]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86_64/kernel/setup.c
[PATCH] i386/x86-64: Use new official CPUID to get APICID/core split on AMD platforms
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 *
9 * $Id$
10 */
11
12 /*
13 * This file handles the architecture-dependent parts of initialization
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
47 #include <linux/dmi.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/ctype.h>
50
51 #include <asm/mtrr.h>
52 #include <asm/uaccess.h>
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/msr.h>
57 #include <asm/desc.h>
58 #include <video/edid.h>
59 #include <asm/e820.h>
60 #include <asm/dma.h>
61 #include <asm/mpspec.h>
62 #include <asm/mmu_context.h>
63 #include <asm/bootsetup.h>
64 #include <asm/proto.h>
65 #include <asm/setup.h>
66 #include <asm/mach_apic.h>
67 #include <asm/numa.h>
68 #include <asm/swiotlb.h>
69 #include <asm/sections.h>
70 #include <asm/gart-mapping.h>
71 #include <asm/dmi.h>
72
73 /*
74 * Machine setup..
75 */
76
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
78
79 unsigned long mmu_cr4_features;
80
81 int acpi_disabled;
82 EXPORT_SYMBOL(acpi_disabled);
83 #ifdef CONFIG_ACPI
84 extern int __initdata acpi_ht;
85 extern acpi_interrupt_flags acpi_sci_flags;
86 int __initdata acpi_force = 0;
87 #endif
88
89 int acpi_numa __initdata;
90
91 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
92 int bootloader_type;
93
94 unsigned long saved_video_mode;
95
96 /*
97 * Early DMI memory
98 */
99 int dmi_alloc_index;
100 char dmi_alloc_data[DMI_MAX_DATA];
101
102 /*
103 * Setup options
104 */
105 struct screen_info screen_info;
106 struct sys_desc_table_struct {
107 unsigned short length;
108 unsigned char table[0];
109 };
110
111 struct edid_info edid_info;
112 struct e820map e820;
113
114 extern int root_mountflags;
115
116 char command_line[COMMAND_LINE_SIZE];
117
118 struct resource standard_io_resources[] = {
119 { .name = "dma1", .start = 0x00, .end = 0x1f,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "pic1", .start = 0x20, .end = 0x21,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer0", .start = 0x40, .end = 0x43,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "timer1", .start = 0x50, .end = 0x53,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "keyboard", .start = 0x60, .end = 0x6f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "pic2", .start = 0xa0, .end = 0xa1,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "dma2", .start = 0xc0, .end = 0xdf,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
135 { .name = "fpu", .start = 0xf0, .end = 0xff,
136 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
137 };
138
139 #define STANDARD_IO_RESOURCES \
140 (sizeof standard_io_resources / sizeof standard_io_resources[0])
141
142 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
143
144 struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
149 };
150 struct resource code_resource = {
151 .name = "Kernel code",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
155 };
156
157 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
158
159 static struct resource system_rom_resource = {
160 .name = "System ROM",
161 .start = 0xf0000,
162 .end = 0xfffff,
163 .flags = IORESOURCE_ROM,
164 };
165
166 static struct resource extension_rom_resource = {
167 .name = "Extension ROM",
168 .start = 0xe0000,
169 .end = 0xeffff,
170 .flags = IORESOURCE_ROM,
171 };
172
173 static struct resource adapter_rom_resources[] = {
174 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM },
184 { .name = "Adapter ROM", .start = 0, .end = 0,
185 .flags = IORESOURCE_ROM }
186 };
187
188 #define ADAPTER_ROM_RESOURCES \
189 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
190
191 static struct resource video_rom_resource = {
192 .name = "Video ROM",
193 .start = 0xc0000,
194 .end = 0xc7fff,
195 .flags = IORESOURCE_ROM,
196 };
197
198 static struct resource video_ram_resource = {
199 .name = "Video RAM area",
200 .start = 0xa0000,
201 .end = 0xbffff,
202 .flags = IORESOURCE_RAM,
203 };
204
205 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
206
207 static int __init romchecksum(unsigned char *rom, unsigned long length)
208 {
209 unsigned char *p, sum = 0;
210
211 for (p = rom; p < rom + length; p++)
212 sum += *p;
213 return sum == 0;
214 }
215
216 static void __init probe_roms(void)
217 {
218 unsigned long start, length, upper;
219 unsigned char *rom;
220 int i;
221
222 /* video rom */
223 upper = adapter_rom_resources[0].start;
224 for (start = video_rom_resource.start; start < upper; start += 2048) {
225 rom = isa_bus_to_virt(start);
226 if (!romsignature(rom))
227 continue;
228
229 video_rom_resource.start = start;
230
231 /* 0 < length <= 0x7f * 512, historically */
232 length = rom[2] * 512;
233
234 /* if checksum okay, trust length byte */
235 if (length && romchecksum(rom, length))
