pgd_hyper(ptr, val);
648 if (user_ptr)
649 __xen_set_pgd_hyper(user_ptr, val);
650
651 xen_mc_issue(PARAVIRT_LAZY_MMU);
652 }
653 #endif /* PAGETABLE_LEVELS == 4 */
654
655 /*
656 * (Yet another) pagetable walker. This one is intended for pinning a
657 * pagetable. This means that it walks a pagetable and calls the
658 * callback function on each page it finds making up the page table,
659 * at every level. It walks the entire pagetable, but it only bothers
660 * pinning pte pages which are below limit. In the normal case this
661 * will be STACK_TOP_MAX, but at boot we need to pin up to
662 * FIXADDR_TOP.
663 *
664 * For 32-bit the important bit is that we don't pin beyond there,
665 * because then we start getting into Xen's ptes.
666 *
667 * For 64-bit, we must skip the Xen hole in the middle of the address
668 * space, just after the big x86-64 virtual hole.
669 */
670 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
671 int (*func)(struct mm_struct *mm, struct page *,
672 enum pt_level),
673 unsigned long limit)
674 {
675 int flush = 0;
676 unsigned hole_low, hole_high;
677 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
678 unsigned pgdidx, pudidx, pmdidx;
679
680 /* The limit is the last byte to be touched */
681 limit--;
682 BUG_ON(limit >= FIXADDR_TOP);
683
684 if (xen_feature(XENFEAT_auto_translated_physmap))
685 return 0;
686
687 /*
688 * 64-bit has a great big hole in the middle of the address
689 * space, which contains the Xen mappings. On 32-bit these
690 * will end up making a zero-sized hole and so is a no-op.
691 */
692 hole_low = pgd_index(USER_LIMIT);
693 hole_high = pgd_index(PAGE_OFFSET);
694
695 pgdidx_limit = pgd_index(limit);
696 #if PTRS_PER_PUD > 1
697 pudidx_limit = pud_index(limit);
698 #else
699 pudidx_limit = 0;
700 #endif
701 #if PTRS_PER_PMD > 1
702 pmdidx_limit = pmd_index(limit);
703 #else
704 pmdidx_limit = 0;
705 #endif
706
707 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
708 pud_t *pud;
709
710 if (pgdidx >= hole_low && pgdidx < hole_high)
711 continue;
712
713 if (!pgd_val(pgd[pgdidx]))
714 continue;
715
716 pud = pud_offset(&pgd[pgdidx], 0);
717
718 if (PTRS_PER_PUD > 1) /* not folded */
719 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
720
721 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
722 pmd_t *pmd;
723
724 if (pgdidx == pgdidx_limit &&
725 pudidx > pudidx_limit)
726 goto out;
727
728 if (pud_none(pud[pudidx]))
729 continue;
730
731 pmd = pmd_offset(&pud[pudidx], 0);
732
733 if (PTRS_PER_PMD > 1) /* not folded */
734 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
735
736 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
737 struct page *pte;
738
739 if (pgdidx == pgdidx_limit &&
740 pudidx == pudidx_limit &&
741 pmdidx > pmdidx_limit)
742 goto out;
743
744 if (pmd_none(pmd[pmdidx]))
745 continue;
746
747 pte = pmd_page(pmd[pmdidx]);
748 flush |= (*func)(mm, pte, PT_PTE);
749 }
750 }
751 }
752
753 out:
754 /* Do the top level last, so that the callbacks can use it as
755 a cue to do final things like tlb flushes. */
756 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
757
758 return flush;
759 }
760
761 static int xen_pgd_walk(struct mm_struct *mm,
762 int (*func)(struct mm_struct *mm, struct page *,
763 enum pt_level),
764 unsigned long limit)
765 {
766 return __xen_pgd_walk(mm, mm->pgd, func, limit);
767 }
768
769 /* If we're using split pte locks, then take the page's lock and
770 return a pointer to it. Otherwise return NULL. */
771 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
772 {
773 spinlock_t *ptl = NULL;
774
775 #if USE_SPLIT_PTLOCKS
776 ptl = __pte_lockptr(page);
777 spin_lock_nest_lock(ptl, &mm->page_table_lock);
778 #endif
779
780 return ptl;
781 }
782
783 static void xen_pte_unlock(void *v)
784 {
785 spinlock_t *ptl = v;
786 spin_unlock(ptl);
787 }
788
789 static void xen_do_pin(unsigned level, unsigned long pfn)
790 {
791 struct mmuext_op *op;
792 struct multicall_space mcs;
793
794 mcs = __xen_mc_entry(sizeof(*op));
795 op = mcs.args;
796 op->cmd = level;
797 op->arg1.mfn = pfn_to_mfn(pfn);
798 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
799 }
800
801 static int xen_pin_page(struct mm_struct *mm, struct page *page,
802 enum pt_level level)
803 {
804 unsigned pgfl = TestSetPagePinned(page);
805 int flush;
806
807 if (pgfl)
808 flush = 0; /* already pinned */
809 else if (PageHighMem(page))
810 /* kmaps need flushing if we found an unpinned
811 highpage */
812 flush = 1;
813 else {
814 void *pt = lowmem_page_address(page);
815 unsigned long pfn = page_to_pfn(page);
816 struct multicall_space mcs = __xen_mc_entry(0);
817 spinlock_t *ptl;
818
819 flush = 0;
820
821 /*
822 * We need to hold the pagetable lock between the time
823 * we make the pagetable RO and when we actually pin
824 * it. If we don't, then other users may come in and
825 * attempt to update the pagetable by writing it,
826 * which will fail because the memory is RO but not
827 * pinned, so Xen won't do the trap'n'emulate.
828 *
829 * If we're using split pte locks, we can't hold the
830 * entire pagetable's worth of locks during the
831 * traverse, because we may wrap the preempt count (8
832 * bits). The solution is to mark RO and pin each PTE
833 * page while holding the lock. This means the number
834 * of locks we end up holding is never more than a
835 * batch size (~32 entries, at present).
