]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86_64/kernel/setup.c
Merge branch 'rio.b19' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/bird
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 *
9 * $Id$
10 */
11
12 /*
13 * This file handles the architecture-dependent parts of initialization
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
47 #include <linux/dmi.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/ctype.h>
50
51 #include <asm/mtrr.h>
52 #include <asm/uaccess.h>
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/msr.h>
57 #include <asm/desc.h>
58 #include <video/edid.h>
59 #include <asm/e820.h>
60 #include <asm/dma.h>
61 #include <asm/mpspec.h>
62 #include <asm/mmu_context.h>
63 #include <asm/bootsetup.h>
64 #include <asm/proto.h>
65 #include <asm/setup.h>
66 #include <asm/mach_apic.h>
67 #include <asm/numa.h>
68 #include <asm/swiotlb.h>
69 #include <asm/sections.h>
70 #include <asm/gart-mapping.h>
71 #include <asm/dmi.h>
72
73 /*
74 * Machine setup..
75 */
76
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
78
79 unsigned long mmu_cr4_features;
80
81 int acpi_disabled;
82 EXPORT_SYMBOL(acpi_disabled);
83 #ifdef CONFIG_ACPI
84 extern int __initdata acpi_ht;
85 extern acpi_interrupt_flags acpi_sci_flags;
86 int __initdata acpi_force = 0;
87 #endif
88
89 int acpi_numa __initdata;
90
91 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
92 int bootloader_type;
93
94 unsigned long saved_video_mode;
95
96 /*
97 * Early DMI memory
98 */
99 int dmi_alloc_index;
100 char dmi_alloc_data[DMI_MAX_DATA];
101
102 /*
103 * Setup options
104 */
105 struct screen_info screen_info;
106 struct sys_desc_table_struct {
107 unsigned short length;
108 unsigned char table[0];
109 };
110
111 struct edid_info edid_info;
112 struct e820map e820;
113
114 extern int root_mountflags;
115
116 char command_line[COMMAND_LINE_SIZE];
117
118 struct resource standard_io_resources[] = {
119 { .name = "dma1", .start = 0x00, .end = 0x1f,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "pic1", .start = 0x20, .end = 0x21,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer0", .start = 0x40, .end = 0x43,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "timer1", .start = 0x50, .end = 0x53,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "keyboard", .start = 0x60, .end = 0x6f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "pic2", .start = 0xa0, .end = 0xa1,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "dma2", .start = 0xc0, .end = 0xdf,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
135 { .name = "fpu", .start = 0xf0, .end = 0xff,
136 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
137 };
138
139 #define STANDARD_IO_RESOURCES \
140 (sizeof standard_io_resources / sizeof standard_io_resources[0])
141
142 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
143
144 struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
149 };
150 struct resource code_resource = {
151 .name = "Kernel code",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
155 };
156
157 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
158
159 static struct resource system_rom_resource = {
160 .name = "System ROM",
161 .start = 0xf0000,
162 .end = 0xfffff,
163 .flags = IORESOURCE_ROM,
164 };
165
166 static struct resource extension_rom_resource = {
167 .name = "Extension ROM",
168 .start = 0xe0000,
169 .end = 0xeffff,
170 .flags = IORESOURCE_ROM,
171 };
172
173 static struct resource adapter_rom_resources[] = {
174 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM },
184 { .name = "Adapter ROM", .start = 0, .end = 0,
185 .flags = IORESOURCE_ROM }
186 };
187
188 #define ADAPTER_ROM_RESOURCES \
189 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
190
191 static struct resource video_rom_resource = {
192 .name = "Video ROM",
193 .start = 0xc0000,
194 .end = 0xc7fff,
195 .flags = IORESOURCE_ROM,
196 };
197
198 static struct resource video_ram_resource = {
199 .name = "Video RAM area",
200 .start = 0xa0000,
201 .end = 0xbffff,
202 .flags = IORESOURCE_RAM,
203 };
204
205 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
206
207 static int __init romchecksum(unsigned char *rom, unsigned long length)
208 {
209 unsigned char *p, sum = 0;
210
211 for (p = rom; p < rom + length; p++)
212 sum += *p;
213 return sum == 0;
214 }
215
216 static void __init probe_roms(void)
217 {
218 unsigned long start, length, upper;
219 unsigned char *rom;
220 int i;
221
222 /* video rom */
223 upper = adapter_rom_resources[0].start;
