]>
git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86_64/kernel/kprobes.c
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
34 #include <linux/kprobes.h>
35 #include <linux/ptrace.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/preempt.h>
39 #include <linux/module.h>
41 #include <asm/cacheflush.h>
42 #include <asm/pgtable.h>
43 #include <asm/kdebug.h>
44 #include <asm/uaccess.h>
46 void jprobe_return_end(void);
47 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
);
49 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
50 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
53 * returns non-zero if opcode modifies the interrupt flag.
55 static __always_inline
int is_IF_modifier(kprobe_opcode_t
*insn
)
60 case 0xcf: /* iret/iretd */
61 case 0x9d: /* popf/popfd */
65 if (*insn
>= 0x40 && *insn
<= 0x4f && *++insn
== 0xcf)
70 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
72 /* insn: must be on special executable page on x86_64. */
73 p
->ainsn
.insn
= get_insn_slot();
82 * Determine if the instruction uses the %rip-relative addressing mode.
83 * If it does, return the address of the 32-bit displacement word.
84 * If not, return null.
86 static s32 __kprobes
*is_riprel(u8
*insn
)
88 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
89 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
90 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
91 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
92 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
94 static const u64 onebyte_has_modrm
[256 / 64] = {
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ------------------------------- */
97 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
98 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
99 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
100 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
101 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
102 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
103 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
104 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
105 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
106 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
107 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
108 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
109 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
110 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
111 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
112 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
113 /* ------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
116 static const u64 twobyte_has_modrm
[256 / 64] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ------------------------------- */
119 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
120 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
121 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
122 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
123 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
124 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
125 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
126 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
127 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
128 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
129 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
130 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
131 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
132 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
133 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
134 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
135 /* ------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
141 /* Skip legacy instruction prefixes. */
161 /* Skip REX instruction prefix. */
162 if ((*insn
& 0xf0) == 0x40)
165 if (*insn
== 0x0f) { /* Two-byte opcode. */
167 need_modrm
= test_bit(*insn
, twobyte_has_modrm
);
168 } else { /* One-byte opcode. */
169 need_modrm
= test_bit(*insn
, onebyte_has_modrm
);
174 if ((modrm
& 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
175 /* Displacement follows ModRM byte. */
176 return (s32
*) ++insn
;
180 /* No %rip-relative addressing mode here. */
184 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
187 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
);
188 ripdisp
= is_riprel(p
->ainsn
.insn
);
191 * The copied instruction uses the %rip-relative
192 * addressing mode. Adjust the displacement for the
193 * difference between the original location of this
194 * instruction and the location of the copy that will
195 * actually be run. The tricky bit here is making sure
196 * that the sign extension happens correctly in this
197 * calculation, since we need a signed 32-bit result to
198 * be sign-extended to 64 bits when it's added to the
199 * %rip value and yield the same 64-bit result that the
200 * sign-extension of the original signed 32-bit
201 * displacement would have given.
203 s64 disp
= (u8
*) p
->addr
+ *ripdisp
- (u8
*) p
->ainsn
.insn
;
204 BUG_ON((s64
) (s32
) disp
!= disp
); /* Sanity check. */
207 p
->opcode
= *p
->addr
;
210 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
212 *p
->addr
= BREAKPOINT_INSTRUCTION
;
213 flush_icache_range((unsigned long) p
->addr
,
214 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
217 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
219 *p
->addr
= p
->opcode
;
220 flush_icache_range((unsigned long) p
