]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/xen/setup.c
ASoC: wm8904: harmless underflow in wm8904_put_deemph()
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / xen / setup.c
1 /*
2 * Machine specific setup for xen
3 *
4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5 */
6
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include <xen/hvc-console.h>
31 #include "xen-ops.h"
32 #include "vdso.h"
33 #include "mmu.h"
34
35 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
36
37 /* Amount of extra memory space we add to the e820 ranges */
38 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
39
40 /* Number of pages released from the initial allocation. */
41 unsigned long xen_released_pages;
42
43 /* E820 map used during setting up memory. */
44 static struct e820entry xen_e820_map[E820MAX] __initdata;
45 static u32 xen_e820_map_entries __initdata;
46
47 /*
48 * Buffer used to remap identity mapped pages. We only need the virtual space.
49 * The physical page behind this address is remapped as needed to different
50 * buffer pages.
51 */
52 #define REMAP_SIZE (P2M_PER_PAGE - 3)
53 static struct {
54 unsigned long next_area_mfn;
55 unsigned long target_pfn;
56 unsigned long size;
57 unsigned long mfns[REMAP_SIZE];
58 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
59 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
60
61 /*
62 * The maximum amount of extra memory compared to the base size. The
63 * main scaling factor is the size of struct page. At extreme ratios
64 * of base:extra, all the base memory can be filled with page
65 * structures for the extra memory, leaving no space for anything
66 * else.
67 *
68 * 10x seems like a reasonable balance between scaling flexibility and
69 * leaving a practically usable system.
70 */
71 #define EXTRA_MEM_RATIO (10)
72
73 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
74
75 static void __init xen_parse_512gb(void)
76 {
77 bool val = false;
78 char *arg;
79
80 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
81 if (!arg)
82 return;
83
84 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
85 if (!arg)
86 val = true;
87 else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
88 return;
89
90 xen_512gb_limit = val;
91 }
92
93 static void __init xen_add_extra_mem(unsigned long start_pfn,
94 unsigned long n_pfns)
95 {
96 int i;
97
98 /*
99 * No need to check for zero size, should happen rarely and will only
100 * write a new entry regarded to be unused due to zero size.
101 */
102 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
103 /* Add new region. */
104 if (xen_extra_mem[i].n_pfns == 0) {
105 xen_extra_mem[i].start_pfn = start_pfn;
106 xen_extra_mem[i].n_pfns = n_pfns;
107 break;
108 }
109 /* Append to existing region. */
110 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
111 start_pfn) {
112 xen_extra_mem[i].n_pfns += n_pfns;
113 break;
114 }
115 }
116 if (i == XEN_EXTRA_MEM_MAX_REGIONS)
117 printk(KERN_WARNING "Warning: not enough extra memory regions\n");
118
119 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
120 }
121
122 static void __init xen_del_extra_mem(unsigned long start_pfn,
123 unsigned long n_pfns)
124 {
125 int i;
126 unsigned long start_r, size_r;
127
128 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
129 start_r = xen_extra_mem[i].start_pfn;
130 size_r = xen_extra_mem[i].n_pfns;
131
132 /* Start of region. */
133 if (start_r == start_pfn) {
134 BUG_ON(n_pfns > size_r);
135 xen_extra_mem[i].start_pfn += n_pfns;
136 xen_extra_mem[i].n_pfns -= n_pfns;
137 break;
138 }
139 /* End of region. */
140 if (start_r + size_r == start_pfn + n_pfns) {
141 BUG_ON(n_pfns > size_r);
142 xen_extra_mem[i].n_pfns -= n_pfns;
143 break;
144 }
145 /* Mid of region. */
146 if (start_pfn > start_r && start_pfn < start_r + size_r) {
147 BUG_ON(start_pfn + n_pfns > start_r + size_r);
148 xen_extra_mem[i].n_pfns = start_pfn - start_r;
149 /* Calling memblock_reserve() again is okay. */
150 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
151 (start_pfn + n_pfns));
152 break;
153 }
154 }
155 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
156 }
157
158 /*
159 * Called during boot before the p2m list can take entries beyond the
160 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
161 * invalid.