236 video_rom_resource.end = start + length - 1;
237
238 request_resource(&iomem_resource, &video_rom_resource);
239 break;
240 }
241
242 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
243 if (start < upper)
244 start = upper;
245
246 /* system rom */
247 request_resource(&iomem_resource, &system_rom_resource);
248 upper = system_rom_resource.start;
249
250 /* check for extension rom (ignore length byte!) */
251 rom = isa_bus_to_virt(extension_rom_resource.start);
252 if (romsignature(rom)) {
253 length = extension_rom_resource.end - extension_rom_resource.start + 1;
254 if (romchecksum(rom, length)) {
255 request_resource(&iomem_resource, &extension_rom_resource);
256 upper = extension_rom_resource.start;
257 }
258 }
259
260 /* check for adapter roms on 2k boundaries */
261 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
262 rom = isa_bus_to_virt(start);
263 if (!romsignature(rom))
264 continue;
265
266 /* 0 < length <= 0x7f * 512, historically */
267 length = rom[2] * 512;
268
269 /* but accept any length that fits if checksum okay */
270 if (!length || start + length > upper || !romchecksum(rom, length))
271 continue;
272
273 adapter_rom_resources[i].start = start;
274 adapter_rom_resources[i].end = start + length - 1;
275 request_resource(&iomem_resource, &adapter_rom_resources[i]);
276
277 start = adapter_rom_resources[i++].end & ~2047UL;
278 }
279 }
280
281 /* Check for full argument with no trailing characters */
282 static int fullarg(char *p, char *arg)
283 {
284 int l = strlen(arg);
285 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
286 }
287
288 static __init void parse_cmdline_early (char ** cmdline_p)
289 {
290 char c = ' ', *to = command_line, *from = COMMAND_LINE;
291 int len = 0;
292 int userdef = 0;
293
294 for (;;) {
295 if (c != ' ')
296 goto next_char;
297
298 #ifdef CONFIG_SMP
299 /*
300 * If the BIOS enumerates physical processors before logical,
301 * maxcpus=N at enumeration-time can be used to disable HT.
302 */
303 else if (!memcmp(from, "maxcpus=", 8)) {
304 extern unsigned int maxcpus;
305
306 maxcpus = simple_strtoul(from + 8, NULL, 0);
307 }
308 #endif
309 #ifdef CONFIG_ACPI
310 /* "acpi=off" disables both ACPI table parsing and interpreter init */
311 if (fullarg(from,"acpi=off"))
312 disable_acpi();
313
314 if (fullarg(from, "acpi=force")) {
315 /* add later when we do DMI horrors: */
316 acpi_force = 1;
317 acpi_disabled = 0;
318 }
319
320 /* acpi=ht just means: do ACPI MADT parsing
321 at bootup, but don't enable the full ACPI interpreter */
322 if (fullarg(from, "acpi=ht")) {
323 if (!acpi_force)
324 disable_acpi();
325 acpi_ht = 1;
326 }
327 else if (fullarg(from, "pci=noacpi"))
328 acpi_disable_pci();
329 else if (fullarg(from, "acpi=noirq"))
330 acpi_noirq_set();
331
332 else if (fullarg(from, "acpi_sci=edge"))
333 acpi_sci_flags.trigger = 1;
334 else if (fullarg(from, "acpi_sci=level"))
335 acpi_sci_flags.trigger = 3;
336 else if (fullarg(from, "acpi_sci=high"))
337 acpi_sci_flags.polarity = 1;
338 else if (fullarg(from, "acpi_sci=low"))
339 acpi_sci_flags.polarity = 3;
340
341 /* acpi=strict disables out-of-spec workarounds */
342 else if (fullarg(from, "acpi=strict")) {
343 acpi_strict = 1;
344 }
345 #ifdef CONFIG_X86_IO_APIC
346 else if (fullarg(from, "acpi_skip_timer_override"))
347 acpi_skip_timer_override = 1;
348 #endif
349 #endif
350
351 if (fullarg(from, "disable_timer_pin_1"))
352 disable_timer_pin_1 = 1;
353 if (fullarg(from, "enable_timer_pin_1"))
354 disable_timer_pin_1 = -1;
355
356 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
357 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
358 disable_apic = 1;
359 }
360
361 if (fullarg(from, "noapic"))
362 skip_ioapic_setup = 1;
363
364 if (fullarg(from,"apic")) {
365 skip_ioapic_setup = 0;
366 ioapic_force = 1;
367 }
368
369 if (!memcmp(from, "mem=", 4))
370 parse_memopt(from+4, &from);
371
372 if (!memcmp(from, "memmap=", 7)) {
373 /* exactmap option is for used defined memory */
374 if (!memcmp(from+7, "exactmap", 8)) {
375 #ifdef CONFIG_CRASH_DUMP
376 /* If we are doing a crash dump, we
377 * still need to know the real mem
378 * size before original memory map is
379 * reset.
380 */
381 saved_max_pfn = e820_end_of_ram();
382 #endif
383 from += 8+7;
384 end_pfn_map = 0;
385 e820.nr_map = 0;
386 userdef = 1;
387 }
388 else {
389 parse_memmapopt(from+7, &from);
390 userdef = 1;
391 }
392 }
393
394 #ifdef CONFIG_NUMA
395 if (!memcmp(from, "numa=", 5))
396 numa_setup(from+5);
397 #endif
398
399 if (!memcmp(from,"iommu=",6)) {
400 iommu_setup(from+6);
401 }
402
403 if (fullarg(from,"oops=panic"))
404 panic_on_oops = 1;
405
406 if (!memcmp(from, "noexec=", 7))
407 nonx_setup(from + 7);
408
409 #ifdef CONFIG_KEXEC
410 /* crashkernel=size@addr specifies the location to reserve for
411 * a crash kernel. By reserving this memory we guarantee
412 * that linux never set's it up as a DMA target.
