]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/xen/time.c
Merge tag 'mac80211-for-davem-2016-06-29-v2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / xen / time.c
1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17 #include <linux/slab.h>
18 #include <linux/pvclock_gtod.h>
19 #include <linux/timekeeper_internal.h>
20
21 #include <asm/pvclock.h>
22 #include <asm/xen/hypervisor.h>
23 #include <asm/xen/hypercall.h>
24
25 #include <xen/events.h>
26 #include <xen/features.h>
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29
30 #include "xen-ops.h"
31
32 /* Xen may fire a timer up to this many ns early */
33 #define TIMER_SLOP 100000
34 #define NS_PER_TICK (1000000000LL / HZ)
35
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
38
39 /* unused ns of stolen time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41
42 static void do_stolen_accounting(void)
43 {
44 struct vcpu_runstate_info state;
45 struct vcpu_runstate_info *snap;
46 s64 runnable, offline, stolen;
47 cputime_t ticks;
48
49 xen_get_runstate_snapshot(&state);
50
51 WARN_ON(state.state != RUNSTATE_running);
52
53 snap = this_cpu_ptr(&xen_runstate_snapshot);
54
55 /* work out how much time the VCPU has not been runn*ing* */
56 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
57 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
58
59 *snap = state;
60
61 /* Add the appropriate number of ticks of stolen time,
62 including any left-overs from last time. */
63 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
64
65 if (stolen < 0)
66 stolen = 0;
67
68 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
69 __this_cpu_write(xen_residual_stolen, stolen);
70 account_steal_ticks(ticks);
71 }
72
73 /* Get the TSC speed from Xen */
74 static unsigned long xen_tsc_khz(void)
75 {
76 struct pvclock_vcpu_time_info *info =
77 &HYPERVISOR_shared_info->vcpu_info[0].time;
78
79 return pvclock_tsc_khz(info);
80 }
81
82 cycle_t xen_clocksource_read(void)
83 {
84 struct pvclock_vcpu_time_info *src;
85 cycle_t ret;
86
87 preempt_disable_notrace();
88 src = &__this_cpu_read(xen_vcpu)->time;
89 ret = pvclock_clocksource_read(src);
90 preempt_enable_notrace();
91 return ret;
92 }
93
94 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
95 {
96 return xen_clocksource_read();
97 }
98
99 static void xen_read_wallclock(struct timespec *ts)
100 {
101 struct shared_info *s = HYPERVISOR_shared_info;
102 struct pvclock_wall_clock *wall_clock = &(s->wc);
103 struct pvclock_vcpu_time_info *vcpu_time;
104
105 vcpu_time = &get_cpu_var(xen_vcpu)->time;
106 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
107 put_cpu_var(xen_vcpu);
108 }
109
110 static void xen_get_wallclock(struct timespec *now)
111 {
112 xen_read_wallclock(now);
113 }
114
115 static int xen_set_wallclock(const struct timespec *now)
116 {
117 return -1;
118 }
119
120 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
121 unsigned long was_set, void *priv)
122 {
123 /* Protected by the calling core code serialization */
124 static struct timespec64 next_sync;
125
126 struct xen_platform_op op;
127 struct timespec64 now;
128 struct timekeeper *tk = priv;
129 static bool settime64_supported = true;
130 int ret;
131
132 now.tv_sec = tk->xtime_sec;
133 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
134
135 /*
136 * We only take the expensive HV call when the clock was set
137 * or when the 11 minutes RTC synchronization time elapsed.
138 */
139 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
140 return NOTIFY_OK;
141
142 again:
143 if (settime64_supported) {
144 op.cmd = XENPF_settime64;
145 op.u.settime64.mbz = 0;
146 op.u.settime64.secs = now.tv_sec;
147 op.u.settime64.nsecs = now.tv_nsec;
148 op.u.settime64.system_time = xen_clocksource_read();
149 } else {
150 op.cmd = XENPF_settime32;
151 op.u.settime32.secs = now.tv_sec;
152 op.u.settime32.nsecs = now.tv_nsec;
153 op.u.settime32.system_time = xen_clocksource_read();
154 }
155
156 ret = HYPERVISOR_platform_op(&op);
157
158 if (ret == -ENOSYS && settime64_supported) {
159 settime64_supported = false;
160 goto again;
161 }
162 if (ret < 0)
163 return NOTIFY_BAD;
164
165 /*
166 * Move the next drift compensation time 11 minutes
167 * ahead. That's emulating the sync_cmos_clock() update for
168 * the hardware RTC.