->addr
,
221 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
224 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
226 mutex_lock(&kprobe_mutex
);
227 free_insn_slot(p
->ainsn
.insn
);
228 mutex_unlock(&kprobe_mutex
);
231 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
233 kcb
->prev_kprobe
.kp
= kprobe_running();
234 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
235 kcb
->prev_kprobe
.old_rflags
= kcb
->kprobe_old_rflags
;
236 kcb
->prev_kprobe
.saved_rflags
= kcb
->kprobe_saved_rflags
;
239 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
241 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
242 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
243 kcb
->kprobe_old_rflags
= kcb
->prev_kprobe
.old_rflags
;
244 kcb
->kprobe_saved_rflags
= kcb
->prev_kprobe
.saved_rflags
;
247 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
248 struct kprobe_ctlblk
*kcb
)
250 __get_cpu_var(current_kprobe
) = p
;
251 kcb
->kprobe_saved_rflags
= kcb
->kprobe_old_rflags
252 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
253 if (is_IF_modifier(p
->ainsn
.insn
))
254 kcb
->kprobe_saved_rflags
&= ~IF_MASK
;
257 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
259 regs
->eflags
|= TF_MASK
;
260 regs
->eflags
&= ~IF_MASK
;
261 /*single step inline if the instruction is an int3*/
262 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
263 regs
->rip
= (unsigned long)p
->addr
;
265 regs
->rip
= (unsigned long)p
->ainsn
.insn
;
268 /* Called with kretprobe_lock held */
269 void __kprobes
arch_prepare_kretprobe(struct kretprobe
*rp
,
270 struct pt_regs
*regs
)
272 unsigned long *sara
= (unsigned long *)regs
->rsp
;
273 struct kretprobe_instance
*ri
;
275 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
278 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
280 /* Replace the return addr with trampoline addr */
281 *sara
= (unsigned long) &kretprobe_trampoline
;
289 int __kprobes
kprobe_handler(struct pt_regs
*regs
)
293 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)(regs
->rip
- sizeof(kprobe_opcode_t
));
294 struct kprobe_ctlblk
*kcb
;
297 * We don't want to be preempted for the entire
298 * duration of kprobe processing
301 kcb
= get_kprobe_ctlblk();
303 /* Check we're not actually recursing */
304 if (kprobe_running()) {
305 p
= get_kprobe(addr
);
307 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
308 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
309 regs
->eflags
&= ~TF_MASK
;
310 regs
->eflags
|= kcb
->kprobe_saved_rflags
;
312 } else if (kcb
->kprobe_status
== KPROBE_HIT_SSDONE
) {
313 /* TODO: Provide re-entrancy from
314 * post_kprobes_handler() and avoid exception
315 * stack corruption while single-stepping on
316 * the instruction of the new probe.
318 arch_disarm_kprobe(p
);
319 regs
->rip
= (unsigned long)p
->addr
;
320 reset_current_kprobe();
323 /* We have reentered the kprobe_handler(), since
324 * another probe was hit while within the
325 * handler. We here save the original kprobe
326 * variables and just single step on instruction
327 * of the new probe without calling any user
330 save_previous_kprobe(kcb
);
331 set_current_kprobe(p
, regs
, kcb
);
332 kprobes_inc_nmissed_count(p
);
333 prepare_singlestep(p
, regs
);
334 kcb
->kprobe_status
= KPROBE_REENTER
;
338 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
339 /* The breakpoint instruction was removed by
340 * another cpu right after we hit, no further
341 * handling of this interrupt is appropriate
343 regs
->rip
= (unsigned long)addr
;
347 p
= __get_cpu_var(current_kprobe
);
348 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
355 p
= get_kprobe(addr
);
357 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
359 * The breakpoint instruction was removed right
360 * after we hit it. Another cpu has removed
361 * either a probepoint or a debugger breakpoint
362 * at this address. In either case, no further
363 * handling of this interrupt is appropriate.
364 * Back up over the (now missing) int3 and run
365 * the original instruction.
367 regs
->rip
= (unsigned long)addr
;
370 /* Not one of ours: let kernel handle it */
374 set_current_kprobe(p
, regs
, kcb
);
375 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
377 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
378 /* handler has already set things up, so skip ss setup */
382 prepare_singlestep(p
, regs
);
383 kcb
->kprobe_status
= KPROBE_HIT_SS
;
387 preempt_enable_no_resched();
392 * For function-return probes, init_kprobes() establishes a probepoint
393 * here. When a retprobed function returns, this probe is hit and
394 * trampoline_probe_handler() runs, calling the kretprobe's handler.
396 void kretprobe_trampoline_holder(void)
398 asm volatile ( ".global kretprobe_trampoline\n"
399 "kretprobe_trampoline: \n"
404 * Called when we hit the probe point at kretprobe_trampoline
406 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
408 struct kretprobe_instance
*ri
= NULL
;
409 struct hlist_head
*head
;
410 struct hlist_node
*node
, *tmp
;
411 unsigned long flags
, orig_ret_address
= 0;
412 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
414 spin_lock_irqsave(&kretprobe_lock
, flags
);
415 head
= kretprobe_inst_table_head(current
);
418 * It is possible to have multiple instances associated with a given
419 * task either because an multiple functions in the call path
420 * have a return probe installed on them, and/or more then one return
421 * return probe was registered for a target function.
