]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/xen/time.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / x86 / xen / time.c
1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/pvclock_gtod.h>
17 #include <linux/timekeeper_internal.h>
18
19 #include <asm/pvclock.h>
20 #include <asm/xen/hypervisor.h>
21 #include <asm/xen/hypercall.h>
22
23 #include <xen/events.h>
24 #include <xen/features.h>
25 #include <xen/interface/xen.h>
26 #include <xen/interface/vcpu.h>
27
28 #include "xen-ops.h"
29
30 /* Xen may fire a timer up to this many ns early */
31 #define TIMER_SLOP 100000
32
33 /* Get the TSC speed from Xen */
34 static unsigned long xen_tsc_khz(void)
35 {
36 struct pvclock_vcpu_time_info *info =
37 &HYPERVISOR_shared_info->vcpu_info[0].time;
38
39 return pvclock_tsc_khz(info);
40 }
41
42 u64 xen_clocksource_read(void)
43 {
44 struct pvclock_vcpu_time_info *src;
45 u64 ret;
46
47 preempt_disable_notrace();
48 src = &__this_cpu_read(xen_vcpu)->time;
49 ret = pvclock_clocksource_read(src);
50 preempt_enable_notrace();
51 return ret;
52 }
53
54 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
55 {
56 return xen_clocksource_read();
57 }
58
59 static void xen_read_wallclock(struct timespec *ts)
60 {
61 struct shared_info *s = HYPERVISOR_shared_info;
62 struct pvclock_wall_clock *wall_clock = &(s->wc);
63 struct pvclock_vcpu_time_info *vcpu_time;
64
65 vcpu_time = &get_cpu_var(xen_vcpu)->time;
66 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
67 put_cpu_var(xen_vcpu);
68 }
69
70 static void xen_get_wallclock(struct timespec *now)
71 {
72 xen_read_wallclock(now);
73 }
74
75 static int xen_set_wallclock(const struct timespec *now)
76 {
77 return -1;
78 }
79
80 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
81 unsigned long was_set, void *priv)
82 {
83 /* Protected by the calling core code serialization */
84 static struct timespec64 next_sync;
85
86 struct xen_platform_op op;
87 struct timespec64 now;
88 struct timekeeper *tk = priv;
89 static bool settime64_supported = true;
90 int ret;
91
92 now.tv_sec = tk->xtime_sec;
93 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
94
95 /*
96 * We only take the expensive HV call when the clock was set
97 * or when the 11 minutes RTC synchronization time elapsed.
98 */
99 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
100 return NOTIFY_OK;
101
102 again:
103 if (settime64_supported) {
104 op.cmd = XENPF_settime64;
105 op.u.settime64.mbz = 0;
106 op.u.settime64.secs = now.tv_sec;
107 op.u.settime64.nsecs = now.tv_nsec;
108 op.u.settime64.system_time = xen_clocksource_read();
109 } else {
110 op.cmd = XENPF_settime32;
111 op.u.settime32.secs = now.tv_sec;
112 op.u.settime32.nsecs = now.tv_nsec;
113 op.u.settime32.system_time = xen_clocksource_read();
114 }
115
116 ret = HYPERVISOR_platform_op(&op);
117
118 if (ret == -ENOSYS && settime64_supported) {
119 settime64_supported = false;
120 goto again;
121 }
122 if (ret < 0)
123 return NOTIFY_BAD;
124
125 /*
126 * Move the next drift compensation time 11 minutes
127 * ahead. That's emulating the sync_cmos_clock() update for
128 * the hardware RTC.
129 */
130 next_sync = now;
131 next_sync.tv_sec += 11 * 60;
132
133 return NOTIFY_OK;
134 }
135
136 static struct notifier_block xen_pvclock_gtod_notifier = {
137 .notifier_call = xen_pvclock_gtod_notify,
138 };
139
140 static struct clocksource xen_clocksource __read_mostly = {
141 .name = "xen",
142 .rating = 400,
143 .read = xen_clocksource_get_cycles,
144 .mask = ~0,
145 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
146 };
147
148 /*
149 Xen clockevent implementation
150
151 Xen has two clockevent implementations:
152
153 The old timer_op one works with all released versions of Xen prior
154 to version 3.0.4. This version of the hypervisor provides a
155 single-shot timer with nanosecond resolution. However, sharing the
156 same event channel is a 100Hz tick which is delivered while the
157 vcpu is running. We don't care about or use this tick, but it will
158 cause the core time code to think the timer fired too soon, and
159 will end up resetting it each time. It could be filtered, but
160 doing so has complications when the ktime clocksource is not yet
161 the xen clocksource (ie, at boot time).