162 */
163 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
164 {
165 int i;
166
167 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
168 if (pfn >= xen_extra_mem[i].start_pfn &&
169 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
170 return INVALID_P2M_ENTRY;
171 }
172
173 return IDENTITY_FRAME(pfn);
174 }
175
176 /*
177 * Mark all pfns of extra mem as invalid in p2m list.
178 */
179 void __init xen_inv_extra_mem(void)
180 {
181 unsigned long pfn, pfn_s, pfn_e;
182 int i;
183
184 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
185 if (!xen_extra_mem[i].n_pfns)
186 continue;
187 pfn_s = xen_extra_mem[i].start_pfn;
188 pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
189 for (pfn = pfn_s; pfn < pfn_e; pfn++)
190 set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
191 }
192 }
193
194 /*
195 * Finds the next RAM pfn available in the E820 map after min_pfn.
196 * This function updates min_pfn with the pfn found and returns
197 * the size of that range or zero if not found.
198 */
199 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
200 {
201 const struct e820entry *entry = xen_e820_map;
202 unsigned int i;
203 unsigned long done = 0;
204
205 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
206 unsigned long s_pfn;
207 unsigned long e_pfn;
208
209 if (entry->type != E820_RAM)
210 continue;
211
212 e_pfn = PFN_DOWN(entry->addr + entry->size);
213
214 /* We only care about E820 after this */
215 if (e_pfn < *min_pfn)
216 continue;
217
218 s_pfn = PFN_UP(entry->addr);
219
220 /* If min_pfn falls within the E820 entry, we want to start
221 * at the min_pfn PFN.
222 */
223 if (s_pfn <= *min_pfn) {
224 done = e_pfn - *min_pfn;
225 } else {
226 done = e_pfn - s_pfn;
227 *min_pfn = s_pfn;
228 }
229 break;
230 }
231
232 return done;
233 }
234
235 static int __init xen_free_mfn(unsigned long mfn)
236 {
237 struct xen_memory_reservation reservation = {
238 .address_bits = 0,
239 .extent_order = 0,
240 .domid = DOMID_SELF
241 };
242
243 set_xen_guest_handle(reservation.extent_start, &mfn);
244 reservation.nr_extents = 1;
245
246 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
247 }
248
249 /*
250 * This releases a chunk of memory and then does the identity map. It's used
251 * as a fallback if the remapping fails.
252 */
253 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
254 unsigned long end_pfn, unsigned long nr_pages)
255 {
256 unsigned long pfn, end;
257 int ret;
258
259 WARN_ON(start_pfn > end_pfn);
260
261 /* Release pages first. */
262 end = min(end_pfn, nr_pages);
263 for (pfn = start_pfn; pfn < end; pfn++) {
264 unsigned long mfn = pfn_to_mfn(pfn);
265
266 /* Make sure pfn exists to start with */
267 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
268 continue;
269
270 ret = xen_free_mfn(mfn);
271 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
272
273 if (ret == 1) {
274 xen_released_pages++;
275 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
276 break;
277 } else
278 break;
279 }
280
281 set_phys_range_identity(start_pfn, end_pfn);
282 }
283
284 /*
285 * Helper function to update the p2m and m2p tables and kernel mapping.