423 * We can handle this because:
424 * - instances are always inserted at the head of the list
425 * - when multiple return probes are registered for the same
426 * function, the first instance's ret_addr will point to the
427 * real return address, and all the rest will point to
428 * kretprobe_trampoline
430 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
431 if (ri
->task
!= current
)
432 /* another task is sharing our hash bucket */
435 if (ri
->rp
&& ri
->rp
->handler
)
436 ri
->rp
->handler(ri
, regs
);
438 orig_ret_address
= (unsigned long)ri
->ret_addr
;
441 if (orig_ret_address
!= trampoline_address
)
443 * This is the real return address. Any other
444 * instances associated with this task are for
445 * other calls deeper on the call stack
450 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
451 regs
->rip
= orig_ret_address
;
453 reset_current_kprobe();
454 spin_unlock_irqrestore(&kretprobe_lock
, flags
);
455 preempt_enable_no_resched();
458 * By returning a non-zero value, we are telling
459 * kprobe_handler() that we don't want the post_handler
460 * to run (and have re-enabled preemption)
466 * Called after single-stepping. p->addr is the address of the
467 * instruction whose first byte has been replaced by the "int 3"
468 * instruction. To avoid the SMP problems that can occur when we
469 * temporarily put back the original opcode to single-step, we
470 * single-stepped a copy of the instruction. The address of this
471 * copy is p->ainsn.insn.
473 * This function prepares to return from the post-single-step
474 * interrupt. We have to fix up the stack as follows:
476 * 0) Except in the case of absolute or indirect jump or call instructions,
477 * the new rip is relative to the copied instruction. We need to make
478 * it relative to the original instruction.
480 * 1) If the single-stepped instruction was pushfl, then the TF and IF
481 * flags are set in the just-pushed eflags, and may need to be cleared.
483 * 2) If the single-stepped instruction was a call, the return address
484 * that is atop the stack is the address following the copied instruction.
485 * We need to make it the address following the original instruction.
487 static void __kprobes
resume_execution(struct kprobe
*p
,
488 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
490 unsigned long *tos
= (unsigned long *)regs
->rsp
;
491 unsigned long next_rip
= 0;
492 unsigned long copy_rip
= (unsigned long)p
->ainsn
.insn
;
493 unsigned long orig_rip
= (unsigned long)p
->addr
;
494 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
496 /*skip the REX prefix*/
497 if (*insn
>= 0x40 && *insn
<= 0x4f)
501 case 0x9c: /* pushfl */
502 *tos
&= ~(TF_MASK
| IF_MASK
);
503 *tos
|= kcb
->kprobe_old_rflags
;
505 case 0xc3: /* ret/lret */
509 regs
->eflags
&= ~TF_MASK
;
510 /* rip is already adjusted, no more changes required*/
512 case 0xe8: /* call relative - Fix return addr */
513 *tos
= orig_rip
+ (*tos
- copy_rip
);
516 if ((insn
[1] & 0x30) == 0x10) {
517 /* call absolute, indirect */
518 /* Fix return addr; rip is correct. */
519 next_rip
= regs
->rip
;
520 *tos
= orig_rip
+ (*tos
- copy_rip
);
521 } else if (((insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
522 ((insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
523 /* rip is correct. */
524 next_rip
= regs
->rip
;
527 case 0xea: /* jmp absolute -- rip is correct */
528 next_rip
= regs
->rip
;
534 regs
->eflags
&= ~TF_MASK
;
536 regs
->rip
= next_rip
;
538 regs
->rip
= orig_rip
+ (regs
->rip
- copy_rip
);
542 int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
544 struct kprobe
*cur
= kprobe_running();
545 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
550 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
551 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
552 cur
->post_handler(cur
, regs
, 0);
555 resume_execution(cur
, regs
, kcb
);
556 regs
->eflags
|= kcb
->kprobe_saved_rflags
;
558 /* Restore the original saved kprobes variables and continue. */
559 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
560 restore_previous_kprobe(kcb
);
563 reset_current_kprobe();
565 preempt_enable_no_resched();
568 * if somebody else is singlestepping across a probe point, eflags
569 * will have TF set, in which case, continue the remaining processing
570 * of do_debug, as if this is not a probe hit.