413 * Useful for holding code to do something appropriate
414 * after a kernel panic.
415 */
416 else if (!memcmp(from, "crashkernel=", 12)) {
417 unsigned long size, base;
418 size = memparse(from+12, &from);
419 if (*from == '@') {
420 base = memparse(from+1, &from);
421 /* FIXME: Do I want a sanity check
422 * to validate the memory range?
423 */
424 crashk_res.start = base;
425 crashk_res.end = base + size - 1;
426 }
427 }
428 #endif
429
430 #ifdef CONFIG_PROC_VMCORE
431 /* elfcorehdr= specifies the location of elf core header
432 * stored by the crashed kernel. This option will be passed
433 * by kexec loader to the capture kernel.
434 */
435 else if(!memcmp(from, "elfcorehdr=", 11))
436 elfcorehdr_addr = memparse(from+11, &from);
437 #endif
438
439 #ifdef CONFIG_HOTPLUG_CPU
440 else if (!memcmp(from, "additional_cpus=", 16))
441 setup_additional_cpus(from+16);
442 #endif
443
444 next_char:
445 c = *(from++);
446 if (!c)
447 break;
448 if (COMMAND_LINE_SIZE <= ++len)
449 break;
450 *(to++) = c;
451 }
452 if (userdef) {
453 printk(KERN_INFO "user-defined physical RAM map:\n");
454 e820_print_map("user");
455 }
456 *to = '\0';
457 *cmdline_p = command_line;
458 }
459
460 #ifndef CONFIG_NUMA
461 static void __init
462 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
463 {
464 unsigned long bootmap_size, bootmap;
465
466 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
467 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
468 if (bootmap == -1L)
469 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
470 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
471 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
472 reserve_bootmem(bootmap, bootmap_size);
473 }
474 #endif
475
476 /* Use inline assembly to define this because the nops are defined
477 as inline assembly strings in the include files and we cannot
478 get them easily into strings. */
479 asm("\t.data\nk8nops: "
480 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
481 K8_NOP7 K8_NOP8);
482
483 extern unsigned char k8nops[];
484 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
485 NULL,
486 k8nops,
487 k8nops + 1,
488 k8nops + 1 + 2,
489 k8nops + 1 + 2 + 3,
490 k8nops + 1 + 2 + 3 + 4,
491 k8nops + 1 + 2 + 3 + 4 + 5,
492 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
493 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
494 };
495
496 extern char __vsyscall_0;
497
498 /* Replace instructions with better alternatives for this CPU type.
499
500 This runs before SMP is initialized to avoid SMP problems with
501 self modifying code. This implies that assymetric systems where
502 APs have less capabilities than the boot processor are not handled.
503 In this case boot with "noreplacement". */
504 void apply_alternatives(void *start, void *end)
505 {
506 struct alt_instr *a;
507 int diff, i, k;
508 for (a = start; (void *)a < end; a++) {
509 u8 *instr;
510
511 if (!boot_cpu_has(a->cpuid))
512 continue;
513
514 BUG_ON(a->replacementlen > a->instrlen);
515 instr = a->instr;
516 /* vsyscall code is not mapped yet. resolve it manually. */
517 if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END)
518 instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
519 __inline_memcpy(instr, a->replacement, a->replacementlen);
520 diff = a->instrlen - a->replacementlen;
521
522 /* Pad the rest with nops */
523 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
524 k = diff;
525 if (k > ASM_NOP_MAX)
526 k = ASM_NOP_MAX;
527 __inline_memcpy(instr + i, k8_nops[k], k);
528 }
529 }
530 }
531
532 static int no_replacement __initdata = 0;
533
534 void __init alternative_instructions(void)
535 {
536 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
537 if (no_replacement)
538 return;
539 apply_alternatives(__alt_instructions, __alt_instructions_end);
540 }
541
542 static int __init noreplacement_setup(char *s)
543 {
544 no_replacement = 1;
545 return 1;
546 }
547
548 __setup("noreplacement", noreplacement_setup);
549
550 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
551 struct edd edd;
552 #ifdef CONFIG_EDD_MODULE
553 EXPORT_SYMBOL(edd);
554 #endif
555 /**
556 * copy_edd() - Copy the BIOS EDD information
557 * from boot_params into a safe place.