286 */
287 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
288 {
289 struct mmu_update update = {
290 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
291 .val = pfn
292 };
293
294 /* Update p2m */
295 if (!set_phys_to_machine(pfn, mfn)) {
296 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
297 pfn, mfn);
298 BUG();
299 }
300
301 /* Update m2p */
302 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
303 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
304 mfn, pfn);
305 BUG();
306 }
307
308 /* Update kernel mapping, but not for highmem. */
309 if (pfn >= PFN_UP(__pa(high_memory - 1)))
310 return;
311
312 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
313 mfn_pte(mfn, PAGE_KERNEL), 0)) {
314 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
315 mfn, pfn);
316 BUG();
317 }
318 }
319
320 /*
321 * This function updates the p2m and m2p tables with an identity map from
322 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
323 * original allocation at remap_pfn. The information needed for remapping is
324 * saved in the memory itself to avoid the need for allocating buffers. The
325 * complete remap information is contained in a list of MFNs each containing
326 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
327 * This enables us to preserve the original mfn sequence while doing the
328 * remapping at a time when the memory management is capable of allocating
329 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
330 * its callers.
331 */
332 static void __init xen_do_set_identity_and_remap_chunk(
333 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
334 {
335 unsigned long buf = (unsigned long)&xen_remap_buf;
336 unsigned long mfn_save, mfn;
337 unsigned long ident_pfn_iter, remap_pfn_iter;
338 unsigned long ident_end_pfn = start_pfn + size;
339 unsigned long left = size;
340 unsigned int i, chunk;
341
342 WARN_ON(size == 0);
343
344 BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
345
346 mfn_save = virt_to_mfn(buf);
347
348 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
349 ident_pfn_iter < ident_end_pfn;
350 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
351 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
352
353 /* Map first pfn to xen_remap_buf */
354 mfn = pfn_to_mfn(ident_pfn_iter);
355 set_pte_mfn(buf, mfn, PAGE_KERNEL);
356
357 /* Save mapping information in page */
358 xen_remap_buf.next_area_mfn = xen_remap_mfn;
359 xen_remap_buf.target_pfn = remap_pfn_iter;
360 xen_remap_buf.size = chunk;
361 for (i = 0; i < chunk; i++)
362 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
363
364 /* Put remap buf into list. */
365 xen_remap_mfn = mfn;
366
367 /* Set identity map */
368 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
369
370 left -= chunk;
371 }
372
373 /* Restore old xen_remap_buf mapping */
374 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
375 }
376
377 /*
378 * This function takes a contiguous pfn range that needs to be identity mapped
379 * and:
380 *
381 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
382 * 2) Calls the do_ function to actually do the mapping/remapping work.
383 *
384 * The goal is to not allocate additional memory but to remap the existing
385 * pages. In the case of an error the underlying memory is simply released back
386 * to Xen and not remapped.
387 */
388 static unsigned long __init xen_set_identity_and_remap_chunk(
389 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
390 unsigned long remap_pfn)
391 {
392 unsigned long pfn;
393 unsigned long i = 0;
394 unsigned long n = end_pfn - start_pfn;
395
396 while (i < n) {
397 unsigned long cur_pfn = start_pfn + i;
398 unsigned long left = n - i;
399 unsigned long size = left;
400 unsigned long remap_range_size;
401
402 /* Do not remap pages beyond the current allocation */
403 if (cur_pfn >= nr_pages) {
404 /* Identity map remaining pages */
405 set_phys_range_identity(cur_pfn, cur_pfn + size);
406 break;
407 }
408 if (cur_pfn + size > nr_pages)
409 size = nr_pages - cur_pfn;
410
411 remap_range_size = xen_find_pfn_range(&remap_pfn);
412 if (!remap_range_size) {
413 pr_warning("Unable to find available pfn range, not remapping identity pages\n");
414 xen_set_identity_and_release_chunk(cur_pfn,
415 cur_pfn + left, nr_pages);
416 break;
417 }
418 /* Adjust size to fit in current e820 RAM region */
419 if (size > remap_range_size)
420 size = remap_range_size;
421
422 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
423
424 /* Update variables to reflect new mappings. */
425 i += size;
426 remap_pfn += size;
427 }
428
429 /*
430 * If the PFNs are currently mapped, the VA mapping also needs
431 * to be updated to be 1:1.