836 *
837 * If we're not using split pte locks, we needn't pin
838 * the PTE pages independently, because we're
839 * protected by the overall pagetable lock.
840 */
841 ptl = NULL;
842 if (level == PT_PTE)
843 ptl = xen_pte_lock(page, mm);
844
845 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
846 pfn_pte(pfn, PAGE_KERNEL_RO),
847 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
848
849 if (ptl) {
850 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
851
852 /* Queue a deferred unlock for when this batch
853 is completed. */
854 xen_mc_callback(xen_pte_unlock, ptl);
855 }
856 }
857
858 return flush;
859 }
860
861 /* This is called just after a mm has been created, but it has not
862 been used yet. We need to make sure that its pagetable is all
863 read-only, and can be pinned. */
864 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
865 {
866 xen_mc_batch();
867
868 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
869 /* re-enable interrupts for flushing */
870 xen_mc_issue(0);
871
872 kmap_flush_unused();
873
874 xen_mc_batch();
875 }
876
877 #ifdef CONFIG_X86_64
878 {
879 pgd_t *user_pgd = xen_get_user_pgd(pgd);
880
881 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
882
883 if (user_pgd) {
884 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
885 xen_do_pin(MMUEXT_PIN_L4_TABLE,
886 PFN_DOWN(__pa(user_pgd)));
887 }
888 }
889 #else /* CONFIG_X86_32 */
890 #ifdef CONFIG_X86_PAE
891 /* Need to make sure unshared kernel PMD is pinnable */
892 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
893 PT_PMD);
894 #endif
895 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
896 #endif /* CONFIG_X86_64 */
897 xen_mc_issue(0);
898 }
899
900 static void xen_pgd_pin(struct mm_struct *mm)
901 {
902 __xen_pgd_pin(mm, mm->pgd);
903 }
904
905 /*
906 * On save, we need to pin all pagetables to make sure they get their
907 * mfns turned into pfns. Search the list for any unpinned pgds and pin
908 * them (unpinned pgds are not currently in use, probably because the
909 * process is under construction or destruction).
910 *
911 * Expected to be called in stop_machine() ("equivalent to taking
912 * every spinlock in the system"), so the locking doesn't really
913 * matter all that much.
914 */
915 void xen_mm_pin_all(void)
916 {
917 struct page *page;
918
919 spin_lock(&pgd_lock);
920
921 list_for_each_entry(page, &pgd_list, lru) {
922 if (!PagePinned(page)) {
923 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
924 SetPageSavePinned(page);
925 }
926 }
927
928 spin_unlock(&pgd_lock);
929 }
930
931 /*
932 * The init_mm pagetable is really pinned as soon as its created, but
933 * that's before we have page structures to store the bits. So do all
934 * the book-keeping now.
935 */
936 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
937 enum pt_level level)
938 {
939 SetPagePinned(page);
940 return 0;
941 }
942
943 static void __init xen_mark_init_mm_pinned(void)
944 {
945 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
946 }
947
948 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
949 enum pt_level level)
950 {
951 unsigned pgfl = TestClearPagePinned(page);
952
953 if (pgfl && !PageHighMem(page)) {
954 void *pt = lowmem_page_address(page);
955 unsigned long pfn = page_to_pfn(page);
956 spinlock_t *ptl = NULL;
957 struct multicall_space mcs;
958
959 /*
960 * Do the converse to pin_page. If we're using split
961 * pte locks, we must be holding the lock for while
962 * the pte page is unpinned but still RO to prevent
963 * concurrent updates from seeing it in this
964 * partially-pinned state.
965 */
966 if (level == PT_PTE) {
967 ptl = xen_pte_lock(page, mm);
968
969 if (ptl)
970 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
971 }
972
973 mcs = __xen_mc_entry(0);
974
975 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
976 pfn_pte(pfn, PAGE_KERNEL),
977 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
978
979 if (ptl) {
980 /* unlock when batch completed */
981 xen_mc_callback(xen_pte_unlock, ptl);
982 }
983 }
984
985 return 0; /* never need to flush on unpin */
986 }
987
988 /* Release a pagetables pages back as normal RW */
989 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
990 {
991 xen_mc_batch();
992
993 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
994
995 #ifdef CONFIG_X86_64
996 {
997 pgd_t *user_pgd = xen_get_user_pgd(pgd);
998
999 if (user_pgd) {
1000 xen_do_pin(MMUEXT_UNPIN_TABLE,
1001 PFN_DOWN(__pa(user_pgd)));
1002 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1003 }
1004 }
1005 #endif
1006
1007 #ifdef CONFIG_X86_PAE
1008 /* Need to make sure unshared kernel PMD is unpinned */
1009 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1010 PT_PMD);
1011 #endif
1012
1013 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1014
1015 xen_mc_issue(0);
1016 }
1017
1018 static void xen_pgd_unpin(struct mm_struct *mm)
1019 {
1020 __xen_pgd_unpin(mm, mm->pgd);
1021 }
1022
1023 /*
1024 * On resume, undo any pinning done at save, so that the rest of the
1025 * kernel doesn't see any unexpected pinned pagetables.
