]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86_64/kernel/kprobes.c
Pull platform-drivers into test branch
[mirror_ubuntu-bionic-kernel.git] / arch / x86_64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
32 */
33
34 #include <linux/kprobes.h>
35 #include <linux/ptrace.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/preempt.h>
39 #include <linux/module.h>
40
41 #include <asm/cacheflush.h>
42 #include <asm/pgtable.h>
43 #include <asm/kdebug.h>
44 #include <asm/uaccess.h>
45
46 void jprobe_return_end(void);
47 static void __kprobes arch_copy_kprobe(struct kprobe *p);
48
49 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
51
52 /*
53 * returns non-zero if opcode modifies the interrupt flag.
54 */
55 static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
56 {
57 switch (*insn) {
58 case 0xfa: /* cli */
59 case 0xfb: /* sti */
60 case 0xcf: /* iret/iretd */
61 case 0x9d: /* popf/popfd */
62 return 1;
63 }
64
65 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66 return 1;
67 return 0;
68 }
69
70 int __kprobes arch_prepare_kprobe(struct kprobe *p)
71 {
72 /* insn: must be on special executable page on x86_64. */
73 p->ainsn.insn = get_insn_slot();
74 if (!p->ainsn.insn) {
75 return -ENOMEM;
76 }
77 arch_copy_kprobe(p);
78 return 0;
79 }
80
81 /*
82 * Determine if the instruction uses the %rip-relative addressing mode.
83 * If it does, return the address of the 32-bit displacement word.
84 * If not, return null.
85 */
86 static s32 __kprobes *is_riprel(u8 *insn)
87 {
88 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
89 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
90 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
91 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
92 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
93 << (row % 64))
94 static const u64 onebyte_has_modrm[256 / 64] = {
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ------------------------------- */
97 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
98 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
99 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
100 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
101 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
102 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
103 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
104 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
105 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
106 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
107 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
108 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
109 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
110 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
111 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
112 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
113 /* ------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115 };
116 static const u64 twobyte_has_modrm[256 / 64] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ------------------------------- */
119 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
120 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
121 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
122 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
123 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
124 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
125 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
126 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
127 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
128 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
129 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
130 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
131 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
132 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
133 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
134 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
135 /* ------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
137 };
138 #undef W
139 int need_modrm;
140
141 /* Skip legacy instruction prefixes. */
142 while (1) {
143 switch (*insn) {
144 case 0x66:
145 case 0x67:
146 case 0x2e:
147 case 0x3e:
148 case 0x26:
149 case 0x64:
150 case 0x65:
151 case 0x36:
152 case 0xf0:
153 case 0xf3:
154 case 0xf2:
155 ++insn;
156 continue;
157 }
158 break;
159 }
160
161 /* Skip REX instruction prefix. */
162 if ((*insn & 0xf0) == 0x40)
163 ++insn;
164
165 if (*insn == 0x0f) { /* Two-byte opcode. */
166 ++insn;
167 need_modrm = test_bit(*insn, twobyte_has_modrm);
168 } else { /* One-byte opcode. */
169 need_modrm = test_bit(*insn, onebyte_has_modrm);
170 }
171
172 if (need_modrm) {
173 u8 modrm = *++insn;
174 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
175 /* Displacement follows ModRM byte. */
176 return (s32 *) ++insn;
177 }
178 }
179
180 /* No %rip-relative addressing mode here. */
181 return NULL;
182 }
183
184 static void __kprobes arch_copy_kprobe(struct kprobe *p)
185 {
186 s32 *ripdisp;
187 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
188 ripdisp = is_riprel(p->ainsn.insn);
189 if (ripdisp) {
190 /*
191 * The copied instruction uses the %rip-relative
192 * addressing mode. Adjust the displacement for the
193 * difference between the original location of this
194 * instruction and the location of the copy that will
195 * actually be run. The tricky bit here is making sure
196 * that the sign extension happens correctly in this
197 * calculation, since we need a signed 32-bit result to
198 * be sign-extended to 64 bits when it's added to the
199 * %rip value and yield the same 64-bit result that the
200 * sign-extension of the original signed 32-bit
201 * displacement would have given.