432 */
433 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
434 (void)HYPERVISOR_update_va_mapping(
435 (unsigned long)__va(pfn << PAGE_SHIFT),
436 mfn_pte(pfn, PAGE_KERNEL_IO), 0);
437
438 return remap_pfn;
439 }
440
441 static void __init xen_set_identity_and_remap(unsigned long nr_pages)
442 {
443 phys_addr_t start = 0;
444 unsigned long last_pfn = nr_pages;
445 const struct e820entry *entry = xen_e820_map;
446 int i;
447
448 /*
449 * Combine non-RAM regions and gaps until a RAM region (or the
450 * end of the map) is reached, then set the 1:1 map and
451 * remap the memory in those non-RAM regions.
452 *
453 * The combined non-RAM regions are rounded to a whole number
454 * of pages so any partial pages are accessible via the 1:1
455 * mapping. This is needed for some BIOSes that put (for
456 * example) the DMI tables in a reserved region that begins on
457 * a non-page boundary.
458 */
459 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
460 phys_addr_t end = entry->addr + entry->size;
461 if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
462 unsigned long start_pfn = PFN_DOWN(start);
463 unsigned long end_pfn = PFN_UP(end);
464
465 if (entry->type == E820_RAM)
466 end_pfn = PFN_UP(entry->addr);
467
468 if (start_pfn < end_pfn)
469 last_pfn = xen_set_identity_and_remap_chunk(
470 start_pfn, end_pfn, nr_pages,
471 last_pfn);
472 start = end;
473 }
474 }
475
476 pr_info("Released %ld page(s)\n", xen_released_pages);
477 }
478
479 /*
480 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
481 * The remap information (which mfn remap to which pfn) is contained in the
482 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
483 * This scheme allows to remap the different chunks in arbitrary order while
484 * the resulting mapping will be independant from the order.
485 */
486 void __init xen_remap_memory(void)
487 {
488 unsigned long buf = (unsigned long)&xen_remap_buf;
489 unsigned long mfn_save, mfn, pfn;
490 unsigned long remapped = 0;
491 unsigned int i;
492 unsigned long pfn_s = ~0UL;
493 unsigned long len = 0;
494
495 mfn_save = virt_to_mfn(buf);
496
497 while (xen_remap_mfn != INVALID_P2M_ENTRY) {
498 /* Map the remap information */
499 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
500
501 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
502
503 pfn = xen_remap_buf.target_pfn;
504 for (i = 0; i < xen_remap_buf.size; i++) {
505 mfn = xen_remap_buf.mfns[i];
506 xen_update_mem_tables(pfn, mfn);
507 remapped++;
508 pfn++;
509 }
510 if (pfn_s == ~0UL || pfn == pfn_s) {
511 pfn_s = xen_remap_buf.target_pfn;
512 len += xen_remap_buf.size;
513 } else if (pfn_s + len == xen_remap_buf.target_pfn) {
514 len += xen_remap_buf.size;
515 } else {
516 xen_del_extra_mem(pfn_s, len);
517 pfn_s = xen_remap_buf.target_pfn;
518 len = xen_remap_buf.size;
519 }
520
521 mfn = xen_remap_mfn;
522 xen_remap_mfn = xen_remap_buf.next_area_mfn;
523 }
524
525 if (pfn_s != ~0UL && len)
526 xen_del_extra_mem(pfn_s, len);
527
528 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
529
530 pr_info("Remapped %ld page(s)\n", remapped);
531 }
532
533 static unsigned long __init xen_get_pages_limit(void)
534 {
535 unsigned long limit;
536
537 #ifdef CONFIG_X86_32
538 limit = GB(64) / PAGE_SIZE;
539 #else
540 limit = MAXMEM / PAGE_SIZE;
541 if (!xen_initial_domain() && xen_512gb_limit)
542 limit = GB(512) / PAGE_SIZE;
543 #endif
544 return limit;
545 }
546
547 static unsigned long __init xen_get_max_pages(void)
548 {
549 unsigned long max_pages, limit;
550 domid_t domid = DOMID_SELF;
551 int ret;
552
553 limit = xen_get_pages_limit();
554 max_pages = limit;
555
556 /*
557 * For the initial domain we use the maximum reservation as
558 * the maximum page.