558 *
559 */
560 static inline void copy_edd(void)
561 {
562 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
563 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
564 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
565 edd.edd_info_nr = EDD_NR;
566 }
567 #else
568 static inline void copy_edd(void)
569 {
570 }
571 #endif
572
573 #define EBDA_ADDR_POINTER 0x40E
574
575 unsigned __initdata ebda_addr;
576 unsigned __initdata ebda_size;
577
578 static void discover_ebda(void)
579 {
580 /*
581 * there is a real-mode segmented pointer pointing to the
582 * 4K EBDA area at 0x40E
583 */
584 ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
585 ebda_addr <<= 4;
586
587 ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
588
589 /* Round EBDA up to pages */
590 if (ebda_size == 0)
591 ebda_size = 1;
592 ebda_size <<= 10;
593 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
594 if (ebda_size > 64*1024)
595 ebda_size = 64*1024;
596 }
597
598 void __init setup_arch(char **cmdline_p)
599 {
600 unsigned long kernel_end;
601
602 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
603 screen_info = SCREEN_INFO;
604 edid_info = EDID_INFO;
605 saved_video_mode = SAVED_VIDEO_MODE;
606 bootloader_type = LOADER_TYPE;
607
608 #ifdef CONFIG_BLK_DEV_RAM
609 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
610 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
611 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
612 #endif
613 setup_memory_region();
614 copy_edd();
615
616 if (!MOUNT_ROOT_RDONLY)
617 root_mountflags &= ~MS_RDONLY;
618 init_mm.start_code = (unsigned long) &_text;
619 init_mm.end_code = (unsigned long) &_etext;
620 init_mm.end_data = (unsigned long) &_edata;
621 init_mm.brk = (unsigned long) &_end;
622
623 code_resource.start = virt_to_phys(&_text);
624 code_resource.end = virt_to_phys(&_etext)-1;
625 data_resource.start = virt_to_phys(&_etext);
626 data_resource.end = virt_to_phys(&_edata)-1;
627
628 parse_cmdline_early(cmdline_p);
629
630 early_identify_cpu(&boot_cpu_data);
631
632 /*
633 * partially used pages are not usable - thus
634 * we are rounding upwards:
635 */
636 end_pfn = e820_end_of_ram();
637 num_physpages = end_pfn; /* for pfn_valid */
638
639 check_efer();
640
641 discover_ebda();
642
643 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
644
645 dmi_scan_machine();
646
647 zap_low_mappings(0);
648
649 #ifdef CONFIG_ACPI
650 /*
651 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
652 * Call this early for SRAT node setup.
653 */
654 acpi_boot_table_init();
655 #endif
656
657 #ifdef CONFIG_ACPI_NUMA
658 /*
659 * Parse SRAT to discover nodes.
660 */
661 acpi_numa_init();
662 #endif
663
664 #ifdef CONFIG_NUMA
665 numa_initmem_init(0, end_pfn);
666 #else
667 contig_initmem_init(0, end_pfn);
668 #endif
669
670 /* Reserve direct mapping */
671 reserve_bootmem_generic(table_start << PAGE_SHIFT,
672 (table_end - table_start) << PAGE_SHIFT);
673
674 /* reserve kernel */
675 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
676 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
677
678 /*
679 * reserve physical page 0 - it's a special BIOS page on many boxes,
680 * enabling clean reboots, SMP operation, laptop functions.
681 */
682 reserve_bootmem_generic(0, PAGE_SIZE);
683
684 /* reserve ebda region */
685 if (ebda_addr)
686 reserve_bootmem_generic(ebda_addr, ebda_size);
687
688 #ifdef CONFIG_SMP
689 /*
690 * But first pinch a few for the stack/trampoline stuff
691 * FIXME: Don't need the extra page at 4K, but need to fix
692 * trampoline before removing it. (see the GDT stuff)
693 */
694 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
695
696 /* Reserve SMP trampoline */
697 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
698 #endif
699
700 #ifdef CONFIG_ACPI_SLEEP
701 /*
702 * Reserve low memory region for sleep support.
703 */
704 acpi_reserve_bootmem();
705 #endif
706 #ifdef CONFIG_X86_LOCAL_APIC
707 /*
708 * Find and reserve possible boot-time SMP configuration:
709 */
710 find_smp_config();
711 #endif
712 #ifdef CONFIG_BLK_DEV_INITRD
713 if (LOADER_TYPE && INITRD_START) {
714 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
715 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
716 initrd_start =
717 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
718 initrd_end = initrd_start+INITRD_SIZE;
719 }
720 else {
721 printk(KERN_ERR "initrd extends beyond end of memory "
722 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
723 (unsigned long)(INITRD_START + INITRD_SIZE),
724 (unsigned long)(end_pfn << PAGE_SHIFT));
725 initrd_start = 0;
726 }
727 }
728 #endif
729 #ifdef CONFIG_KEXEC
730 if (crashk_res.start != crashk_res.end) {
731 reserve_bootmem_generic(crashk_res.start,
732 crashk_res.end - crashk_res.start + 1);
733 }
734 #endif
735
736 paging_init();
737
738 check_ioapic();
739
740 /*
741 * set this early, so we dont allocate cpu0
742 * if MADT list doesnt list BSP first
743 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
744 */
745 cpu_set(0, cpu_present_map);
746 #ifdef CONFIG_ACPI
747 /*
748 * Read APIC and some other early information from ACPI tables.
749 */
750 acpi_boot_init();
751 #endif
752
753 init_cpu_to_node();
754
755 #ifdef CONFIG_X86_LOCAL_APIC
756 /*
757 * get boot-time SMP configuration:
758 */
759 if (smp_found_config)
760 get_smp_config();
761 init_apic_mappings();
762 #endif
763
764 /*
765 * Request address space for all standard RAM and ROM resources
766 * and also for regions reported as reserved by the e820.