572 if (regs
->eflags
& TF_MASK
)
578 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
580 struct kprobe
*cur
= kprobe_running();
581 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
582 const struct exception_table_entry
*fixup
;
584 switch(kcb
->kprobe_status
) {
588 * We are here because the instruction being single
589 * stepped caused a page fault. We reset the current
590 * kprobe and the rip points back to the probe address
591 * and allow the page fault handler to continue as a
594 regs
->rip
= (unsigned long)cur
->addr
;
595 regs
->eflags
|= kcb
->kprobe_old_rflags
;
596 if (kcb
->kprobe_status
== KPROBE_REENTER
)
597 restore_previous_kprobe(kcb
);
599 reset_current_kprobe();
600 preempt_enable_no_resched();
602 case KPROBE_HIT_ACTIVE
:
603 case KPROBE_HIT_SSDONE
:
605 * We increment the nmissed count for accounting,
606 * we can also use npre/npostfault count for accouting
607 * these specific fault cases.
609 kprobes_inc_nmissed_count(cur
);
612 * We come here because instructions in the pre/post
613 * handler caused the page_fault, this could happen
614 * if handler tries to access user space by
615 * copy_from_user(), get_user() etc. Let the
616 * user-specified handler try to fix it first.
618 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
622 * In case the user-specified fault handler returned
623 * zero, try to fix up.
625 fixup
= search_exception_tables(regs
->rip
);
627 regs
->rip
= fixup
->fixup
;
632 * fixup() could not handle it,
633 * Let do_page_fault() fix it.
643 * Wrapper routine for handling exceptions.
645 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
646 unsigned long val
, void *data
)
648 struct die_args
*args
= (struct die_args
*)data
;
649 int ret
= NOTIFY_DONE
;
651 if (args
->regs
&& user_mode(args
->regs
))
656 if (kprobe_handler(args
->regs
))
660 if (post_kprobe_handler(args
->regs
))
665 /* kprobe_running() needs smp_processor_id() */
667 if (kprobe_running() &&
668 kprobe_fault_handler(args
->regs
, args
->trapnr
))
678 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
680 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
682 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
684 kcb
->jprobe_saved_regs
= *regs
;
685 kcb
->jprobe_saved_rsp
= (long *) regs
->rsp
;
686 addr
= (unsigned long)(kcb
->jprobe_saved_rsp
);
688 * As Linus pointed out, gcc assumes that the callee
689 * owns the argument space and could overwrite it, e.g.
690 * tailcall optimization. So, to be absolutely safe
691 * we also save and restore enough stack bytes to cover
694 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
695 MIN_STACK_SIZE(addr
));
696 regs
->eflags
&= ~IF_MASK
;
697 regs
->rip
= (unsigned long)(jp
->entry
);
701 void __kprobes
jprobe_return(void)
703 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
705 asm volatile (" xchg %%rbx,%%rsp \n"
707 " .globl jprobe_return_end \n"
708 " jprobe_return_end: \n"
710 (kcb
->jprobe_saved_rsp
):"memory");
713 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
715 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
716 u8
*addr
= (u8
*) (regs
->rip
- 1);
717 unsigned long stack_addr
= (unsigned long)(kcb
->jprobe_saved_rsp
);
718 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
720 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
721 if ((long *)regs
->rsp
!= kcb
->jprobe_saved_rsp
) {
722 struct pt_regs
*saved_regs
=
723 container_of(kcb
->jprobe_saved_rsp
,
724 struct pt_regs
, rsp
);
725 printk("current rsp %p does not match saved rsp %p\n",
726 (long *)regs
->rsp
, kcb
->jprobe_saved_rsp
);
727 printk("Saved registers for jprobe %p\n", jp
);
728 show_registers(saved_regs
);
729 printk("Current registers\n");
730 show_registers(regs
);
733 *regs
= kcb
->jprobe_saved_regs
;
734 memcpy((kprobe_opcode_t
*) stack_addr
, kcb
->jprobes_stack
,
735 MIN_STACK_SIZE(stack_addr
));
736 preempt_enable_no_resched();
742 static struct kprobe trampoline_p
= {
743 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
744 .pre_handler
= trampoline_probe_handler
747 int __init
arch_init_kprobes(void)
749 return register_kprobe(&trampoline_p
);