1026 */
1027 void xen_mm_unpin_all(void)
1028 {
1029 struct page *page;
1030
1031 spin_lock(&pgd_lock);
1032
1033 list_for_each_entry(page, &pgd_list, lru) {
1034 if (PageSavePinned(page)) {
1035 BUG_ON(!PagePinned(page));
1036 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1037 ClearPageSavePinned(page);
1038 }
1039 }
1040
1041 spin_unlock(&pgd_lock);
1042 }
1043
1044 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1045 {
1046 spin_lock(&next->page_table_lock);
1047 xen_pgd_pin(next);
1048 spin_unlock(&next->page_table_lock);
1049 }
1050
1051 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1052 {
1053 spin_lock(&mm->page_table_lock);
1054 xen_pgd_pin(mm);
1055 spin_unlock(&mm->page_table_lock);
1056 }
1057
1058
1059 #ifdef CONFIG_SMP
1060 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1061 we need to repoint it somewhere else before we can unpin it. */
1062 static void drop_other_mm_ref(void *info)
1063 {
1064 struct mm_struct *mm = info;
1065 struct mm_struct *active_mm;
1066
1067 active_mm = percpu_read(cpu_tlbstate.active_mm);
1068
1069 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1070 leave_mm(smp_processor_id());
1071
1072 /* If this cpu still has a stale cr3 reference, then make sure
1073 it has been flushed. */
1074 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1075 load_cr3(swapper_pg_dir);
1076 }
1077
1078 static void xen_drop_mm_ref(struct mm_struct *mm)
1079 {
1080 cpumask_var_t mask;
1081 unsigned cpu;
1082
1083 if (current->active_mm == mm) {
1084 if (current->mm == mm)
1085 load_cr3(swapper_pg_dir);
1086 else
1087 leave_mm(smp_processor_id());
1088 }
1089
1090 /* Get the "official" set of cpus referring to our pagetable. */
1091 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1092 for_each_online_cpu(cpu) {
1093 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1094 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1095 continue;
1096 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1097 }
1098 return;
1099 }
1100 cpumask_copy(mask, mm_cpumask(mm));
1101
1102 /* It's possible that a vcpu may have a stale reference to our
1103 cr3, because its in lazy mode, and it hasn't yet flushed
1104 its set of pending hypercalls yet. In this case, we can
1105 look at its actual current cr3 value, and force it to flush
1106 if needed. */
1107 for_each_online_cpu(cpu) {
1108 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1109 cpumask_set_cpu(cpu, mask);
1110 }
1111
1112 if (!cpumask_empty(mask))
1113 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1114 free_cpumask_var(mask);
1115 }
1116 #else
1117 static void xen_drop_mm_ref(struct mm_struct *mm)
1118 {
1119 if (current->active_mm == mm)
1120 load_cr3(swapper_pg_dir);
1121 }
1122 #endif
1123
1124 /*
1125 * While a process runs, Xen pins its pagetables, which means that the
1126 * hypervisor forces it to be read-only, and it controls all updates
1127 * to it. This means that all pagetable updates have to go via the
1128 * hypervisor, which is moderately expensive.
1129 *
1130 * Since we're pulling the pagetable down, we switch to use init_mm,
1131 * unpin old process pagetable and mark it all read-write, which
1132 * allows further operations on it to be simple memory accesses.
1133 *
1134 * The only subtle point is that another CPU may be still using the
1135 * pagetable because of lazy tlb flushing. This means we need need to
1136 * switch all CPUs off this pagetable before we can unpin it.
1137 */
1138 static void xen_exit_mmap(struct mm_struct *mm)
1139 {
1140 get_cpu(); /* make sure we don't move around */
1141 xen_drop_mm_ref(mm);
1142 put_cpu();
1143
1144 spin_lock(&mm->page_table_lock);
1145
1146 /* pgd may not be pinned in the error exit path of execve */
1147 if (xen_page_pinned(mm->pgd))
1148 xen_pgd_unpin(mm);
1149
1150 spin_unlock(&mm->page_table_lock);
1151 }
1152
1153 static void __init xen_pagetable_setup_start(pgd_t *base)
1154 {
1155 }
1156
1157 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1158 {
1159 /* reserve the range used */
1160 native_pagetable_reserve(start, end);
1161
1162 /* set as RW the rest */
1163 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1164 PFN_PHYS(pgt_buf_top));
1165 while (end < PFN_PHYS(pgt_buf_top)) {
1166 make_lowmem_page_readwrite(__va(end));
1167 end += PAGE_SIZE;
1168 }
1169 }
1170
1171 static void xen_post_allocator_init(void);
1172
1173 static void __init xen_pagetable_setup_done(pgd_t *base)
1174 {
1175 xen_setup_shared_info();
1176 xen_post_allocator_init();
1177 }
1178
1179 static void xen_write_cr2(unsigned long cr2)
1180 {
1181 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1182 }
1183
1184 static unsigned long xen_read_cr2(void)
1185 {
1186 return percpu_read(xen_vcpu)->arch.cr2;
1187 }
1188
1189 unsigned long xen_read_cr2_direct(void)
1190 {
1191 return percpu_read(xen_vcpu_info.arch.cr2);
1192 }
1193
1194 static void xen_flush_tlb(void)
1195 {
1196 struct mmuext_op *op;
1197 struct multicall_space mcs;
1198
1199 preempt_disable();
1200
1201 mcs = xen_mc_entry(sizeof(*op));
1202
1203 op = mcs.args;
1204 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1205 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1206
1207 xen_mc_issue(PARAVIRT_LAZY_MMU);
1208
1209 preempt_enable();
1210 }
1211
1212 static void xen_flush_tlb_single(unsigned long addr)
1213 {
1214 struct mmuext_op *op;
1215 struct multicall_space mcs;
1216
1217 preempt_disable();
1218
1219 mcs = xen_mc_entry(sizeof(*op));
1220 op = mcs.args;
1221 op->cmd = MMUEXT_INVLPG_LOCAL;
1222 op->arg1.linear_addr = addr & PAGE_MASK;
1223 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1224
1225 xen_mc_issue(PARAVIRT_LAZY_MMU);
1226
1227 preempt_enable();
1228 }
1229
1230 static void xen_flush_tlb_others(const struct cpumask *cpus,
1231 struct mm_struct *mm, unsigned long va)
1232 {
1233 struct {
1234 struct mmuext_op op;
1235 DECLARE_BITMAP(mask, num_processors);
1236 } *args;
1237 struct multicall_space mcs;
1238
1239 if (cpumask_empty(cpus))
1240 return; /* nothing to do */
1241
1242 mcs = xen_mc_entry(sizeof(*args));
1243 args = mcs.args;
1244 args->op.arg2.vcpumask = to_cpumask(args->mask);
1245
1246 /* Remove us, and any offline CPUS. */
1247 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1248 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1249
1250 if (va == TLB_FLUSH_ALL) {
1251 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1252 } else {
1253 args->op.cmd = MMUEXT_INVLPG_MULTI;
1254 args->op.arg1.linear_addr = va;
1255 }
1256
1257 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1258
1259 xen_mc_issue(PARAVIRT_LAZY_MMU);
1260 }
1261
1262 static unsigned long xen_read_cr3(void)
1263 {
1264 return percpu_read(xen_cr3);
1265 }
1266
1267 static void set_current_cr3(void *v)
1268 {
1269 percpu_write(xen_current_cr3, (unsigned long)v);
1270 }
1271
1272 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1273 {
1274 struct mmuext_op *op;
1275 struct multicall_space mcs;
1276 unsigned long mfn;