202 */
203 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
204 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
205 *ripdisp = disp;
206 }
207 p->opcode = *p->addr;
208 }
209
210 void __kprobes arch_arm_kprobe(struct kprobe *p)
211 {
212 *p->addr = BREAKPOINT_INSTRUCTION;
213 flush_icache_range((unsigned long) p->addr,
214 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
215 }
216
217 void __kprobes arch_disarm_kprobe(struct kprobe *p)
218 {
219 *p->addr = p->opcode;
220 flush_icache_range((unsigned long) p->addr,
221 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
222 }
223
224 void __kprobes arch_remove_kprobe(struct kprobe *p)
225 {
226 mutex_lock(&kprobe_mutex);
227 free_insn_slot(p->ainsn.insn, 0);
228 mutex_unlock(&kprobe_mutex);
229 }
230
231 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
232 {
233 kcb->prev_kprobe.kp = kprobe_running();
234 kcb->prev_kprobe.status = kcb->kprobe_status;
235 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
236 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
237 }
238
239 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
240 {
241 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
242 kcb->kprobe_status = kcb->prev_kprobe.status;
243 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
244 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
245 }
246
247 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
248 struct kprobe_ctlblk *kcb)
249 {
250 __get_cpu_var(current_kprobe) = p;
251 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
252 = (regs->eflags & (TF_MASK | IF_MASK));
253 if (is_IF_modifier(p->ainsn.insn))
254 kcb->kprobe_saved_rflags &= ~IF_MASK;
255 }
256
257 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
258 {
259 regs->eflags |= TF_MASK;
260 regs->eflags &= ~IF_MASK;
261 /*single step inline if the instruction is an int3*/
262 if (p->opcode == BREAKPOINT_INSTRUCTION)
263 regs->rip = (unsigned long)p->addr;
264 else
265 regs->rip = (unsigned long)p->ainsn.insn;
266 }
267
268 /* Called with kretprobe_lock held */
269 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
270 struct pt_regs *regs)
271 {
272 unsigned long *sara = (unsigned long *)regs->rsp;
273 struct kretprobe_instance *ri;
274
275 if ((ri = get_free_rp_inst(rp)) != NULL) {
276 ri->rp = rp;
277 ri->task = current;
278 ri->ret_addr = (kprobe_opcode_t *) *sara;
279
280 /* Replace the return addr with trampoline addr */
281 *sara = (unsigned long) &kretprobe_trampoline;
282 add_rp_inst(ri);
283 } else {
284 rp->nmissed++;
285 }
286 }
287
288 int __kprobes kprobe_handler(struct pt_regs *regs)
289 {
290 struct kprobe *p;
291 int ret = 0;
292 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
293 struct kprobe_ctlblk *kcb;
294
295 /*
296 * We don't want to be preempted for the entire
297 * duration of kprobe processing
298 */
299 preempt_disable();
300 kcb = get_kprobe_ctlblk();
301
302 /* Check we're not actually recursing */
303 if (kprobe_running()) {
304 p = get_kprobe(addr);
305 if (p) {
306 if (kcb->kprobe_status == KPROBE_HIT_SS &&
307 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
308 regs->eflags &= ~TF_MASK;
309 regs->eflags |= kcb->kprobe_saved_rflags;
310 goto no_kprobe;
311 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
312 /* TODO: Provide re-entrancy from
313 * post_kprobes_handler() and avoid exception
314 * stack corruption while single-stepping on
315 * the instruction of the new probe.
316 */
317 arch_disarm_kprobe(p);
318 regs->rip = (unsigned long)p->addr;
319 reset_current_kprobe();
320 ret = 1;
321 } else {
322 /* We have reentered the kprobe_handler(), since
323 * another probe was hit while within the
324 * handler. We here save the original kprobe
325 * variables and just single step on instruction
326 * of the new probe without calling any user
327 * handlers.