767 */
768 probe_roms();
769 e820_reserve_resources();
770
771 request_resource(&iomem_resource, &video_ram_resource);
772
773 {
774 unsigned i;
775 /* request I/O space for devices used on all i[345]86 PCs */
776 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
777 request_resource(&ioport_resource, &standard_io_resources[i]);
778 }
779
780 e820_setup_gap();
781
782 #ifdef CONFIG_GART_IOMMU
783 iommu_hole_init();
784 #endif
785
786 #ifdef CONFIG_VT
787 #if defined(CONFIG_VGA_CONSOLE)
788 conswitchp = &vga_con;
789 #elif defined(CONFIG_DUMMY_CONSOLE)
790 conswitchp = &dummy_con;
791 #endif
792 #endif
793 }
794
795 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
796 {
797 unsigned int *v;
798
799 if (c->extended_cpuid_level < 0x80000004)
800 return 0;
801
802 v = (unsigned int *) c->x86_model_id;
803 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
804 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
805 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
806 c->x86_model_id[48] = 0;
807 return 1;
808 }
809
810
811 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
812 {
813 unsigned int n, dummy, eax, ebx, ecx, edx;
814
815 n = c->extended_cpuid_level;
816
817 if (n >= 0x80000005) {
818 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
819 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
820 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
821 c->x86_cache_size=(ecx>>24)+(edx>>24);
822 /* On K8 L1 TLB is inclusive, so don't count it */
823 c->x86_tlbsize = 0;
824 }
825
826 if (n >= 0x80000006) {
827 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828 ecx = cpuid_ecx(0x80000006);
829 c->x86_cache_size = ecx >> 16;
830 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831
832 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
833 c->x86_cache_size, ecx & 0xFF);
834 }
835
836 if (n >= 0x80000007)
837 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
838 if (n >= 0x80000008) {
839 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
840 c->x86_virt_bits = (eax >> 8) & 0xff;
841 c->x86_phys_bits = eax & 0xff;
842 }
843 }
844
845 #ifdef CONFIG_NUMA
846 static int nearby_node(int apicid)
847 {
848 int i;
849 for (i = apicid - 1; i >= 0; i--) {
850 int node = apicid_to_node[i];
851 if (node != NUMA_NO_NODE && node_online(node))
852 return node;
853 }
854 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
855 int node = apicid_to_node[i];
856 if (node != NUMA_NO_NODE && node_online(node))
857 return node;
858 }
859 return first_node(node_online_map); /* Shouldn't happen */
860 }
861 #endif
862
863 /*
864 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
865 * Assumes number of cores is a power of two.
866 */
867 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
868 {
869 #ifdef CONFIG_SMP
870 int cpu = smp_processor_id();
871 unsigned bits;
872 #ifdef CONFIG_NUMA
873 int node = 0;
874 unsigned apicid = hard_smp_processor_id();
875 #endif
876 unsigned ecx = cpuid_ecx(0x80000008);
877
878 c->x86_max_cores = (ecx & 0xff) + 1;
879
880 /* CPU telling us the core id bits shift? */
881 bits = (ecx >> 12) & 0xF;
882
883 /* Otherwise recompute */
884 if (bits == 0) {
885 while ((1 << bits) < c->x86_max_cores)
886 bits++;
887 }
888
889 /* Low order bits define the core id (index of core in socket) */
890 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
891 /* Convert the APIC ID into the socket ID */
892 phys_proc_id[cpu] = phys_pkg_id(bits);
893
894 #ifdef CONFIG_NUMA
895 node = phys_proc_id[cpu];
896 if (apicid_to_node[apicid] != NUMA_NO_NODE)
897 node = apicid_to_node[apicid];
898 if (!node_online(node)) {
899 /* Two possibilities here:
900 - The CPU is missing memory and no node was created.
901 In that case try picking one from a nearby CPU
902 - The APIC IDs differ from the HyperTransport node IDs
903 which the K8 northbridge parsing fills in.
904 Assume they are all increased by a constant offset,
905 but in the same order as the HT nodeids.