1277
1278 if (cr3)
1279 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1280 else
1281 mfn = 0;
1282
1283 WARN_ON(mfn == 0 && kernel);
1284
1285 mcs = __xen_mc_entry(sizeof(*op));
1286
1287 op = mcs.args;
1288 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1289 op->arg1.mfn = mfn;
1290
1291 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1292
1293 if (kernel) {
1294 percpu_write(xen_cr3, cr3);
1295
1296 /* Update xen_current_cr3 once the batch has actually
1297 been submitted. */
1298 xen_mc_callback(set_current_cr3, (void *)cr3);
1299 }
1300 }
1301
1302 static void xen_write_cr3(unsigned long cr3)
1303 {
1304 BUG_ON(preemptible());
1305
1306 xen_mc_batch(); /* disables interrupts */
1307
1308 /* Update while interrupts are disabled, so its atomic with
1309 respect to ipis */
1310 percpu_write(xen_cr3, cr3);
1311
1312 __xen_write_cr3(true, cr3);
1313
1314 #ifdef CONFIG_X86_64
1315 {
1316 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1317 if (user_pgd)
1318 __xen_write_cr3(false, __pa(user_pgd));
1319 else
1320 __xen_write_cr3(false, 0);
1321 }
1322 #endif
1323
1324 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1325 }
1326
1327 static int xen_pgd_alloc(struct mm_struct *mm)
1328 {
1329 pgd_t *pgd = mm->pgd;
1330 int ret = 0;
1331
1332 BUG_ON(PagePinned(virt_to_page(pgd)));
1333
1334 #ifdef CONFIG_X86_64
1335 {
1336 struct page *page = virt_to_page(pgd);
1337 pgd_t *user_pgd;
1338
1339 BUG_ON(page->private != 0);
1340
1341 ret = -ENOMEM;
1342
1343 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1344 page->private = (unsigned long)user_pgd;
1345
1346 if (user_pgd != NULL) {
1347 user_pgd[pgd_index(VSYSCALL_START)] =
1348 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1349 ret = 0;
1350 }
1351
1352 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1353 }
1354 #endif
1355
1356 return ret;
1357 }
1358
1359 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1360 {
1361 #ifdef CONFIG_X86_64
1362 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1363
1364 if (user_pgd)
1365 free_page((unsigned long)user_pgd);
1366 #endif
1367 }
1368
1369 #ifdef CONFIG_X86_32
1370 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1371 {
1372 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1373 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1374 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1375 pte_val_ma(pte));
1376
1377 return pte;
1378 }
1379 #else /* CONFIG_X86_64 */
1380 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1381 {
1382 unsigned long pfn = pte_pfn(pte);
1383
1384 /*
1385 * If the new pfn is within the range of the newly allocated
1386 * kernel pagetable, and it isn't being mapped into an
1387 * early_ioremap fixmap slot as a freshly allocated page, make sure
1388 * it is RO.
1389 */
1390 if (((!is_early_ioremap_ptep(ptep) &&
1391 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1392 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1393 pte = pte_wrprotect(pte);
1394
1395 return pte;
1396 }
1397 #endif /* CONFIG_X86_64 */
1398
1399 /* Init-time set_pte while constructing initial pagetables, which
1400 doesn't allow RO pagetable pages to be remapped RW */
1401 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1402 {
1403 pte = mask_rw_pte(ptep, pte);
1404
1405 xen_set_pte(ptep, pte);
1406 }
1407
1408 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1409 {
1410 struct mmuext_op op;
1411 op.cmd = cmd;
1412 op.arg1.mfn = pfn_to_mfn(pfn);
1413 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1414 BUG();
1415 }
1416
1417 /* Early in boot, while setting up the initial pagetable, assume
1418 everything is pinned. */
1419 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1420 {
1421 #ifdef CONFIG_FLATMEM
1422 BUG_ON(mem_map); /* should only be used early */
1423 #endif
1424 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1425 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1426 }
1427
1428 /* Used for pmd and pud */
1429 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1430 {
1431 #ifdef CONFIG_FLATMEM
1432 BUG_ON(mem_map); /* should only be used early */
1433 #endif
1434 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1435 }
1436
1437 /* Early release_pte assumes that all pts are pinned, since there's
1438 only init_mm and anything attached to that is pinned. */
1439 static void __init xen_release_pte_init(unsigned long pfn)
1440 {
1441 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1442 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1443 }
1444
1445 static void __init xen_release_pmd_init(unsigned long pfn)
1446 {
1447 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1448 }
1449
1450 /* This needs to make sure the new pte page is pinned iff its being
1451 attached to a pinned pagetable. */
1452 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1453 {
1454 struct page *page = pfn_to_page(pfn);
1455
1456 if (PagePinned(virt_to_page(mm->pgd))) {
1457 SetPagePinned(page);
1458
1459 if (!PageHighMem(page)) {
1460 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1461 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1462 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1463 } else {
1464 /* make sure there are no stray mappings of
1465 this page */
1466 kmap_flush_unused();
1467 }
1468 }
1469 }
1470
1471 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1472 {
1473 xen_alloc_ptpage(mm, pfn, PT_PTE);
1474 }
1475
1476 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1477 {
1478 xen_alloc_ptpage(mm, pfn, PT_PMD);
1479 }
1480
1481 /* This should never happen until we're OK to use struct page */
1482 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1483 {
1484 struct page *page = pfn_to_page(pfn);
1485
1486 if (PagePinned(page)) {
1487 if (!PageHighMem(page)) {
1488 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1489 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1490 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1491 }
1492 ClearPagePinned(page);
1493 }
1494 }
1495
1496 static void xen_release_pte(unsigned long pfn)
1497 {
1498 xen_release_ptpage(pfn, PT_PTE);
1499 }
1500
1501 static void xen_release_pmd(unsigned long pfn)
1502 {
1503 xen_release_ptpage(pfn, PT_PMD);
1504 }
1505
1506 #if PAGETABLE_LEVELS == 4
1507 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1508 {
1509 xen_alloc_ptpage(mm, pfn, PT_PUD);
1510 }
1511
1512 static void xen_release_pud(unsigned long pfn)
1513 {
1514 xen_release_ptpage(pfn, PT_PUD);
1515 }
1516 #endif
1517
1518 void __init xen_reserve_top(void)
1519 {
1520 #ifdef CONFIG_X86_32
1521 unsigned long top = HYPERVISOR_VIRT_START;
1522 struct xen_platform_parameters pp;
1523
1524 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1525 top = pp.virt_start;
1526
1527 reserve_top_address(-top);
1528 #endif /* CONFIG_X86_32 */
1529 }
1530
1531 /*
1532 * Like __va(), but returns address in the kernel mapping (which is
1533 * all we have until the physical memory mapping has been set up.