559 *
560 * For guest domains the current maximum reservation reflects
561 * the current maximum rather than the static maximum. In this
562 * case the e820 map provided to us will cover the static
563 * maximum region.
564 */
565 if (xen_initial_domain()) {
566 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
567 if (ret > 0)
568 max_pages = ret;
569 }
570
571 return min(max_pages, limit);
572 }
573
574 static void __init xen_align_and_add_e820_region(phys_addr_t start,
575 phys_addr_t size, int type)
576 {
577 phys_addr_t end = start + size;
578
579 /* Align RAM regions to page boundaries. */
580 if (type == E820_RAM) {
581 start = PAGE_ALIGN(start);
582 end &= ~((phys_addr_t)PAGE_SIZE - 1);
583 }
584
585 e820_add_region(start, end - start, type);
586 }
587
588 static void __init xen_ignore_unusable(void)
589 {
590 struct e820entry *entry = xen_e820_map;
591 unsigned int i;
592
593 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
594 if (entry->type == E820_UNUSABLE)
595 entry->type = E820_RAM;
596 }
597 }
598
599 static unsigned long __init xen_count_remap_pages(unsigned long max_pfn)
600 {
601 unsigned long extra = 0;
602 unsigned long start_pfn, end_pfn;
603 const struct e820entry *entry = xen_e820_map;
604 int i;
605
606 end_pfn = 0;
607 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
608 start_pfn = PFN_DOWN(entry->addr);
609 /* Adjacent regions on non-page boundaries handling! */
610 end_pfn = min(end_pfn, start_pfn);
611
612 if (start_pfn >= max_pfn)
613 return extra + max_pfn - end_pfn;
614
615 /* Add any holes in map to result. */
616 extra += start_pfn - end_pfn;
617
618 end_pfn = PFN_UP(entry->addr + entry->size);
619 end_pfn = min(end_pfn, max_pfn);
620
621 if (entry->type != E820_RAM)
622 extra += end_pfn - start_pfn;
623 }
624
625 return extra;
626 }
627
628 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
629 {
630 struct e820entry *entry;
631 unsigned mapcnt;
632 phys_addr_t end;
633
634 if (!size)
635 return false;
636
637 end = start + size;
638 entry = xen_e820_map;
639
640 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) {
641 if (entry->type == E820_RAM && entry->addr <= start &&
642 (entry->addr + entry->size) >= end)
643 return false;
644
645 entry++;
646 }
647
648 return true;
649 }
650
651 /*
652 * Find a free area in physical memory not yet reserved and compliant with
653 * E820 map.
654 * Used to relocate pre-allocated areas like initrd or p2m list which are in
655 * conflict with the to be used E820 map.
656 * In case no area is found, return 0. Otherwise return the physical address
657 * of the area which is already reserved for convenience.
658 */
659 phys_addr_t __init xen_find_free_area(phys_addr_t size)
660 {
661 unsigned mapcnt;
662 phys_addr_t addr, start;
663 struct e820entry *entry = xen_e820_map;
664
665 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) {
666 if (entry->type != E820_RAM || entry->size < size)
667 continue;
668 start = entry->addr;
669 for (addr = start; addr < start + size; addr += PAGE_SIZE) {
670 if (!memblock_is_reserved(addr))
671 continue;
672 start = addr + PAGE_SIZE;
673 if (start + size > entry->addr + entry->size)
674 break;
675 }
676 if (addr >= start + size) {
677 memblock_reserve(start, size);
678 return start;
679 }
680 }
681
682 return 0;
683 }
684
685 /*
686 * Like memcpy, but with physical addresses for dest and src.