162
163 The new vcpu_op-based timer interface allows the tick timer period
164 to be changed or turned off. The tick timer is not useful as a
165 periodic timer because events are only delivered to running vcpus.
166 The one-shot timer can report when a timeout is in the past, so
167 set_next_event is capable of returning -ETIME when appropriate.
168 This interface is used when available.
169 */
170
171
172 /*
173 Get a hypervisor absolute time. In theory we could maintain an
174 offset between the kernel's time and the hypervisor's time, and
175 apply that to a kernel's absolute timeout. Unfortunately the
176 hypervisor and kernel times can drift even if the kernel is using
177 the Xen clocksource, because ntp can warp the kernel's clocksource.
178 */
179 static s64 get_abs_timeout(unsigned long delta)
180 {
181 return xen_clocksource_read() + delta;
182 }
183
184 static int xen_timerop_shutdown(struct clock_event_device *evt)
185 {
186 /* cancel timeout */
187 HYPERVISOR_set_timer_op(0);
188
189 return 0;
190 }
191
192 static int xen_timerop_set_next_event(unsigned long delta,
193 struct clock_event_device *evt)
194 {
195 WARN_ON(!clockevent_state_oneshot(evt));
196
197 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
198 BUG();
199
200 /* We may have missed the deadline, but there's no real way of
201 knowing for sure. If the event was in the past, then we'll
202 get an immediate interrupt. */
203
204 return 0;
205 }
206
207 static const struct clock_event_device xen_timerop_clockevent = {
208 .name = "xen",
209 .features = CLOCK_EVT_FEAT_ONESHOT,
210
211 .max_delta_ns = 0xffffffff,
212 .max_delta_ticks = 0xffffffff,
213 .min_delta_ns = TIMER_SLOP,
214 .min_delta_ticks = TIMER_SLOP,
215
216 .mult = 1,
217 .shift = 0,
218 .rating = 500,
219
220 .set_state_shutdown = xen_timerop_shutdown,
221 .set_next_event = xen_timerop_set_next_event,
222 };
223
224 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
225 {
226 int cpu = smp_processor_id();
227
228 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
229 NULL) ||
230 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
231 NULL))
232 BUG();
233
234 return 0;
235 }
236
237 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
238 {
239 int cpu = smp_processor_id();
240
241 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
242 NULL))
243 BUG();
244
245 return 0;
246 }
247
248 static int xen_vcpuop_set_next_event(unsigned long delta,
249 struct clock_event_device *evt)
250 {
251 int cpu = smp_processor_id();
252 struct vcpu_set_singleshot_timer single;
253 int ret;
254
255 WARN_ON(!clockevent_state_oneshot(evt));
256
257 single.timeout_abs_ns = get_abs_timeout(delta);
258 /* Get an event anyway, even if the timeout is already expired */
259 single.flags = 0;
260
261 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
262 &single);
263 BUG_ON(ret != 0);
264
265 return ret;
266 }
267
268 static const struct clock_event_device xen_vcpuop_clockevent = {
269 .name = "xen",
270 .features = CLOCK_EVT_FEAT_ONESHOT,
271
272 .max_delta_ns = 0xffffffff,
273 .max_delta_ticks = 0xffffffff,
274 .min_delta_ns = TIMER_SLOP,
275 .min_delta_ticks = TIMER_SLOP,
276
277 .mult = 1,
278 .shift = 0,
279 .rating = 500,
280
281 .set_state_shutdown = xen_vcpuop_shutdown,
282 .set_state_oneshot = xen_vcpuop_set_oneshot,
283 .set_next_event = xen_vcpuop_set_next_event,
284 };
285
286 static const struct clock_event_device *xen_clockevent =
287 &xen_timerop_clockevent;
288
289 struct xen_clock_event_device {
290 struct clock_event_device evt;
291 char name[16];
292 };
293 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
294
295 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
296 {
297 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
298 irqreturn_t ret;
299
300 ret = IRQ_NONE;
301 if (evt->event_handler) {
302 evt->event_handler(evt);
303 ret = IRQ_HANDLED;
304 }
305
306 return ret;
307 }
308
309 void xen_teardown_timer(int cpu)
310 {
311 struct clock_event_device *evt;
312 BUG_ON(cpu == 0);
313 evt = &per_cpu(xen_clock_events, cpu).evt;