224 for (start = video_rom_resource.start; start < upper; start += 2048) {
225 rom = isa_bus_to_virt(start);
226 if (!romsignature(rom))
227 continue;
228
229 video_rom_resource.start = start;
230
231 /* 0 < length <= 0x7f * 512, historically */
232 length = rom[2] * 512;
233
234 /* if checksum okay, trust length byte */
235 if (length && romchecksum(rom, length))
236 video_rom_resource.end = start + length - 1;
237
238 request_resource(&iomem_resource, &video_rom_resource);
239 break;
240 }
241
242 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
243 if (start < upper)
244 start = upper;
245
246 /* system rom */
247 request_resource(&iomem_resource, &system_rom_resource);
248 upper = system_rom_resource.start;
249
250 /* check for extension rom (ignore length byte!) */
251 rom = isa_bus_to_virt(extension_rom_resource.start);
252 if (romsignature(rom)) {
253 length = extension_rom_resource.end - extension_rom_resource.start + 1;
254 if (romchecksum(rom, length)) {
255 request_resource(&iomem_resource, &extension_rom_resource);
256 upper = extension_rom_resource.start;
257 }
258 }
259
260 /* check for adapter roms on 2k boundaries */
261 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
262 rom = isa_bus_to_virt(start);
263 if (!romsignature(rom))
264 continue;
265
266 /* 0 < length <= 0x7f * 512, historically */
267 length = rom[2] * 512;
268
269 /* but accept any length that fits if checksum okay */
270 if (!length || start + length > upper || !romchecksum(rom, length))
271 continue;
272
273 adapter_rom_resources[i].start = start;
274 adapter_rom_resources[i].end = start + length - 1;
275 request_resource(&iomem_resource, &adapter_rom_resources[i]);
276
277 start = adapter_rom_resources[i++].end & ~2047UL;
278 }
279 }
280
281 /* Check for full argument with no trailing characters */
282 static int fullarg(char *p, char *arg)
283 {
284 int l = strlen(arg);
285 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
286 }
287
288 static __init void parse_cmdline_early (char ** cmdline_p)
289 {
290 char c = ' ', *to = command_line, *from = COMMAND_LINE;
291 int len = 0;
292 int userdef = 0;
293
294 for (;;) {
295 if (c != ' ')
296 goto next_char;
297
298 #ifdef CONFIG_SMP
299 /*
300 * If the BIOS enumerates physical processors before logical,
301 * maxcpus=N at enumeration-time can be used to disable HT.
302 */
303 else if (!memcmp(from, "maxcpus=", 8)) {
304 extern unsigned int maxcpus;
305
306 maxcpus = simple_strtoul(from + 8, NULL, 0);
307 }
308 #endif
309 #ifdef CONFIG_ACPI
310 /* "acpi=off" disables both ACPI table parsing and interpreter init */
311 if (fullarg(from,"acpi=off"))
312 disable_acpi();
313
314 if (fullarg(from, "acpi=force")) {
315 /* add later when we do DMI horrors: */
316 acpi_force = 1;
317 acpi_disabled = 0;
318 }
319
320 /* acpi=ht just means: do ACPI MADT parsing
321 at bootup, but don't enable the full ACPI interpreter */
322 if (fullarg(from, "acpi=ht")) {
323 if (!acpi_force)
324 disable_acpi();
325 acpi_ht = 1;
326 }
327 else if (fullarg(from, "pci=noacpi"))
328 acpi_disable_pci();
329 else if (fullarg(from, "acpi=noirq"))
330 acpi_noirq_set();
331
332 else if (fullarg(from, "acpi_sci=edge"))
333 acpi_sci_flags.trigger = 1;
334 else if (fullarg(from, "acpi_sci=level"))
335 acpi_sci_flags.trigger = 3;
336 else if (fullarg(from, "acpi_sci=high"))
337 acpi_sci_flags.polarity = 1;
338 else if (fullarg(from, "acpi_sci=low"))
339 acpi_sci_flags.polarity = 3;
340
341 /* acpi=strict disables out-of-spec workarounds */
342 else if (fullarg(from, "acpi=strict")) {
343 acpi_strict = 1;
344 }
345 #ifdef CONFIG_X86_IO_APIC
346 else if (fullarg(from, "acpi_skip_timer_override"))
347 acpi_skip_timer_override = 1;
348 #endif
349 #endif
350
351 if (fullarg(from, "disable_timer_pin_1"))
352 disable_timer_pin_1 = 1;
353 if (fullarg(from, "enable_timer_pin_1"))
354 disable_timer_pin_1 = -1;
355
356 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
357 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
358 disable_apic = 1;
359 }
360
361 if (fullarg(from, "noapic"))
362 skip_ioapic_setup = 1;
363
364 if (fullarg(from,"apic")) {
365 skip_ioapic_setup = 0;
366 ioapic_force = 1;
367 }
368
369 if (!memcmp(from, "mem=", 4))
370 parse_memopt(from+4, &from);
371
372 if (!memcmp(from, "memmap=", 7)) {
373 /* exactmap option is for used defined memory */
374 if (!memcmp(from+7, "exactmap", 8)) {
375 #ifdef CONFIG_CRASH_DUMP
376 /* If we are doing a crash dump, we
377 * still need to know the real mem
378 * size before original memory map is
379 * reset.