328 */
329 save_previous_kprobe(kcb);
330 set_current_kprobe(p, regs, kcb);
331 kprobes_inc_nmissed_count(p);
332 prepare_singlestep(p, regs);
333 kcb->kprobe_status = KPROBE_REENTER;
334 return 1;
335 }
336 } else {
337 if (*addr != BREAKPOINT_INSTRUCTION) {
338 /* The breakpoint instruction was removed by
339 * another cpu right after we hit, no further
340 * handling of this interrupt is appropriate
341 */
342 regs->rip = (unsigned long)addr;
343 ret = 1;
344 goto no_kprobe;
345 }
346 p = __get_cpu_var(current_kprobe);
347 if (p->break_handler && p->break_handler(p, regs)) {
348 goto ss_probe;
349 }
350 }
351 goto no_kprobe;
352 }
353
354 p = get_kprobe(addr);
355 if (!p) {
356 if (*addr != BREAKPOINT_INSTRUCTION) {
357 /*
358 * The breakpoint instruction was removed right
359 * after we hit it. Another cpu has removed
360 * either a probepoint or a debugger breakpoint
361 * at this address. In either case, no further
362 * handling of this interrupt is appropriate.
363 * Back up over the (now missing) int3 and run
364 * the original instruction.
365 */
366 regs->rip = (unsigned long)addr;
367 ret = 1;
368 }
369 /* Not one of ours: let kernel handle it */
370 goto no_kprobe;
371 }
372
373 set_current_kprobe(p, regs, kcb);
374 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
375
376 if (p->pre_handler && p->pre_handler(p, regs))
377 /* handler has already set things up, so skip ss setup */
378 return 1;
379
380 ss_probe:
381 prepare_singlestep(p, regs);
382 kcb->kprobe_status = KPROBE_HIT_SS;
383 return 1;
384
385 no_kprobe:
386 preempt_enable_no_resched();
387 return ret;
388 }
389
390 /*
391 * For function-return probes, init_kprobes() establishes a probepoint
392 * here. When a retprobed function returns, this probe is hit and
393 * trampoline_probe_handler() runs, calling the kretprobe's handler.
394 */
395 void kretprobe_trampoline_holder(void)
396 {
397 asm volatile ( ".global kretprobe_trampoline\n"
398 "kretprobe_trampoline: \n"
399 "nop\n");
400 }
401
402 /*
403 * Called when we hit the probe point at kretprobe_trampoline
404 */
405 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
406 {
407 struct kretprobe_instance *ri = NULL;
408 struct hlist_head *head, empty_rp;
409 struct hlist_node *node, *tmp;
410 unsigned long flags, orig_ret_address = 0;
411 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
412
413 INIT_HLIST_HEAD(&empty_rp);
414 spin_lock_irqsave(&kretprobe_lock, flags);
415 head = kretprobe_inst_table_head(current);
416
417 /*
418 * It is possible to have multiple instances associated with a given
419 * task either because an multiple functions in the call path
420 * have a return probe installed on them, and/or more then one return
421 * return probe was registered for a target function.
422 *
423 * We can handle this because:
424 * - instances are always inserted at the head of the list
425 * - when multiple return probes are registered for the same
426 * function, the first instance's ret_addr will point to the
427 * real return address, and all the rest will point to
428 * kretprobe_trampoline
429 */
430 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
431 if (ri->task != current)
432 /* another task is sharing our hash bucket */
433 continue;
434
435 if (ri->rp && ri->rp->handler)
436 ri->rp->handler(ri, regs);
437
438 orig_ret_address = (unsigned long)ri->ret_addr;
439 recycle_rp_inst(ri, &empty_rp);
440
441 if (orig_ret_address != trampoline_address)
442 /*
443 * This is the real return address. Any other
444 * instances associated with this task are for
445 * other calls deeper on the call stack
446 */
447 break;
448 }
449
450 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
451 regs->rip = orig_ret_address;
452
453 reset_current_kprobe();
454 spin_unlock_irqrestore(&kretprobe_lock, flags);
455 preempt_enable_no_resched();
456
457 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
458 hlist_del(&ri->hlist);
459 kfree(ri);
460 }
461 /*
462 * By returning a non-zero value, we are telling
463 * kprobe_handler() that we don't want the post_handler
464 * to run (and have re-enabled preemption)
465 */
466 return 1;
467 }
468
469 /*
470 * Called after single-stepping. p->addr is the address of the
471 * instruction whose first byte has been replaced by the "int 3"
472 * instruction. To avoid the SMP problems that can occur when we
473 * temporarily put back the original opcode to single-step, we
474 * single-stepped a copy of the instruction. The address of this
475 * copy is p->ainsn.insn.
