]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/xen/time.c
Merge tag 'asoc-fix-v4.14-rc6' into asoc-linus
[mirror_ubuntu-focal-kernel.git] / arch / x86 / xen / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xen time implementation.
4 *
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
8 *
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10 */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28
29 #include "xen-ops.h"
30
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP 100000
33
34 /* Get the TSC speed from Xen */
35 static unsigned long xen_tsc_khz(void)
36 {
37 struct pvclock_vcpu_time_info *info =
38 &HYPERVISOR_shared_info->vcpu_info[0].time;
39
40 return pvclock_tsc_khz(info);
41 }
42
43 u64 xen_clocksource_read(void)
44 {
45 struct pvclock_vcpu_time_info *src;
46 u64 ret;
47
48 preempt_disable_notrace();
49 src = &__this_cpu_read(xen_vcpu)->time;
50 ret = pvclock_clocksource_read(src);
51 preempt_enable_notrace();
52 return ret;
53 }
54
55 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
56 {
57 return xen_clocksource_read();
58 }
59
60 static void xen_read_wallclock(struct timespec *ts)
61 {
62 struct shared_info *s = HYPERVISOR_shared_info;
63 struct pvclock_wall_clock *wall_clock = &(s->wc);
64 struct pvclock_vcpu_time_info *vcpu_time;
65
66 vcpu_time = &get_cpu_var(xen_vcpu)->time;
67 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
68 put_cpu_var(xen_vcpu);
69 }
70
71 static void xen_get_wallclock(struct timespec *now)
72 {
73 xen_read_wallclock(now);
74 }
75
76 static int xen_set_wallclock(const struct timespec *now)
77 {
78 return -1;
79 }
80
81 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
82 unsigned long was_set, void *priv)
83 {
84 /* Protected by the calling core code serialization */
85 static struct timespec64 next_sync;
86
87 struct xen_platform_op op;
88 struct timespec64 now;
89 struct timekeeper *tk = priv;
90 static bool settime64_supported = true;
91 int ret;
92
93 now.tv_sec = tk->xtime_sec;
94 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
95
96 /*
97 * We only take the expensive HV call when the clock was set
98 * or when the 11 minutes RTC synchronization time elapsed.
99 */
100 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
101 return NOTIFY_OK;
102
103 again:
104 if (settime64_supported) {
105 op.cmd = XENPF_settime64;
106 op.u.settime64.mbz = 0;
107 op.u.settime64.secs = now.tv_sec;
108 op.u.settime64.nsecs = now.tv_nsec;
109 op.u.settime64.system_time = xen_clocksource_read();
110 } else {
111 op.cmd = XENPF_settime32;
112 op.u.settime32.secs = now.tv_sec;
113 op.u.settime32.nsecs = now.tv_nsec;
114 op.u.settime32.system_time = xen_clocksource_read();
115 }
116
117 ret = HYPERVISOR_platform_op(&op);
118
119 if (ret == -ENOSYS && settime64_supported) {
120 settime64_supported = false;
121 goto again;
122 }
123 if (ret < 0)
124 return NOTIFY_BAD;
125
126 /*
127 * Move the next drift compensation time 11 minutes
128 * ahead. That's emulating the sync_cmos_clock() update for
129 * the hardware RTC.
130 */
131 next_sync = now;
132 next_sync.tv_sec += 11 * 60;
133
134 return NOTIFY_OK;
135 }
136
137 static struct notifier_block xen_pvclock_gtod_notifier = {
138 .notifier_call = xen_pvclock_gtod_notify,
139 };
140
141 static struct clocksource xen_clocksource __read_mostly = {
142 .name = "xen",
143 .rating = 400,
144 .read = xen_clocksource_get_cycles,
145 .mask = ~0,
146 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
147 };
148
149 /*
150 Xen clockevent implementation
151
152 Xen has two clockevent implementations:
153
154 The old timer_op one works with all released versions of Xen prior
155 to version 3.0.4. This version of the hypervisor provides a
156 single-shot timer with nanosecond resolution. However, sharing the
157 same event channel is a 100Hz tick which is delivered while the
158 vcpu is running. We don't care about or use this tick, but it will
159 cause the core time code to think the timer fired too soon, and
160 will end up resetting it each time. It could be filtered, but
161 doing so has complications when the ktime clocksource is not yet
162 the xen clocksource (ie, at boot time).