380 */
381 saved_max_pfn = e820_end_of_ram();
382 #endif
383 from += 8+7;
384 end_pfn_map = 0;
385 e820.nr_map = 0;
386 userdef = 1;
387 }
388 else {
389 parse_memmapopt(from+7, &from);
390 userdef = 1;
391 }
392 }
393
394 #ifdef CONFIG_NUMA
395 if (!memcmp(from, "numa=", 5))
396 numa_setup(from+5);
397 #endif
398
399 if (!memcmp(from,"iommu=",6)) {
400 iommu_setup(from+6);
401 }
402
403 if (fullarg(from,"oops=panic"))
404 panic_on_oops = 1;
405
406 if (!memcmp(from, "noexec=", 7))
407 nonx_setup(from + 7);
408
409 #ifdef CONFIG_KEXEC
410 /* crashkernel=size@addr specifies the location to reserve for
411 * a crash kernel. By reserving this memory we guarantee
412 * that linux never set's it up as a DMA target.
413 * Useful for holding code to do something appropriate
414 * after a kernel panic.
415 */
416 else if (!memcmp(from, "crashkernel=", 12)) {
417 unsigned long size, base;
418 size = memparse(from+12, &from);
419 if (*from == '@') {
420 base = memparse(from+1, &from);
421 /* FIXME: Do I want a sanity check
422 * to validate the memory range?
423 */
424 crashk_res.start = base;
425 crashk_res.end = base + size - 1;
426 }
427 }
428 #endif
429
430 #ifdef CONFIG_PROC_VMCORE
431 /* elfcorehdr= specifies the location of elf core header
432 * stored by the crashed kernel. This option will be passed
433 * by kexec loader to the capture kernel.
434 */
435 else if(!memcmp(from, "elfcorehdr=", 11))
436 elfcorehdr_addr = memparse(from+11, &from);
437 #endif
438
439 #ifdef CONFIG_HOTPLUG_CPU
440 else if (!memcmp(from, "additional_cpus=", 16))
441 setup_additional_cpus(from+16);
442 #endif
443
444 next_char:
445 c = *(from++);
446 if (!c)
447 break;
448 if (COMMAND_LINE_SIZE <= ++len)
449 break;
450 *(to++) = c;
451 }
452 if (userdef) {
453 printk(KERN_INFO "user-defined physical RAM map:\n");
454 e820_print_map("user");
455 }
456 *to = '\0';
457 *cmdline_p = command_line;
458 }
459
460 #ifndef CONFIG_NUMA
461 static void __init
462 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
463 {
464 unsigned long bootmap_size, bootmap;
465
466 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
467 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
468 if (bootmap == -1L)
469 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
470 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
471 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
472 reserve_bootmem(bootmap, bootmap_size);
473 }
474 #endif
475
476 /* Use inline assembly to define this because the nops are defined
477 as inline assembly strings in the include files and we cannot
478 get them easily into strings. */
479 asm("\t.data\nk8nops: "
480 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
481 K8_NOP7 K8_NOP8);
482
483 extern unsigned char k8nops[];
484 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
485 NULL,
486 k8nops,
487 k8nops + 1,
488 k8nops + 1 + 2,
489 k8nops + 1 + 2 + 3,
490 k8nops + 1 + 2 + 3 + 4,
491 k8nops + 1 + 2 + 3 + 4 + 5,
492 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
493 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
494 };
495
496 extern char __vsyscall_0;
497
498 /* Replace instructions with better alternatives for this CPU type.