906 If that doesn't result in a usable node fall back to the
907 path for the previous case. */
908 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
909 if (ht_nodeid >= 0 &&
910 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
911 node = apicid_to_node[ht_nodeid];
912 /* Pick a nearby node */
913 if (!node_online(node))
914 node = nearby_node(apicid);
915 }
916 numa_set_node(cpu, node);
917
918 printk(KERN_INFO "CPU %d/%x(%d) -> Node %d -> Core %d\n",
919 cpu, apicid, c->x86_max_cores, node, cpu_core_id[cpu]);
920 #endif
921 #endif
922 }
923
924 static int __init init_amd(struct cpuinfo_x86 *c)
925 {
926 int r;
927 unsigned level;
928
929 #ifdef CONFIG_SMP
930 unsigned long value;
931
932 /*
933 * Disable TLB flush filter by setting HWCR.FFDIS on K8
934 * bit 6 of msr C001_0015
935 *
936 * Errata 63 for SH-B3 steppings
937 * Errata 122 for all steppings (F+ have it disabled by default)
938 */
939 if (c->x86 == 15) {
940 rdmsrl(MSR_K8_HWCR, value);
941 value |= 1 << 6;
942 wrmsrl(MSR_K8_HWCR, value);
943 }
944 #endif
945
946 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
947 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
948 clear_bit(0*32+31, &c->x86_capability);
949
950 /* On C+ stepping K8 rep microcode works well for copy/memset */
951 level = cpuid_eax(1);
952 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
953 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
954
955 /* Enable workaround for FXSAVE leak */
956 if (c->x86 >= 6)
957 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
958
959 r = get_model_name(c);
960 if (!r) {
961 switch (c->x86) {
962 case 15:
963 /* Should distinguish Models here, but this is only
964 a fallback anyways. */
965 strcpy(c->x86_model_id, "Hammer");
966 break;
967 }
968 }
969 display_cacheinfo(c);
970
971 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
972 if (c->x86_power & (1<<8))
973 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
974
975 /* Multi core CPU? */
976 if (c->extended_cpuid_level >= 0x80000008)
977 amd_detect_cmp(c);
978
979 return r;
980 }
981
982 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
983 {
984 #ifdef CONFIG_SMP
985 u32 eax, ebx, ecx, edx;
986 int index_msb, core_bits;
987 int cpu = smp_processor_id();
988
989 cpuid(1, &eax, &ebx, &ecx, &edx);
990
991
992 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
993 return;
994
995 smp_num_siblings = (ebx & 0xff0000) >> 16;
996
997 if (smp_num_siblings == 1) {
998 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
999 } else if (smp_num_siblings > 1 ) {
1000
1001 if (smp_num_siblings > NR_CPUS) {
1002 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
1003 smp_num_siblings = 1;
1004 return;
1005 }
1006
1007 index_msb = get_count_order(smp_num_siblings);
1008 phys_proc_id[cpu] = phys_pkg_id(index_msb);
1009
1010 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
1011 phys_proc_id[cpu]);
1012
1013 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
1014
1015 index_msb = get_count_order(smp_num_siblings) ;
1016
1017 core_bits = get_count_order(c->x86_max_cores);
1018
1019 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
1020 ((1 << core_bits) - 1);
1021
1022 if (c->x86_max_cores > 1)
1023 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
1024 cpu_core_id[cpu]);
1025 }
1026 #endif
1027 }
1028
1029 /*
1030 * find out the number of processor cores on the die
1031 */
1032 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
1033 {
1034 unsigned int eax;
1035
1036 if (c->cpuid_level < 4)
1037 return 1;
1038
1039 __asm__("cpuid"
1040 : "=a" (eax)
1041 : "0" (4), "c" (0)
1042 : "bx", "dx");
1043
1044 if (eax & 0x1f)
1045 return ((eax >> 26) + 1);
1046 else
1047 return 1;
1048 }
1049
1050 static void srat_detect_node(void)
1051 {
1052 #ifdef CONFIG_NUMA
1053 unsigned node;
1054 int cpu = smp_processor_id();
1055
1056 /* Don't do the funky fallback heuristics the AMD version employs
1057 for now. */
1058 node = apicid_to_node[hard_smp_processor_id()];
1059 if (node == NUMA_NO_NODE)
1060 node = first_node(node_online_map);
1061 numa_set_node(cpu, node);
1062
1063 if (acpi_numa > 0)
1064 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1065 #endif
1066 }
1067
1068 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1069 {
1070 /* Cache sizes */
1071 unsigned n;
1072
1073 init_intel_cacheinfo(c);
1074 n = c->extended_cpuid_level;
1075 if (n >= 0x80000008) {
1076 unsigned eax = cpuid_eax(0x80000008);
1077 c->x86_virt_bits = (eax >> 8) & 0xff;
1078 c->x86_phys_bits = eax & 0xff;
1079 /* CPUID workaround for Intel 0F34 CPU */
1080 if (c->x86_vendor == X86_VENDOR_INTEL &&
1081 c->x86 == 0xF && c->x86_model == 0x3 &&
1082 c->x86_mask == 0x4)
1083 c->x86_phys_bits = 36;
1084 }
1085
1086 if (c->x86 == 15)
1087 c->x86_cache_alignment = c->x86_clflush_size * 2;
1088 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1089 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1090 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1091 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1092 c->x86_max_cores = intel_num_cpu_cores(c);
1093
1094 srat_detect_node();