163
164 The new vcpu_op-based timer interface allows the tick timer period
165 to be changed or turned off. The tick timer is not useful as a
166 periodic timer because events are only delivered to running vcpus.
167 The one-shot timer can report when a timeout is in the past, so
168 set_next_event is capable of returning -ETIME when appropriate.
169 This interface is used when available.
170 */
171
172
173 /*
174 Get a hypervisor absolute time. In theory we could maintain an
175 offset between the kernel's time and the hypervisor's time, and
176 apply that to a kernel's absolute timeout. Unfortunately the
177 hypervisor and kernel times can drift even if the kernel is using
178 the Xen clocksource, because ntp can warp the kernel's clocksource.
179 */
180 static s64 get_abs_timeout(unsigned long delta)
181 {
182 return xen_clocksource_read() + delta;
183 }
184
185 static int xen_timerop_shutdown(struct clock_event_device *evt)
186 {
187 /* cancel timeout */
188 HYPERVISOR_set_timer_op(0);
189
190 return 0;
191 }
192
193 static int xen_timerop_set_next_event(unsigned long delta,
194 struct clock_event_device *evt)
195 {
196 WARN_ON(!clockevent_state_oneshot(evt));
197
198 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
199 BUG();
200
201 /* We may have missed the deadline, but there's no real way of
202 knowing for sure. If the event was in the past, then we'll
203 get an immediate interrupt. */
204
205 return 0;
206 }
207
208 static const struct clock_event_device xen_timerop_clockevent = {
209 .name = "xen",
210 .features = CLOCK_EVT_FEAT_ONESHOT,
211
212 .max_delta_ns = 0xffffffff,
213 .max_delta_ticks = 0xffffffff,
214 .min_delta_ns = TIMER_SLOP,
215 .min_delta_ticks = TIMER_SLOP,
216
217 .mult = 1,
218 .shift = 0,
219 .rating = 500,
220
221 .set_state_shutdown = xen_timerop_shutdown,
222 .set_next_event = xen_timerop_set_next_event,
223 };
224
225 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
226 {
227 int cpu = smp_processor_id();
228
229 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
230 NULL) ||
231 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
232 NULL))
233 BUG();
234
235 return 0;
236 }
237
238 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
239 {
240 int cpu = smp_processor_id();
241
242 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
243 NULL))
244 BUG();
245
246 return 0;
247 }
248
249 static int xen_vcpuop_set_next_event(unsigned long delta,
250 struct clock_event_device *evt)
251 {
252 int cpu = smp_processor_id();
253 struct vcpu_set_singleshot_timer single;
254 int ret;
255
256 WARN_ON(!clockevent_state_oneshot(evt));
257
258 single.timeout_abs_ns = get_abs_timeout(delta);
259 /* Get an event anyway, even if the timeout is already expired */
260 single.flags = 0;
261
262 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
263 &single);
264 BUG_ON(ret != 0);
265
266 return ret;
267 }
268
269 static const struct clock_event_device xen_vcpuop_clockevent = {
270 .name = "xen",
271 .features = CLOCK_EVT_FEAT_ONESHOT,
272
273 .max_delta_ns = 0xffffffff,
274 .max_delta_ticks = 0xffffffff,
275 .min_delta_ns = TIMER_SLOP,
276 .min_delta_ticks = TIMER_SLOP,
277
278 .mult = 1,
279 .shift = 0,
280 .rating = 500,
281
282 .set_state_shutdown = xen_vcpuop_shutdown,
283 .set_state_oneshot = xen_vcpuop_set_oneshot,
284 .set_next_event = xen_vcpuop_set_next_event,
285 };
286
287 static const struct clock_event_device *xen_clockevent =
288 &xen_timerop_clockevent;
289
290 struct xen_clock_event_device {
291 struct clock_event_device evt;
292 char name[16];
293 };
294 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
295
296 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
297 {
298 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
299 irqreturn_t ret;
300
301 ret = IRQ_NONE;
302 if (evt->event_handler) {
303 evt->event_handler(evt);
304 ret = IRQ_HANDLED;
305 }
306
307 return ret;
308 }
309
310 void xen_teardown_timer(int cpu)
311 {
312 struct clock_event_device *evt;
313 evt = &per_cpu(xen_clock_events, cpu).evt;
314