687 */
688 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
689 phys_addr_t n)
690 {
691 phys_addr_t dest_off, src_off, dest_len, src_len, len;
692 void *from, *to;
693
694 while (n) {
695 dest_off = dest & ~PAGE_MASK;
696 src_off = src & ~PAGE_MASK;
697 dest_len = n;
698 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
699 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
700 src_len = n;
701 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
702 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
703 len = min(dest_len, src_len);
704 to = early_memremap(dest - dest_off, dest_len + dest_off);
705 from = early_memremap(src - src_off, src_len + src_off);
706 memcpy(to, from, len);
707 early_memunmap(to, dest_len + dest_off);
708 early_memunmap(from, src_len + src_off);
709 n -= len;
710 dest += len;
711 src += len;
712 }
713 }
714
715 /*
716 * Reserve Xen mfn_list.
717 */
718 static void __init xen_reserve_xen_mfnlist(void)
719 {
720 phys_addr_t start, size;
721
722 if (xen_start_info->mfn_list >= __START_KERNEL_map) {
723 start = __pa(xen_start_info->mfn_list);
724 size = PFN_ALIGN(xen_start_info->nr_pages *
725 sizeof(unsigned long));
726 } else {
727 start = PFN_PHYS(xen_start_info->first_p2m_pfn);
728 size = PFN_PHYS(xen_start_info->nr_p2m_frames);
729 }
730
731 if (!xen_is_e820_reserved(start, size)) {
732 memblock_reserve(start, size);
733 return;
734 }
735
736 #ifdef CONFIG_X86_32
737 /*
738 * Relocating the p2m on 32 bit system to an arbitrary virtual address
739 * is not supported, so just give up.
740 */
741 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
742 BUG();
743 #else
744 xen_relocate_p2m();
745 #endif
746 }
747
748 /**
749 * machine_specific_memory_setup - Hook for machine specific memory setup.
750 **/
751 char * __init xen_memory_setup(void)
752 {
753 unsigned long max_pfn, pfn_s, n_pfns;
754 phys_addr_t mem_end, addr, size, chunk_size;
755 u32 type;
756 int rc;
757 struct xen_memory_map memmap;
758 unsigned long max_pages;
759 unsigned long extra_pages = 0;
760 int i;
761 int op;
762
763 xen_parse_512gb();
764 max_pfn = xen_get_pages_limit();
765 max_pfn = min(max_pfn, xen_start_info->nr_pages);
766 mem_end = PFN_PHYS(max_pfn);
767
768 memmap.nr_entries = E820MAX;
769 set_xen_guest_handle(memmap.buffer, xen_e820_map);
770
771 op = xen_initial_domain() ?
772 XENMEM_machine_memory_map :
773 XENMEM_memory_map;
774 rc = HYPERVISOR_memory_op(op, &memmap);
775 if (rc == -ENOSYS) {
776 BUG_ON(xen_initial_domain());
777 memmap.nr_entries = 1;
778 xen_e820_map[0].addr = 0ULL;
779 xen_e820_map[0].size = mem_end;
780 /* 8MB slack (to balance backend allocations). */
781 xen_e820_map[0].size += 8ULL << 20;
782 xen_e820_map[0].type = E820_RAM;
783 rc = 0;
784 }
785 BUG_ON(rc);
786 BUG_ON(memmap.nr_entries == 0);
787 xen_e820_map_entries = memmap.nr_entries;
788
789 /*
790 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
791 * regions, so if we're using the machine memory map leave the
792 * region as RAM as it is in the pseudo-physical map.
793 *
794 * UNUSABLE regions in domUs are not handled and will need
795 * a patch in the future.
796 */
797 if (xen_initial_domain())
798 xen_ignore_unusable();
799
800 /* Make sure the Xen-supplied memory map is well-ordered. */
801 sanitize_e820_map(xen_e820_map, xen_e820_map_entries,
802 &xen_e820_map_entries);
803
804 max_pages = xen_get_max_pages();
805
806 /* How many extra pages do we need due to remapping? */
807 max_pages += xen_count_remap_pages(max_pfn);
808
809 if (max_pages > max_pfn)
810 extra_pages += max_pages - max_pfn;
811
812 /*
813 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
814 * factor the base size. On non-highmem systems, the base
815 * size is the full initial memory allocation; on highmem it
816 * is limited to the max size of lowmem, so that it doesn't
817 * get completely filled.