1534 */
1535 static void *__ka(phys_addr_t paddr)
1536 {
1537 #ifdef CONFIG_X86_64
1538 return (void *)(paddr + __START_KERNEL_map);
1539 #else
1540 return __va(paddr);
1541 #endif
1542 }
1543
1544 /* Convert a machine address to physical address */
1545 static unsigned long m2p(phys_addr_t maddr)
1546 {
1547 phys_addr_t paddr;
1548
1549 maddr &= PTE_PFN_MASK;
1550 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1551
1552 return paddr;
1553 }
1554
1555 /* Convert a machine address to kernel virtual */
1556 static void *m2v(phys_addr_t maddr)
1557 {
1558 return __ka(m2p(maddr));
1559 }
1560
1561 /* Set the page permissions on an identity-mapped pages */
1562 static void set_page_prot(void *addr, pgprot_t prot)
1563 {
1564 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1565 pte_t pte = pfn_pte(pfn, prot);
1566
1567 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1568 BUG();
1569 }
1570
1571 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1572 {
1573 unsigned pmdidx, pteidx;
1574 unsigned ident_pte;
1575 unsigned long pfn;
1576
1577 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1578 PAGE_SIZE);
1579
1580 ident_pte = 0;
1581 pfn = 0;
1582 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1583 pte_t *pte_page;
1584
1585 /* Reuse or allocate a page of ptes */
1586 if (pmd_present(pmd[pmdidx]))
1587 pte_page = m2v(pmd[pmdidx].pmd);
1588 else {
1589 /* Check for free pte pages */
1590 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1591 break;
1592
1593 pte_page = &level1_ident_pgt[ident_pte];
1594 ident_pte += PTRS_PER_PTE;
1595
1596 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1597 }
1598
1599 /* Install mappings */
1600 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1601 pte_t pte;
1602
1603 #ifdef CONFIG_X86_32
1604 if (pfn > max_pfn_mapped)
1605 max_pfn_mapped = pfn;
1606 #endif
1607
1608 if (!pte_none(pte_page[pteidx]))
1609 continue;
1610
1611 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1612 pte_page[pteidx] = pte;
1613 }
1614 }
1615
1616 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1617 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1618
1619 set_page_prot(pmd, PAGE_KERNEL_RO);
1620 }
1621
1622 void __init xen_setup_machphys_mapping(void)
1623 {
1624 struct xen_machphys_mapping mapping;
1625 unsigned long machine_to_phys_nr_ents;
1626
1627 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1628 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1629 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1630 } else {
1631 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1632 }
1633 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1634 }
1635
1636 #ifdef CONFIG_X86_64
1637 static void convert_pfn_mfn(void *v)
1638 {
1639 pte_t *pte = v;
1640 int i;
1641
1642 /* All levels are converted the same way, so just treat them
1643 as ptes. */
1644 for (i = 0; i < PTRS_PER_PTE; i++)
1645 pte[i] = xen_make_pte(pte[i].pte);
1646 }
1647
1648 /*
1649 * Set up the initial kernel pagetable.
1650 *
1651 * We can construct this by grafting the Xen provided pagetable into
1652 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1653 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1654 * means that only the kernel has a physical mapping to start with -
1655 * but that's enough to get __va working. We need to fill in the rest
1656 * of the physical mapping once some sort of allocator has been set
1657 * up.
1658 */
1659 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1660 unsigned long max_pfn)
1661 {
1662 pud_t *l3;
1663 pmd_t *l2;
1664
1665 /* max_pfn_mapped is the last pfn mapped in the initial memory
1666 * mappings. Considering that on Xen after the kernel mappings we
1667 * have the mappings of some pages that don't exist in pfn space, we
1668 * set max_pfn_mapped to the last real pfn mapped. */
1669 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1670
1671 /* Zap identity mapping */
1672 init_level4_pgt[0] = __pgd(0);
1673
1674 /* Pre-constructed entries are in pfn, so convert to mfn */
1675 convert_pfn_mfn(init_level4_pgt);
1676 convert_pfn_mfn(level3_ident_pgt);
1677 convert_pfn_mfn(level3_kernel_pgt);
1678
1679 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1680 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1681
1682 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1683 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1684
1685 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1686 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1687 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1688
1689 /* Set up identity map */
1690 xen_map_identity_early(level2_ident_pgt, max_pfn);
1691
1692 /* Make pagetable pieces RO */
1693 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1694 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1695 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1696 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1697 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1698 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1699
1700 /* Pin down new L4 */
1701 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1702 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1703
1704 /* Unpin Xen-provided one */
1705 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1706
1707 /* Switch over */
1708 pgd = init_level4_pgt;
1709
1710 /*
1711 * At this stage there can be no user pgd, and no page
1712 * structure to attach it to, so make sure we just set kernel
1713 * pgd.