476 *
477 * This function prepares to return from the post-single-step
478 * interrupt. We have to fix up the stack as follows:
479 *
480 * 0) Except in the case of absolute or indirect jump or call instructions,
481 * the new rip is relative to the copied instruction. We need to make
482 * it relative to the original instruction.
483 *
484 * 1) If the single-stepped instruction was pushfl, then the TF and IF
485 * flags are set in the just-pushed eflags, and may need to be cleared.
486 *
487 * 2) If the single-stepped instruction was a call, the return address
488 * that is atop the stack is the address following the copied instruction.
489 * We need to make it the address following the original instruction.
490 */
491 static void __kprobes resume_execution(struct kprobe *p,
492 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
493 {
494 unsigned long *tos = (unsigned long *)regs->rsp;
495 unsigned long next_rip = 0;
496 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
497 unsigned long orig_rip = (unsigned long)p->addr;
498 kprobe_opcode_t *insn = p->ainsn.insn;
499
500 /*skip the REX prefix*/
501 if (*insn >= 0x40 && *insn <= 0x4f)
502 insn++;
503
504 switch (*insn) {
505 case 0x9c: /* pushfl */
506 *tos &= ~(TF_MASK | IF_MASK);
507 *tos |= kcb->kprobe_old_rflags;
508 break;
509 case 0xc3: /* ret/lret */
510 case 0xcb:
511 case 0xc2:
512 case 0xca:
513 regs->eflags &= ~TF_MASK;
514 /* rip is already adjusted, no more changes required*/
515 return;
516 case 0xe8: /* call relative - Fix return addr */
517 *tos = orig_rip + (*tos - copy_rip);
518 break;
519 case 0xff:
520 if ((insn[1] & 0x30) == 0x10) {
521 /* call absolute, indirect */
522 /* Fix return addr; rip is correct. */
523 next_rip = regs->rip;
524 *tos = orig_rip + (*tos - copy_rip);
525 } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
526 ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
527 /* rip is correct. */
528 next_rip = regs->rip;
529 }
530 break;
531 case 0xea: /* jmp absolute -- rip is correct */
532 next_rip = regs->rip;
533 break;
534 default:
535 break;
536 }
537
538 regs->eflags &= ~TF_MASK;
539 if (next_rip) {
540 regs->rip = next_rip;
541 } else {
542 regs->rip = orig_rip + (regs->rip - copy_rip);
543 }
544 }
545
546 int __kprobes post_kprobe_handler(struct pt_regs *regs)
547 {
548 struct kprobe *cur = kprobe_running();
549 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
550
551 if (!cur)
552 return 0;
553
554 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
555 kcb->kprobe_status = KPROBE_HIT_SSDONE;
556 cur->post_handler(cur, regs, 0);
557 }
558
559 resume_execution(cur, regs, kcb);
560 regs->eflags |= kcb->kprobe_saved_rflags;
561
562 /* Restore the original saved kprobes variables and continue. */
563 if (kcb->kprobe_status == KPROBE_REENTER) {
564 restore_previous_kprobe(kcb);
565 goto out;
566 }
567 reset_current_kprobe();
568 out:
569 preempt_enable_no_resched();
570
571 /*
572 * if somebody else is singlestepping across a probe point, eflags
573 * will have TF set, in which case, continue the remaining processing
574 * of do_debug, as if this is not a probe hit.
575 */
576 if (regs->eflags & TF_MASK)
577 return 0;
578
579 return 1;
580 }
581
582 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
583 {
584 struct kprobe *cur = kprobe_running();
585 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586 const struct exception_table_entry *fixup;
587
588 switch(kcb->kprobe_status) {
589 case KPROBE_HIT_SS:
590 case KPROBE_REENTER:
591 /*
592 * We are here because the instruction being single
593 * stepped caused a page fault. We reset the current
594 * kprobe and the rip points back to the probe address
595 * and allow the page fault handler to continue as a
596 * normal page fault.
597 */
598 regs->rip = (unsigned long)cur->addr;
599 regs->eflags |= kcb->kprobe_old_rflags;
600 if (kcb->kprobe_status == KPROBE_REENTER)
601 restore_previous_kprobe(kcb);
602 else
603 reset_current_kprobe();
604 preempt_enable_no_resched();
605 break;
606 case KPROBE_HIT_ACTIVE:
607 case KPROBE_HIT_SSDONE:
608 /*
609 * We increment the nmissed count for accounting,
610 * we can also use npre/npostfault count for accouting
611 * these specific fault cases.