818 *
819 * Make sure we have no memory above max_pages, as this area
820 * isn't handled by the p2m management.
821 *
822 * In principle there could be a problem in lowmem systems if
823 * the initial memory is also very large with respect to
824 * lowmem, but we won't try to deal with that here.
825 */
826 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
827 extra_pages, max_pages - max_pfn);
828 i = 0;
829 addr = xen_e820_map[0].addr;
830 size = xen_e820_map[0].size;
831 while (i < xen_e820_map_entries) {
832 chunk_size = size;
833 type = xen_e820_map[i].type;
834
835 if (type == E820_RAM) {
836 if (addr < mem_end) {
837 chunk_size = min(size, mem_end - addr);
838 } else if (extra_pages) {
839 chunk_size = min(size, PFN_PHYS(extra_pages));
840 pfn_s = PFN_UP(addr);
841 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
842 extra_pages -= n_pfns;
843 xen_add_extra_mem(pfn_s, n_pfns);
844 xen_max_p2m_pfn = pfn_s + n_pfns;
845 } else
846 type = E820_UNUSABLE;
847 }
848
849 xen_align_and_add_e820_region(addr, chunk_size, type);
850
851 addr += chunk_size;
852 size -= chunk_size;
853 if (size == 0) {
854 i++;
855 if (i < xen_e820_map_entries) {
856 addr = xen_e820_map[i].addr;
857 size = xen_e820_map[i].size;
858 }
859 }
860 }
861
862 /*
863 * Set the rest as identity mapped, in case PCI BARs are
864 * located here.
865 */
866 set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
867
868 /*
869 * In domU, the ISA region is normal, usable memory, but we
870 * reserve ISA memory anyway because too many things poke
871 * about in there.
872 */
873 e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
874 E820_RESERVED);
875
876 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
877
878 /*
879 * Check whether the kernel itself conflicts with the target E820 map.
880 * Failing now is better than running into weird problems later due
881 * to relocating (and even reusing) pages with kernel text or data.
882 */
883 if (xen_is_e820_reserved(__pa_symbol(_text),
884 __pa_symbol(__bss_stop) - __pa_symbol(_text))) {
885 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
886 BUG();
887 }
888
889 /*
890 * Check for a conflict of the hypervisor supplied page tables with
891 * the target E820 map.
892 */
893 xen_pt_check_e820();
894
895 xen_reserve_xen_mfnlist();
896
897 /* Check for a conflict of the initrd with the target E820 map. */
898 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
899 boot_params.hdr.ramdisk_size)) {
900 phys_addr_t new_area, start, size;
901
902 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
903 if (!new_area) {
904 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
905 BUG();
906 }
907
908 start = boot_params.hdr.ramdisk_image;
909 size = boot_params.hdr.ramdisk_size;
910 xen_phys_memcpy(new_area, start, size);
911 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
912 start, start + size, new_area, new_area + size);
913 memblock_free(start, size);
914 boot_params.hdr.ramdisk_image = new_area;
915 boot_params.ext_ramdisk_image = new_area >> 32;
916 }
917
918 /*
919 * Set identity map on non-RAM pages and prepare remapping the
920 * underlying RAM.
921 */
922 xen_set_identity_and_remap(max_pfn);
923
924 return "Xen";
925 }
926
927 /*
928 * Machine specific memory setup for auto-translated guests.