1714 */
1715 xen_mc_batch();
1716 __xen_write_cr3(true, __pa(pgd));
1717 xen_mc_issue(PARAVIRT_LAZY_CPU);
1718
1719 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1720 __pa(xen_start_info->pt_base +
1721 xen_start_info->nr_pt_frames * PAGE_SIZE),
1722 "XEN PAGETABLES");
1723
1724 return pgd;
1725 }
1726 #else /* !CONFIG_X86_64 */
1727 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1728 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1729
1730 static void __init xen_write_cr3_init(unsigned long cr3)
1731 {
1732 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1733
1734 BUG_ON(read_cr3() != __pa(initial_page_table));
1735 BUG_ON(cr3 != __pa(swapper_pg_dir));
1736
1737 /*
1738 * We are switching to swapper_pg_dir for the first time (from
1739 * initial_page_table) and therefore need to mark that page
1740 * read-only and then pin it.
1741 *
1742 * Xen disallows sharing of kernel PMDs for PAE
1743 * guests. Therefore we must copy the kernel PMD from
1744 * initial_page_table into a new kernel PMD to be used in
1745 * swapper_pg_dir.
1746 */
1747 swapper_kernel_pmd =
1748 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1749 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1750 sizeof(pmd_t) * PTRS_PER_PMD);
1751 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1752 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1753 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1754
1755 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1756 xen_write_cr3(cr3);
1757 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1758
1759 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1760 PFN_DOWN(__pa(initial_page_table)));
1761 set_page_prot(initial_page_table, PAGE_KERNEL);
1762 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1763
1764 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1765 }
1766
1767 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1768 unsigned long max_pfn)
1769 {
1770 pmd_t *kernel_pmd;
1771
1772 initial_kernel_pmd =
1773 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1774
1775 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1776 xen_start_info->nr_pt_frames * PAGE_SIZE +
1777 512*1024);
1778
1779 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1780 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1781
1782 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1783
1784 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1785 initial_page_table[KERNEL_PGD_BOUNDARY] =
1786 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1787
1788 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1789 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1790 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1791
1792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1793
1794 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1795 PFN_DOWN(__pa(initial_page_table)));
1796 xen_write_cr3(__pa(initial_page_table));
1797
1798 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1799 __pa(xen_start_info->pt_base +
1800 xen_start_info->nr_pt_frames * PAGE_SIZE),
1801 "XEN PAGETABLES");
1802
1803 return initial_page_table;
1804 }
1805 #endif /* CONFIG_X86_64 */
1806
1807 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1808
1809 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1810 {
1811 pte_t pte;
1812
1813 phys >>= PAGE_SHIFT;
1814
1815 switch (idx) {
1816 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1817 #ifdef CONFIG_X86_F00F_BUG
1818 case FIX_F00F_IDT:
1819 #endif
1820 #ifdef CONFIG_X86_32
1821 case FIX_WP_TEST:
1822 case FIX_VDSO:
1823 # ifdef CONFIG_HIGHMEM
1824 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1825 # endif
1826 #else
1827 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1828 #endif
1829 case FIX_TEXT_POKE0:
1830 case FIX_TEXT_POKE1:
1831 /* All local page mappings */
1832 pte = pfn_pte(phys, prot);
1833 break;
1834
1835 #ifdef CONFIG_X86_LOCAL_APIC
1836 case FIX_APIC_BASE: /* maps dummy local APIC */
1837 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1838 break;
1839 #endif
1840
1841 #ifdef CONFIG_X86_IO_APIC
1842 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1843 /*
1844 * We just don't map the IO APIC - all access is via
1845 * hypercalls. Keep the address in the pte for reference.
1846 */
1847 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1848 break;
1849 #endif
1850
1851 case FIX_PARAVIRT_BOOTMAP:
1852 /* This is an MFN, but it isn't an IO mapping from the
1853 IO domain */
1854 pte = mfn_pte(phys, prot);
1855 break;
1856
1857 default:
1858 /* By default, set_fixmap is used for hardware mappings */
1859 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1860 break;
1861 }
1862
1863 __native_set_fixmap(idx, pte);
1864
1865 #ifdef CONFIG_X86_64
1866 /* Replicate changes to map the vsyscall page into the user
1867 pagetable vsyscall mapping. */
1868 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1869 unsigned long vaddr = __fix_to_virt(idx);
1870 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1871 }
1872 #endif
1873 }
1874
1875 void __init xen_ident_map_ISA(void)
1876 {
1877 unsigned long pa;
1878
1879 /*
1880 * If we're dom0, then linear map the ISA machine addresses into
1881 * the kernel's address space.