315 if (evt->irq >= 0) {
316 unbind_from_irqhandler(evt->irq, NULL);
317 evt->irq = -1;
318 }
319 }
320
321 void xen_setup_timer(int cpu)
322 {
323 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
324 struct clock_event_device *evt = &xevt->evt;
325 int irq;
326
327 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
328 if (evt->irq >= 0)
329 xen_teardown_timer(cpu);
330
331 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
332
333 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
334
335 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
336 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
337 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
338 xevt->name, NULL);
339 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
340
341 memcpy(evt, xen_clockevent, sizeof(*evt));
342
343 evt->cpumask = cpumask_of(cpu);
344 evt->irq = irq;
345 }
346
347
348 void xen_setup_cpu_clockevents(void)
349 {
350 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
351 }
352
353 void xen_timer_resume(void)
354 {
355 int cpu;
356
357 pvclock_resume();
358
359 if (xen_clockevent != &xen_vcpuop_clockevent)
360 return;
361
362 for_each_online_cpu(cpu) {
363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
364 xen_vcpu_nr(cpu), NULL))
365 BUG();
366 }
367 }
368
369 static const struct pv_time_ops xen_time_ops __initconst = {
370 .sched_clock = xen_clocksource_read,
371 .steal_clock = xen_steal_clock,
372 };
373
374 static void __init xen_time_init(void)
375 {
376 int cpu = smp_processor_id();
377 struct timespec tp;
378
379 /* As Dom0 is never moved, no penalty on using TSC there */
380 if (xen_initial_domain())
381 xen_clocksource.rating = 275;
382
383 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
384
385 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
386 NULL) == 0) {
387 /* Successfully turned off 100Hz tick, so we have the
388 vcpuop-based timer interface */
389 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
390 xen_clockevent = &xen_vcpuop_clockevent;
391 }
392
393 /* Set initial system time with full resolution */
394 xen_read_wallclock(&tp);
395 do_settimeofday(&tp);
396
397 setup_force_cpu_cap(X86_FEATURE_TSC);
398
399 xen_setup_runstate_info(cpu);
400 xen_setup_timer(cpu);
401 xen_setup_cpu_clockevents();
402
403 xen_time_setup_guest();
404
405 if (xen_initial_domain())
406 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
407 }
408
409 void __ref xen_init_time_ops(void)
410 {
411 pv_time_ops = xen_time_ops;
412
413 x86_init.timers.timer_init = xen_time_init;
414 x86_init.timers.setup_percpu_clockev = x86_init_noop;
415 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
416
417 x86_platform.calibrate_tsc = xen_tsc_khz;
418 x86_platform.get_wallclock = xen_get_wallclock;
419 /* Dom0 uses the native method to set the hardware RTC. */
420 if (!xen_initial_domain())
421 x86_platform.set_wallclock = xen_set_wallclock;
422 }
423
424 #ifdef CONFIG_XEN_PVHVM
425 static void xen_hvm_setup_cpu_clockevents(void)
426 {
427 int cpu = smp_processor_id();
428 xen_setup_runstate_info(cpu);
429 /*
430 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
431 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
432 * early bootup and also during CPU hotplug events).
433 */
434 xen_setup_cpu_clockevents();
435 }
436
437 void __init xen_hvm_init_time_ops(void)
438 {
439 /*
440 * vector callback is needed otherwise we cannot receive interrupts
441 * on cpu > 0 and at this point we don't know how many cpus are
442 * available.
443 */
444 if (!xen_have_vector_callback)
445 return;
446
447 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
448 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
449 "disable pv timer\n");
450 return;
451 }
452
453 pv_time_ops = xen_time_ops;
454 x86_init.timers.setup_percpu_clockev = xen_time_init;
455 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
456
457 x86_platform.calibrate_tsc = xen_tsc_khz;
458 x86_platform.get_wallclock = xen_get_wallclock;
459 x86_platform.set_wallclock = xen_set_wallclock;
460 }
461 #endif