929 */
930 char * __init xen_auto_xlated_memory_setup(void)
931 {
932 struct xen_memory_map memmap;
933 int i;
934 int rc;
935
936 memmap.nr_entries = E820MAX;
937 set_xen_guest_handle(memmap.buffer, xen_e820_map);
938
939 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
940 if (rc < 0)
941 panic("No memory map (%d)\n", rc);
942
943 xen_e820_map_entries = memmap.nr_entries;
944
945 sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
946 &xen_e820_map_entries);
947
948 for (i = 0; i < xen_e820_map_entries; i++)
949 e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
950 xen_e820_map[i].type);
951
952 /* Remove p2m info, it is not needed. */
953 xen_start_info->mfn_list = 0;
954 xen_start_info->first_p2m_pfn = 0;
955 xen_start_info->nr_p2m_frames = 0;
956
957 return "Xen";
958 }
959
960 /*
961 * Set the bit indicating "nosegneg" library variants should be used.
962 * We only need to bother in pure 32-bit mode; compat 32-bit processes
963 * can have un-truncated segments, so wrapping around is allowed.
964 */
965 static void __init fiddle_vdso(void)
966 {
967 #ifdef CONFIG_X86_32
968 /*
969 * This could be called before selected_vdso32 is initialized, so
970 * just fiddle with both possible images. vdso_image_32_syscall
971 * can't be selected, since it only exists on 64-bit systems.
972 */
973 u32 *mask;
974 mask = vdso_image_32_int80.data +
975 vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
976 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
977 mask = vdso_image_32_sysenter.data +
978 vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
979 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
980 #endif
981 }
982
983 static int register_callback(unsigned type, const void *func)
984 {
985 struct callback_register callback = {
986 .type = type,
987 .address = XEN_CALLBACK(__KERNEL_CS, func),
988 .flags = CALLBACKF_mask_events,
989 };
990
991 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
992 }
993
994 void xen_enable_sysenter(void)
995 {
996 int ret;
997 unsigned sysenter_feature;
998
999 #ifdef CONFIG_X86_32
1000 sysenter_feature = X86_FEATURE_SEP;
1001 #else
1002 sysenter_feature = X86_FEATURE_SYSENTER32;
1003 #endif
1004
1005 if (!boot_cpu_has(sysenter_feature))
1006 return;
1007
1008 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
1009 if(ret != 0)
1010 setup_clear_cpu_cap(sysenter_feature);
1011 }
1012
1013 void xen_enable_syscall(void)
1014 {
1015 #ifdef CONFIG_X86_64
1016 int ret;
1017
1018 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
1019 if (ret != 0) {
1020 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
1021 /* Pretty fatal; 64-bit userspace has no other
1022 mechanism for syscalls. */
1023 }
1024
1025 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
1026 ret = register_callback(CALLBACKTYPE_syscall32,
1027 xen_syscall32_target);
1028 if (ret != 0)
1029 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1030 }
1031 #endif /* CONFIG_X86_64 */
1032 }
1033
1034 void __init xen_pvmmu_arch_setup(void)
1035 {
1036 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1037 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1038
1039 HYPERVISOR_vm_assist(VMASST_CMD_enable,
1040 VMASST_TYPE_pae_extended_cr3);
1041
1042 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1043 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1044 BUG();
1045
1046 xen_enable_sysenter();
1047 xen_enable_syscall();
1048 }
1049
1050 /* This function is not called for HVM domains */
1051 void __init xen_arch_setup(void)
1052 {
1053 xen_panic_handler_init();
1054 if (!xen_feature(XENFEAT_auto_translated_physmap))
1055 xen_pvmmu_arch_setup();
1056
1057 #ifdef CONFIG_ACPI
1058 if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1059 printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1060 disable_acpi();
1061 }
1062 #endif
1063
1064 memcpy(boot_command_line, xen_start_info->cmd_line,
1065 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1066 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1067
1068 /* Set up idle, making sure it calls safe_halt() pvop */
1069 disable_cpuidle();
1070 disable_cpufreq();
1071 WARN_ON(xen_set_default_idle());
1072 fiddle_vdso();
1073 #ifdef CONFIG_NUMA
1074 numa_off = 1;
1075 #endif
1076 }