1882 */
1883 if (!xen_initial_domain())
1884 return;
1885
1886 xen_raw_printk("Xen: setup ISA identity maps\n");
1887
1888 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1889 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1890
1891 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1892 BUG();
1893 }
1894
1895 xen_flush_tlb();
1896 }
1897
1898 static void __init xen_post_allocator_init(void)
1899 {
1900 #ifdef CONFIG_XEN_DEBUG
1901 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1902 #endif
1903 pv_mmu_ops.set_pte = xen_set_pte;
1904 pv_mmu_ops.set_pmd = xen_set_pmd;
1905 pv_mmu_ops.set_pud = xen_set_pud;
1906 #if PAGETABLE_LEVELS == 4
1907 pv_mmu_ops.set_pgd = xen_set_pgd;
1908 #endif
1909
1910 /* This will work as long as patching hasn't happened yet
1911 (which it hasn't) */
1912 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1913 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1914 pv_mmu_ops.release_pte = xen_release_pte;
1915 pv_mmu_ops.release_pmd = xen_release_pmd;
1916 #if PAGETABLE_LEVELS == 4
1917 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1918 pv_mmu_ops.release_pud = xen_release_pud;
1919 #endif
1920
1921 #ifdef CONFIG_X86_64
1922 SetPagePinned(virt_to_page(level3_user_vsyscall));
1923 #endif
1924 xen_mark_init_mm_pinned();
1925 }
1926
1927 static void xen_leave_lazy_mmu(void)
1928 {
1929 preempt_disable();
1930 xen_mc_flush();
1931 paravirt_leave_lazy_mmu();
1932 preempt_enable();
1933 }
1934
1935 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1936 .read_cr2 = xen_read_cr2,
1937 .write_cr2 = xen_write_cr2,
1938
1939 .read_cr3 = xen_read_cr3,
1940 #ifdef CONFIG_X86_32
1941 .write_cr3 = xen_write_cr3_init,
1942 #else
1943 .write_cr3 = xen_write_cr3,
1944 #endif
1945
1946 .flush_tlb_user = xen_flush_tlb,
1947 .flush_tlb_kernel = xen_flush_tlb,
1948 .flush_tlb_single = xen_flush_tlb_single,
1949 .flush_tlb_others = xen_flush_tlb_others,
1950
1951 .pte_update = paravirt_nop,
1952 .pte_update_defer = paravirt_nop,
1953
1954 .pgd_alloc = xen_pgd_alloc,
1955 .pgd_free = xen_pgd_free,
1956
1957 .alloc_pte = xen_alloc_pte_init,
1958 .release_pte = xen_release_pte_init,
1959 .alloc_pmd = xen_alloc_pmd_init,
1960 .release_pmd = xen_release_pmd_init,
1961
1962 .set_pte = xen_set_pte_init,
1963 .set_pte_at = xen_set_pte_at,
1964 .set_pmd = xen_set_pmd_hyper,
1965
1966 .ptep_modify_prot_start = __ptep_modify_prot_start,
1967 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1968
1969 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1970 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1971
1972 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1973 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1974
1975 #ifdef CONFIG_X86_PAE
1976 .set_pte_atomic = xen_set_pte_atomic,
1977 .pte_clear = xen_pte_clear,
1978 .pmd_clear = xen_pmd_clear,
1979 #endif /* CONFIG_X86_PAE */
1980 .set_pud = xen_set_pud_hyper,
1981
1982 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1983 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1984
1985 #if PAGETABLE_LEVELS == 4
1986 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1987 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1988 .set_pgd = xen_set_pgd_hyper,
1989
1990 .alloc_pud = xen_alloc_pmd_init,
1991 .release_pud = xen_release_pmd_init,
1992 #endif /* PAGETABLE_LEVELS == 4 */
1993
1994 .activate_mm = xen_activate_mm,
1995 .dup_mmap = xen_dup_mmap,
1996 .exit_mmap = xen_exit_mmap,
1997
1998 .lazy_mode = {
1999 .enter = paravirt_enter_lazy_mmu,
2000 .leave = xen_leave_lazy_mmu,
2001 },
2002
2003 .set_fixmap = xen_set_fixmap,
2004 };
2005
2006 void __init xen_init_mmu_ops(void)
2007 {
2008 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2009 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2010 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2011 pv_mmu_ops = xen_mmu_ops;
2012
2013 memset(dummy_mapping, 0xff, PAGE_SIZE);
2014 }
2015
2016 /* Protected by xen_reservation_lock. */
2017 #define MAX_CONTIG_ORDER 9 /* 2MB */
2018 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2019
2020 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2021 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2022 unsigned long *in_frames,
2023 unsigned long *out_frames)
2024 {
2025 int i;
2026 struct multicall_space mcs;
2027
2028 xen_mc_batch();
2029 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2030 mcs = __xen_mc_entry(0);
2031
2032 if (in_frames)
2033 in_frames[i] = virt_to_mfn(vaddr);
2034
2035 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2036 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2037
2038 if (out_frames)
2039 out_frames[i] = virt_to_pfn(vaddr);
2040 }
2041 xen_mc_issue(0);
2042 }
2043
2044 /*
2045 * Update the pfn-to-mfn mappings for a virtual address range, either to
2046 * point to an array of mfns, or contiguously from a single starting
2047 * mfn.
2048 */
2049 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2050 unsigned long *mfns,
2051 unsigned long first_mfn)
2052 {
2053 unsigned i, limit;
2054 unsigned long mfn;
2055
2056 xen_mc_batch();
2057
2058 limit = 1u << order;
2059 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2060 struct multicall_space mcs;
2061 unsigned flags;
2062
2063 mcs = __xen_mc_entry(0);
2064 if (mfns)
2065 mfn = mfns[i];
2066 else
2067 mfn = first_mfn + i;
2068
2069 if (i < (limit - 1))
2070 flags = 0;
2071 else {
2072 if (order == 0)
2073 flags = UVMF_INVLPG | UVMF_ALL;
2074 else
2075 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2076 }
2077
2078 MULTI_update_va_mapping(mcs.mc, vaddr,
2079 mfn_pte(mfn, PAGE_KERNEL), flags);
2080
2081 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2082 }
2083
2084 xen_mc_issue(0);
2085 }
2086
2087 /*
2088 * Perform the hypercall to exchange a region of our pfns to point to
2089 * memory with the required contiguous alignment. Takes the pfns as
2090 * input, and populates mfns as output.
2091 *
2092 * Returns a success code indicating whether the hypervisor was able to
2093 * satisfy the request or not.