612 */
613 kprobes_inc_nmissed_count(cur);
614
615 /*
616 * We come here because instructions in the pre/post
617 * handler caused the page_fault, this could happen
618 * if handler tries to access user space by
619 * copy_from_user(), get_user() etc. Let the
620 * user-specified handler try to fix it first.
621 */
622 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
623 return 1;
624
625 /*
626 * In case the user-specified fault handler returned
627 * zero, try to fix up.
628 */
629 fixup = search_exception_tables(regs->rip);
630 if (fixup) {
631 regs->rip = fixup->fixup;
632 return 1;
633 }
634
635 /*
636 * fixup() could not handle it,
637 * Let do_page_fault() fix it.
638 */
639 break;
640 default:
641 break;
642 }
643 return 0;
644 }
645
646 /*
647 * Wrapper routine for handling exceptions.
648 */
649 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
650 unsigned long val, void *data)
651 {
652 struct die_args *args = (struct die_args *)data;
653 int ret = NOTIFY_DONE;
654
655 if (args->regs && user_mode(args->regs))
656 return ret;
657
658 switch (val) {
659 case DIE_INT3:
660 if (kprobe_handler(args->regs))
661 ret = NOTIFY_STOP;
662 break;
663 case DIE_DEBUG:
664 if (post_kprobe_handler(args->regs))
665 ret = NOTIFY_STOP;
666 break;
667 case DIE_GPF:
668 case DIE_PAGE_FAULT:
669 /* kprobe_running() needs smp_processor_id() */
670 preempt_disable();
671 if (kprobe_running() &&
672 kprobe_fault_handler(args->regs, args->trapnr))
673 ret = NOTIFY_STOP;
674 preempt_enable();
675 break;
676 default:
677 break;
678 }
679 return ret;
680 }
681
682 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
683 {
684 struct jprobe *jp = container_of(p, struct jprobe, kp);
685 unsigned long addr;
686 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
687
688 kcb->jprobe_saved_regs = *regs;
689 kcb->jprobe_saved_rsp = (long *) regs->rsp;
690 addr = (unsigned long)(kcb->jprobe_saved_rsp);
691 /*
692 * As Linus pointed out, gcc assumes that the callee
693 * owns the argument space and could overwrite it, e.g.
694 * tailcall optimization. So, to be absolutely safe
695 * we also save and restore enough stack bytes to cover
696 * the argument area.
697 */
698 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
699 MIN_STACK_SIZE(addr));
700 regs->eflags &= ~IF_MASK;
701 regs->rip = (unsigned long)(jp->entry);
702 return 1;
703 }
704
705 void __kprobes jprobe_return(void)
706 {
707 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
708
709 asm volatile (" xchg %%rbx,%%rsp \n"
710 " int3 \n"
711 " .globl jprobe_return_end \n"
712 " jprobe_return_end: \n"
713 " nop \n"::"b"
714 (kcb->jprobe_saved_rsp):"memory");
715 }
716
717 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
718 {
719 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
720 u8 *addr = (u8 *) (regs->rip - 1);
721 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
722 struct jprobe *jp = container_of(p, struct jprobe, kp);
723
724 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
725 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
726 struct pt_regs *saved_regs =
727 container_of(kcb->jprobe_saved_rsp,
728 struct pt_regs, rsp);
729 printk("current rsp %p does not match saved rsp %p\n",
730 (long *)regs->rsp, kcb->jprobe_saved_rsp);
731 printk("Saved registers for jprobe %p\n", jp);
732 show_registers(saved_regs);
733 printk("Current registers\n");
734 show_registers(regs);
735 BUG();
736 }
737 *regs = kcb->jprobe_saved_regs;
738 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
739 MIN_STACK_SIZE(stack_addr));
740 preempt_enable_no_resched();
741 return 1;
742 }
743 return 0;
744 }
745
746 static struct kprobe trampoline_p = {
747 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
748 .pre_handler = trampoline_probe_handler
749 };
750
751 int __init arch_init_kprobes(void)
752 {
753 return register_kprobe(&trampoline_p);
754 }