1095 }
1096
1097 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1098 {
1099 char *v = c->x86_vendor_id;
1100
1101 if (!strcmp(v, "AuthenticAMD"))
1102 c->x86_vendor = X86_VENDOR_AMD;
1103 else if (!strcmp(v, "GenuineIntel"))
1104 c->x86_vendor = X86_VENDOR_INTEL;
1105 else
1106 c->x86_vendor = X86_VENDOR_UNKNOWN;
1107 }
1108
1109 struct cpu_model_info {
1110 int vendor;
1111 int family;
1112 char *model_names[16];
1113 };
1114
1115 /* Do some early cpuid on the boot CPU to get some parameter that are
1116 needed before check_bugs. Everything advanced is in identify_cpu
1117 below. */
1118 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1119 {
1120 u32 tfms;
1121
1122 c->loops_per_jiffy = loops_per_jiffy;
1123 c->x86_cache_size = -1;
1124 c->x86_vendor = X86_VENDOR_UNKNOWN;
1125 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1126 c->x86_vendor_id[0] = '\0'; /* Unset */
1127 c->x86_model_id[0] = '\0'; /* Unset */
1128 c->x86_clflush_size = 64;
1129 c->x86_cache_alignment = c->x86_clflush_size;
1130 c->x86_max_cores = 1;
1131 c->extended_cpuid_level = 0;
1132 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1133
1134 /* Get vendor name */
1135 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1136 (unsigned int *)&c->x86_vendor_id[0],
1137 (unsigned int *)&c->x86_vendor_id[8],
1138 (unsigned int *)&c->x86_vendor_id[4]);
1139
1140 get_cpu_vendor(c);
1141
1142 /* Initialize the standard set of capabilities */
1143 /* Note that the vendor-specific code below might override */
1144
1145 /* Intel-defined flags: level 0x00000001 */
1146 if (c->cpuid_level >= 0x00000001) {
1147 __u32 misc;
1148 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1149 &c->x86_capability[0]);
1150 c->x86 = (tfms >> 8) & 0xf;
1151 c->x86_model = (tfms >> 4) & 0xf;
1152 c->x86_mask = tfms & 0xf;
1153 if (c->x86 == 0xf)
1154 c->x86 += (tfms >> 20) & 0xff;
1155 if (c->x86 >= 0x6)
1156 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1157 if (c->x86_capability[0] & (1<<19))
1158 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1159 } else {
1160 /* Have CPUID level 0 only - unheard of */
1161 c->x86 = 4;
1162 }
1163
1164 #ifdef CONFIG_SMP
1165 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1166 #endif
1167 }
1168
1169 /*
1170 * This does the hard work of actually picking apart the CPU stuff...
1171 */
1172 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1173 {
1174 int i;
1175 u32 xlvl;
1176
1177 early_identify_cpu(c);
1178
1179 /* AMD-defined flags: level 0x80000001 */
1180 xlvl = cpuid_eax(0x80000000);
1181 c->extended_cpuid_level = xlvl;
1182 if ((xlvl & 0xffff0000) == 0x80000000) {
1183 if (xlvl >= 0x80000001) {
1184 c->x86_capability[1] = cpuid_edx(0x80000001);
1185 c->x86_capability[6] = cpuid_ecx(0x80000001);
1186 }
1187 if (xlvl >= 0x80000004)
1188 get_model_name(c); /* Default name */
1189 }
1190
1191 /* Transmeta-defined flags: level 0x80860001 */
1192 xlvl = cpuid_eax(0x80860000);
1193 if ((xlvl & 0xffff0000) == 0x80860000) {
1194 /* Don't set x86_cpuid_level here for now to not confuse. */
1195 if (xlvl >= 0x80860001)
1196 c->x86_capability[2] = cpuid_edx(0x80860001);
1197 }
1198
1199 c->apicid = phys_pkg_id(0);
1200
1201 /*
1202 * Vendor-specific initialization. In this section we
1203 * canonicalize the feature flags, meaning if there are
1204 * features a certain CPU supports which CPUID doesn't
1205 * tell us, CPUID claiming incorrect flags, or other bugs,
1206 * we handle them here.
1207 *
1208 * At the end of this section, c->x86_capability better
1209 * indicate the features this CPU genuinely supports!
1210 */
1211 switch (c->x86_vendor) {
1212 case X86_VENDOR_AMD:
1213 init_amd(c);
1214 break;
1215
1216 case X86_VENDOR_INTEL:
1217 init_intel(c);
1218 break;
1219
1220 case X86_VENDOR_UNKNOWN:
1221 default:
1222 display_cacheinfo(c);
1223 break;
1224 }
1225
1226 select_idle_routine(c);
1227 detect_ht(c);
1228
1229 /*
1230 * On SMP, boot_cpu_data holds the common feature set between
1231 * all CPUs; so make sure that we indicate which features are
1232 * common between the CPUs. The first time this routine gets
1233 * executed, c == &boot_cpu_data.
1234 */
1235 if (c != &boot_cpu_data) {
1236 /* AND the already accumulated flags with these */
1237 for (i = 0 ; i < NCAPINTS ; i++)
1238 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1239 }
1240
1241 #ifdef CONFIG_X86_MCE
1242 mcheck_init(c);
1243 #endif
1244 if (c == &boot_cpu_data)
1245 mtrr_bp_init();
1246 else
1247 mtrr_ap_init();
1248 #ifdef CONFIG_NUMA
1249 numa_add_cpu(smp_processor_id());
1250 #endif
1251 }
1252
1253
1254 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1255 {
1256 if (c->x86_model_id[0])
1257 printk("%s", c->x86_model_id);
1258
1259 if (c->x86_mask || c->cpuid_level >= 0)
1260 printk(" stepping %02x\n", c->x86_mask);
1261 else
1262 printk("\n");
1263 }
1264
1265 /*
1266 * Get CPU information for use by the procfs.
1267 */
1268
1269 static int show_cpuinfo(struct seq_file *m, void *v)
1270 {
1271 struct cpuinfo_x86 *c = v;
1272
1273 /*
1274 * These flag bits must match the definitions in <asm/cpufeature.h>.