2094 */
2095 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2096 unsigned long *pfns_in,
2097 unsigned long extents_out,
2098 unsigned int order_out,
2099 unsigned long *mfns_out,
2100 unsigned int address_bits)
2101 {
2102 long rc;
2103 int success;
2104
2105 struct xen_memory_exchange exchange = {
2106 .in = {
2107 .nr_extents = extents_in,
2108 .extent_order = order_in,
2109 .extent_start = pfns_in,
2110 .domid = DOMID_SELF
2111 },
2112 .out = {
2113 .nr_extents = extents_out,
2114 .extent_order = order_out,
2115 .extent_start = mfns_out,
2116 .address_bits = address_bits,
2117 .domid = DOMID_SELF
2118 }
2119 };
2120
2121 BUG_ON(extents_in << order_in != extents_out << order_out);
2122
2123 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2124 success = (exchange.nr_exchanged == extents_in);
2125
2126 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2127 BUG_ON(success && (rc != 0));
2128
2129 return success;
2130 }
2131
2132 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2133 unsigned int address_bits)
2134 {
2135 unsigned long *in_frames = discontig_frames, out_frame;
2136 unsigned long flags;
2137 int success;
2138
2139 /*
2140 * Currently an auto-translated guest will not perform I/O, nor will
2141 * it require PAE page directories below 4GB. Therefore any calls to
2142 * this function are redundant and can be ignored.
2143 */
2144
2145 if (xen_feature(XENFEAT_auto_translated_physmap))
2146 return 0;
2147
2148 if (unlikely(order > MAX_CONTIG_ORDER))
2149 return -ENOMEM;
2150
2151 memset((void *) vstart, 0, PAGE_SIZE << order);
2152
2153 spin_lock_irqsave(&xen_reservation_lock, flags);
2154
2155 /* 1. Zap current PTEs, remembering MFNs. */
2156 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2157
2158 /* 2. Get a new contiguous memory extent. */
2159 out_frame = virt_to_pfn(vstart);
2160 success = xen_exchange_memory(1UL << order, 0, in_frames,
2161 1, order, &out_frame,
2162 address_bits);
2163
2164 /* 3. Map the new extent in place of old pages. */
2165 if (success)
2166 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2167 else
2168 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2169
2170 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2171
2172 return success ? 0 : -ENOMEM;
2173 }
2174 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2175
2176 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2177 {
2178 unsigned long *out_frames = discontig_frames, in_frame;
2179 unsigned long flags;
2180 int success;
2181
2182 if (xen_feature(XENFEAT_auto_translated_physmap))
2183 return;
2184
2185 if (unlikely(order > MAX_CONTIG_ORDER))
2186 return;
2187
2188 memset((void *) vstart, 0, PAGE_SIZE << order);
2189
2190 spin_lock_irqsave(&xen_reservation_lock, flags);
2191
2192 /* 1. Find start MFN of contiguous extent. */
2193 in_frame = virt_to_mfn(vstart);
2194
2195 /* 2. Zap current PTEs. */
2196 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2197
2198 /* 3. Do the exchange for non-contiguous MFNs. */
2199 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2200 0, out_frames, 0);
2201
2202 /* 4. Map new pages in place of old pages. */
2203 if (success)
2204 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2205 else
2206 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2207
2208 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2209 }
2210 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2211
2212 #ifdef CONFIG_XEN_PVHVM
2213 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2214 {
2215 struct xen_hvm_pagetable_dying a;
2216 int rc;
2217
2218 a.domid = DOMID_SELF;
2219 a.gpa = __pa(mm->pgd);
2220 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2221 WARN_ON_ONCE(rc < 0);
2222 }
2223
2224 static int is_pagetable_dying_supported(void)
2225 {
2226 struct xen_hvm_pagetable_dying a;
2227 int rc = 0;
2228
2229 a.domid = DOMID_SELF;
2230 a.gpa = 0x00;
2231 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2232 if (rc < 0) {
2233 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2234 return 0;
2235 }
2236 return 1;
2237 }
2238
2239 void __init xen_hvm_init_mmu_ops(void)
2240 {
2241 if (is_pagetable_dying_supported())
2242 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2243 }
2244 #endif
2245
2246 #define REMAP_BATCH_SIZE 16
2247
2248 struct remap_data {
2249 unsigned long mfn;
2250 pgprot_t prot;
2251 struct mmu_update *mmu_update;
2252 };
2253
2254 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2255 unsigned long addr, void *data)
2256 {
2257 struct remap_data *rmd = data;
2258 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2259
2260 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2261 rmd->mmu_update->val = pte_val_ma(pte);
2262 rmd->mmu_update++;
2263
2264 return 0;
2265 }
2266
2267 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2268 unsigned long addr,
2269 unsigned long mfn, int nr,
2270 pgprot_t prot, unsigned domid)
2271 {
2272 struct remap_data rmd;
2273 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2274 int batch;
2275 unsigned long range;
2276 int err = 0;
2277
2278 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2279
2280 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2281 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2282
2283 rmd.mfn = mfn;
2284 rmd.prot = prot;
2285
2286 while (nr) {
2287 batch = min(REMAP_BATCH_SIZE, nr);
2288 range = (unsigned long)batch << PAGE_SHIFT;
2289
2290 rmd.mmu_update = mmu_update;
2291 err = apply_to_page_range(vma->vm_mm, addr, range,
2292 remap_area_mfn_pte_fn, &rmd);
2293 if (err)
2294 goto out;
2295
2296 err = -EFAULT;
2297 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2298 goto out;
2299
2300 nr -= batch;
2301 addr += range;
2302 }
2303
2304 err = 0;
2305 out:
2306
2307 flush_tlb_all();
2308
2309 return err;
2310 }
2311 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2312
2313 #ifdef CONFIG_XEN_DEBUG_FS
2314 static int p2m_dump_open(struct inode *inode, struct file *filp)
2315 {
2316 return single_open(filp, p2m_dump_show, NULL);
2317 }
2318
2319 static const struct file_operations p2m_dump_fops = {
2320 .open = p2m_dump_open,
2321 .read = seq_read,
2322 .llseek = seq_lseek,
2323 .release = single_release,
2324 };
2325 #endif /* CONFIG_XEN_DEBUG_FS */