169 */
170 next_sync = now;
171 next_sync.tv_sec += 11 * 60;
172
173 return NOTIFY_OK;
174 }
175
176 static struct notifier_block xen_pvclock_gtod_notifier = {
177 .notifier_call = xen_pvclock_gtod_notify,
178 };
179
180 static struct clocksource xen_clocksource __read_mostly = {
181 .name = "xen",
182 .rating = 400,
183 .read = xen_clocksource_get_cycles,
184 .mask = ~0,
185 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
186 };
187
188 /*
189 Xen clockevent implementation
190
191 Xen has two clockevent implementations:
192
193 The old timer_op one works with all released versions of Xen prior
194 to version 3.0.4. This version of the hypervisor provides a
195 single-shot timer with nanosecond resolution. However, sharing the
196 same event channel is a 100Hz tick which is delivered while the
197 vcpu is running. We don't care about or use this tick, but it will
198 cause the core time code to think the timer fired too soon, and
199 will end up resetting it each time. It could be filtered, but
200 doing so has complications when the ktime clocksource is not yet
201 the xen clocksource (ie, at boot time).
202
203 The new vcpu_op-based timer interface allows the tick timer period
204 to be changed or turned off. The tick timer is not useful as a
205 periodic timer because events are only delivered to running vcpus.
206 The one-shot timer can report when a timeout is in the past, so
207 set_next_event is capable of returning -ETIME when appropriate.
208 This interface is used when available.
209 */
210
211
212 /*
213 Get a hypervisor absolute time. In theory we could maintain an
214 offset between the kernel's time and the hypervisor's time, and
215 apply that to a kernel's absolute timeout. Unfortunately the
216 hypervisor and kernel times can drift even if the kernel is using
217 the Xen clocksource, because ntp can warp the kernel's clocksource.
218 */
219 static s64 get_abs_timeout(unsigned long delta)
220 {
221 return xen_clocksource_read() + delta;
222 }
223
224 static int xen_timerop_shutdown(struct clock_event_device *evt)
225 {
226 /* cancel timeout */
227 HYPERVISOR_set_timer_op(0);
228
229 return 0;
230 }
231
232 static int xen_timerop_set_next_event(unsigned long delta,
233 struct clock_event_device *evt)
234 {
235 WARN_ON(!clockevent_state_oneshot(evt));
236
237 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
238 BUG();
239
240 /* We may have missed the deadline, but there's no real way of
241 knowing for sure. If the event was in the past, then we'll
242 get an immediate interrupt. */
243
244 return 0;
245 }
246
247 static const struct clock_event_device xen_timerop_clockevent = {
248 .name = "xen",
249 .features = CLOCK_EVT_FEAT_ONESHOT,
250
251 .max_delta_ns = 0xffffffff,
252 .min_delta_ns = TIMER_SLOP,
253
254 .mult = 1,
255 .shift = 0,
256 .rating = 500,
257
258 .set_state_shutdown = xen_timerop_shutdown,
259 .set_next_event = xen_timerop_set_next_event,
260 };
261
262 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
263 {
264 int cpu = smp_processor_id();
265
266 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
267 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
268 BUG();
269
270 return 0;
271 }
272
273 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
274 {
275 int cpu = smp_processor_id();
276
277 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
278 BUG();
279
280 return 0;
281 }
282
283 static int xen_vcpuop_set_next_event(unsigned long delta,
284 struct clock_event_device *evt)
285 {
286 int cpu = smp_processor_id();
287 struct vcpu_set_singleshot_timer single;
288 int ret;
289
290 WARN_ON(!clockevent_state_oneshot(evt));
291
292 single.timeout_abs_ns = get_abs_timeout(delta);
293 /* Get an event anyway, even if the timeout is already expired */
294 single.flags = 0;
295
296 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
297 BUG_ON(ret != 0);
298
299 return ret;
300 }
301
302 static const struct clock_event_device xen_vcpuop_clockevent = {
303 .name = "xen",
304 .features = CLOCK_EVT_FEAT_ONESHOT,
305
306 .max_delta_ns = 0xffffffff,
307 .min_delta_ns = TIMER_SLOP,
308
309 .mult = 1,
310 .shift = 0,
311 .rating = 500,
312
313 .set_state_shutdown = xen_vcpuop_shutdown,
314 .set_state_oneshot = xen_vcpuop_set_oneshot,
315 .set_next_event = xen_vcpuop_set_next_event,
316 };
317
318 static const struct clock_event_device *xen_clockevent =
319 &xen_timerop_clockevent;
320
321 struct xen_clock_event_device {
322 struct clock_event_device evt;