314
315 if (evt->irq >= 0) {
316 unbind_from_irqhandler(evt->irq, NULL);
317 evt->irq = -1;
318 }
319 }
320
321 void xen_setup_timer(int cpu)
322 {
323 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
324 struct clock_event_device *evt = &xevt->evt;
325 int irq;
326
327 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
328 if (evt->irq >= 0)
329 xen_teardown_timer(cpu);
330
331 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
332
333 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
334
335 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
336 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
337 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
338 xevt->name, NULL);
339 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
340
341 memcpy(evt, xen_clockevent, sizeof(*evt));
342
343 evt->cpumask = cpumask_of(cpu);
344 evt->irq = irq;
345 }
346
347
348 void xen_setup_cpu_clockevents(void)
349 {
350 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
351 }
352
353 void xen_timer_resume(void)
354 {
355 int cpu;
356
357 pvclock_resume();
358
359 if (xen_clockevent != &xen_vcpuop_clockevent)
360 return;
361
362 for_each_online_cpu(cpu) {
363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
364 xen_vcpu_nr(cpu), NULL))
365 BUG();
366 }
367 }
368
369 static const struct pv_time_ops xen_time_ops __initconst = {
370 .sched_clock = xen_clocksource_read,
371 .steal_clock = xen_steal_clock,
372 };
373
374 static void __init xen_time_init(void)
375 {
376 int cpu = smp_processor_id();
377 struct timespec tp;
378
379 /* As Dom0 is never moved, no penalty on using TSC there */
380 if (xen_initial_domain())
381 xen_clocksource.rating = 275;
382
383 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
384
385 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
386 NULL) == 0) {
387 /* Successfully turned off 100Hz tick, so we have the
388 vcpuop-based timer interface */
389 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
390 xen_clockevent = &xen_vcpuop_clockevent;
391 }
392
393 /* Set initial system time with full resolution */
394 xen_read_wallclock(&tp);
395 do_settimeofday(&tp);
396
397 setup_force_cpu_cap(X86_FEATURE_TSC);
398
399 xen_setup_runstate_info(cpu);
400 xen_setup_timer(cpu);
401 xen_setup_cpu_clockevents();
402
403 xen_time_setup_guest();
404
405 if (xen_initial_domain())
406 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
407 }
408
409 void __ref xen_init_time_ops(void)
410 {
411 pv_time_ops = xen_time_ops;
412
413 x86_init.timers.timer_init = xen_time_init;
414 x86_init.timers.setup_percpu_clockev = x86_init_noop;
415 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
416
417 x86_platform.calibrate_tsc = xen_tsc_khz;
418 x86_platform.get_wallclock = xen_get_wallclock;
419 /* Dom0 uses the native method to set the hardware RTC. */
420 if (!xen_initial_domain())
421 x86_platform.set_wallclock = xen_set_wallclock;
422 }
423
424 #ifdef CONFIG_XEN_PVHVM
425 static void xen_hvm_setup_cpu_clockevents(void)
426 {
427 int cpu = smp_processor_id();
428 xen_setup_runstate_info(cpu);
429 /*
430 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
431 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
432 * early bootup and also during CPU hotplug events).
433 */
434 xen_setup_cpu_clockevents();
435 }
436
437 void __init xen_hvm_init_time_ops(void)
438 {
439 /*
440 * vector callback is needed otherwise we cannot receive interrupts
441 * on cpu > 0 and at this point we don't know how many cpus are
442 * available.
443 */
444 if (!xen_have_vector_callback)
445 return;
446
447 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
448 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
449 "disable pv timer\n");
450 return;
451 }
452
453 pv_time_ops = xen_time_ops;
454 x86_init.timers.setup_percpu_clockev = xen_time_init;
455 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
456
457 x86_platform.calibrate_tsc = xen_tsc_khz;
458 x86_platform.get_wallclock = xen_get_wallclock;
459 x86_platform.set_wallclock = xen_set_wallclock;
460 }
461 #endif