1275 * NULL means this bit is undefined or reserved; either way it doesn't
1276 * have meaning as far as Linux is concerned. Note that it's important
1277 * to realize there is a difference between this table and CPUID -- if
1278 * applications want to get the raw CPUID data, they should access
1279 * /dev/cpu/<cpu_nr>/cpuid instead.
1280 */
1281 static char *x86_cap_flags[] = {
1282 /* Intel-defined */
1283 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1284 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1285 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1286 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1287
1288 /* AMD-defined */
1289 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1290 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1291 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1292 NULL, "fxsr_opt", "rdtscp", NULL, NULL, "lm", "3dnowext", "3dnow",
1293
1294 /* Transmeta-defined */
1295 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1296 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1299
1300 /* Other (Linux-defined) */
1301 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1302 "constant_tsc", NULL, NULL,
1303 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1304 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1305 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1306
1307 /* Intel-defined (#2) */
1308 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1309 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1310 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1311 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1312
1313 /* VIA/Cyrix/Centaur-defined */
1314 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1316 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1318
1319 /* AMD-defined (#2) */
1320 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1321 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1322 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1323 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1324 };
1325 static char *x86_power_flags[] = {
1326 "ts", /* temperature sensor */
1327 "fid", /* frequency id control */
1328 "vid", /* voltage id control */
1329 "ttp", /* thermal trip */
1330 "tm",
1331 "stc",
1332 NULL,
1333 /* nothing */ /* constant_tsc - moved to flags */
1334 };
1335
1336
1337 #ifdef CONFIG_SMP
1338 if (!cpu_online(c-cpu_data))
1339 return 0;
1340 #endif
1341
1342 seq_printf(m,"processor\t: %u\n"
1343 "vendor_id\t: %s\n"
1344 "cpu family\t: %d\n"
1345 "model\t\t: %d\n"
1346 "model name\t: %s\n",
1347 (unsigned)(c-cpu_data),
1348 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1349 c->x86,
1350 (int)c->x86_model,
1351 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1352
1353 if (c->x86_mask || c->cpuid_level >= 0)
1354 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1355 else
1356 seq_printf(m, "stepping\t: unknown\n");
1357
1358 if (cpu_has(c,X86_FEATURE_TSC)) {
1359 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1360 if (!freq)
1361 freq = cpu_khz;
1362 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1363 freq / 1000, (freq % 1000));
1364 }
1365
1366 /* Cache size */
1367 if (c->x86_cache_size >= 0)
1368 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1369
1370 #ifdef CONFIG_SMP
1371 if (smp_num_siblings * c->x86_max_cores > 1) {
1372 int cpu = c - cpu_data;
1373 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1374 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1375 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1376 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1377 }
1378 #endif
1379
1380 seq_printf(m,
1381 "fpu\t\t: yes\n"
1382 "fpu_exception\t: yes\n"
1383 "cpuid level\t: %d\n"
1384 "wp\t\t: yes\n"
1385 "flags\t\t:",
1386 c->cpuid_level);
1387
1388 {
1389 int i;
1390 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1391 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1392 seq_printf(m, " %s", x86_cap_flags[i]);
1393 }
1394
1395 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1396 c->loops_per_jiffy/(500000/HZ),
1397 (c->loops_per_jiffy/(5000/HZ)) % 100);
1398
1399 if (c->x86_tlbsize > 0)
1400 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1401 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1402 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1403
1404 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1405 c->x86_phys_bits, c->x86_virt_bits);
1406
1407 seq_printf(m, "power management:");
1408 {
1409 unsigned i;
1410 for (i = 0; i < 32; i++)
1411 if (c->x86_power & (1 << i)) {
1412 if (i < ARRAY_SIZE(x86_power_flags) &&
1413 x86_power_flags[i])
1414 seq_printf(m, "%s%s",
1415 x86_power_flags[i][0]?" ":"",
1416 x86_power_flags[i]);
1417 else
1418 seq_printf(m, " [%d]", i);
1419 }
1420 }
1421
1422 seq_printf(m, "\n\n");
1423
1424 return 0;
1425 }
1426
1427 static void *c_start(struct seq_file *m, loff_t *pos)
1428 {
1429 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1430 }
1431
1432 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1433 {
1434 ++*pos;
1435 return c_start(m, pos);
1436 }
1437
1438 static void c_stop(struct seq_file *m, void *v)
1439 {
1440 }
1441
1442 struct seq_operations cpuinfo_op = {
1443 .start =c_start,
1444 .next = c_next,
1445 .stop = c_stop,
1446 .show = show_cpuinfo,
1447 };
1448
1449 #ifdef CONFIG_INPUT_PCSPKR
1450 #include <linux/platform_device.h>
1451 static __init int add_pcspkr(void)
1452 {
1453 struct platform_device *pd;
1454 int ret;
1455
1456 pd = platform_device_alloc("pcspkr", -1);
1457 if (!pd)
1458 return -ENOMEM;
1459
1460 ret = platform_device_add(pd);
1461 if (ret)
1462 platform_device_put(pd);
1463
1464 return ret;
1465 }
1466 device_initcall(add_pcspkr);
1467 #endif