323 char name[16];
324 };
325 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
326
327 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
328 {
329 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
330 irqreturn_t ret;
331
332 ret = IRQ_NONE;
333 if (evt->event_handler) {
334 evt->event_handler(evt);
335 ret = IRQ_HANDLED;
336 }
337
338 do_stolen_accounting();
339
340 return ret;
341 }
342
343 void xen_teardown_timer(int cpu)
344 {
345 struct clock_event_device *evt;
346 BUG_ON(cpu == 0);
347 evt = &per_cpu(xen_clock_events, cpu).evt;
348
349 if (evt->irq >= 0) {
350 unbind_from_irqhandler(evt->irq, NULL);
351 evt->irq = -1;
352 }
353 }
354
355 void xen_setup_timer(int cpu)
356 {
357 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
358 struct clock_event_device *evt = &xevt->evt;
359 int irq;
360
361 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
362 if (evt->irq >= 0)
363 xen_teardown_timer(cpu);
364
365 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
366
367 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
368
369 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
370 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
371 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
372 xevt->name, NULL);
373 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
374
375 memcpy(evt, xen_clockevent, sizeof(*evt));
376
377 evt->cpumask = cpumask_of(cpu);
378 evt->irq = irq;
379 }
380
381
382 void xen_setup_cpu_clockevents(void)
383 {
384 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
385 }
386
387 void xen_timer_resume(void)
388 {
389 int cpu;
390
391 pvclock_resume();
392
393 if (xen_clockevent != &xen_vcpuop_clockevent)
394 return;
395
396 for_each_online_cpu(cpu) {
397 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
398 BUG();
399 }
400 }
401
402 static const struct pv_time_ops xen_time_ops __initconst = {
403 .sched_clock = xen_clocksource_read,
404 };
405
406 static void __init xen_time_init(void)
407 {
408 int cpu = smp_processor_id();
409 struct timespec tp;
410
411 /* As Dom0 is never moved, no penalty on using TSC there */
412 if (xen_initial_domain())
413 xen_clocksource.rating = 275;
414
415 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
416
417 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
418 /* Successfully turned off 100Hz tick, so we have the
419 vcpuop-based timer interface */
420 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
421 xen_clockevent = &xen_vcpuop_clockevent;
422 }
423
424 /* Set initial system time with full resolution */
425 xen_read_wallclock(&tp);
426 do_settimeofday(&tp);
427
428 setup_force_cpu_cap(X86_FEATURE_TSC);
429
430 xen_setup_runstate_info(cpu);
431 xen_setup_timer(cpu);
432 xen_setup_cpu_clockevents();
433
434 if (xen_initial_domain())
435 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
436 }
437
438 void __init xen_init_time_ops(void)
439 {
440 pv_time_ops = xen_time_ops;
441
442 x86_init.timers.timer_init = xen_time_init;
443 x86_init.timers.setup_percpu_clockev = x86_init_noop;
444 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
445
446 x86_platform.calibrate_tsc = xen_tsc_khz;
447 x86_platform.get_wallclock = xen_get_wallclock;
448 /* Dom0 uses the native method to set the hardware RTC. */
449 if (!xen_initial_domain())
450 x86_platform.set_wallclock = xen_set_wallclock;
451 }
452
453 #ifdef CONFIG_XEN_PVHVM
454 static void xen_hvm_setup_cpu_clockevents(void)
455 {
456 int cpu = smp_processor_id();
457 xen_setup_runstate_info(cpu);
458 /*
459 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
460 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
461 * early bootup and also during CPU hotplug events).
462 */
463 xen_setup_cpu_clockevents();
464 }
465
466 void __init xen_hvm_init_time_ops(void)
467 {
468 /* vector callback is needed otherwise we cannot receive interrupts
469 * on cpu > 0 and at this point we don't know how many cpus are
470 * available */
471 if (!xen_have_vector_callback)
472 return;
473 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
474 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
475 "disable pv timer\n");
476 return;
477 }
478
479 pv_time_ops = xen_time_ops;
480 x86_init.timers.setup_percpu_clockev = xen_time_init;
481 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
482
483 x86_platform.calibrate_tsc = xen_tsc_khz;
484 x86_platform.get_wallclock = xen_get_wallclock;
485 x86_platform.set_wallclock = xen_set_wallclock;
486 }
487 #endif