499
500 This runs before SMP is initialized to avoid SMP problems with
501 self modifying code. This implies that assymetric systems where
502 APs have less capabilities than the boot processor are not handled.
503 In this case boot with "noreplacement". */
504 void apply_alternatives(void *start, void *end)
505 {
506 struct alt_instr *a;
507 int diff, i, k;
508 for (a = start; (void *)a < end; a++) {
509 u8 *instr;
510
511 if (!boot_cpu_has(a->cpuid))
512 continue;
513
514 BUG_ON(a->replacementlen > a->instrlen);
515 instr = a->instr;
516 /* vsyscall code is not mapped yet. resolve it manually. */
517 if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END)
518 instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
519 __inline_memcpy(instr, a->replacement, a->replacementlen);
520 diff = a->instrlen - a->replacementlen;
521
522 /* Pad the rest with nops */
523 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
524 k = diff;
525 if (k > ASM_NOP_MAX)
526 k = ASM_NOP_MAX;
527 __inline_memcpy(instr + i, k8_nops[k], k);
528 }
529 }
530 }
531
532 static int no_replacement __initdata = 0;
533
534 void __init alternative_instructions(void)
535 {
536 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
537 if (no_replacement)
538 return;
539 apply_alternatives(__alt_instructions, __alt_instructions_end);
540 }
541
542 static int __init noreplacement_setup(char *s)
543 {
544 no_replacement = 1;
545 return 1;
546 }
547
548 __setup("noreplacement", noreplacement_setup);
549
550 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
551 struct edd edd;
552 #ifdef CONFIG_EDD_MODULE
553 EXPORT_SYMBOL(edd);
554 #endif
555 /**
556 * copy_edd() - Copy the BIOS EDD information
557 * from boot_params into a safe place.
558 *
559 */
560 static inline void copy_edd(void)
561 {
562 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
563 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
564 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
565 edd.edd_info_nr = EDD_NR;
566 }
567 #else
568 static inline void copy_edd(void)
569 {
570 }
571 #endif
572
573 #define EBDA_ADDR_POINTER 0x40E
574
575 unsigned __initdata ebda_addr;
576 unsigned __initdata ebda_size;
577
578 static void discover_ebda(void)
579 {
580 /*
581 * there is a real-mode segmented pointer pointing to the
582 * 4K EBDA area at 0x40E
583 */
584 ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
585 ebda_addr <<= 4;
586
587 ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
588
589 /* Round EBDA up to pages */
590 if (ebda_size == 0)
591 ebda_size = 1;
592 ebda_size <<= 10;
593 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
594 if (ebda_size > 64*1024)
595 ebda_size = 64*1024;
596 }
597
598 void __init setup_arch(char **cmdline_p)
599 {
600 unsigned long kernel_end;
601
602 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
603 screen_info = SCREEN_INFO;
604 edid_info = EDID_INFO;
605 saved_video_mode = SAVED_VIDEO_MODE;
606 bootloader_type = LOADER_TYPE;
607
608 #ifdef CONFIG_BLK_DEV_RAM
609 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
610 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
611 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
612 #endif
613 setup_memory_region();
614 copy_edd();
615
616 if (!MOUNT_ROOT_RDONLY)
617 root_mountflags &= ~MS_RDONLY;
618 init_mm.start_code = (unsigned long) &_text;
619 init_mm.end_code = (unsigned long) &_etext;
620 init_mm.end_data = (unsigned long) &_edata;
621 init_mm.brk = (unsigned long) &_end;
622
623 code_resource.start = virt_to_phys(&_text);
624 code_resource.end = virt_to_phys(&_etext)-1;
625 data_resource.start = virt_to_phys(&_etext);
626 data_resource.end = virt_to_phys(&_edata)-1;
627
628 parse_cmdline_early(cmdline_p);
629
630 early_identify_cpu(&boot_cpu_data);
631
632 /*
633 * partially used pages are not usable - thus
634 * we are rounding upwards:
635 */
636 end_pfn = e820_end_of_ram();
637 num_physpages = end_pfn; /* for pfn_valid */
638
639 check_efer();
640
641 discover_ebda();
642
643 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
644
645 dmi_scan_machine();
646
647 zap_low_mappings(0);
648
649 #ifdef CONFIG_ACPI
650 /*
651 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
652 * Call this early for SRAT node setup.
653 */
654 acpi_boot_table_init();
655 #endif
656
657 #ifdef CONFIG_ACPI_NUMA
658 /*
659 * Parse SRAT to discover nodes.
660 */
661 acpi_numa_init();
662 #endif
663
664 #ifdef CONFIG_NUMA
665 numa_initmem_init(0, end_pfn);
666 #else
667 contig_initmem_init(0, end_pfn);
668 #endif
669
670 /* Reserve direct mapping */
671 reserve_bootmem_generic(table_start << PAGE_SHIFT,
672 (table_end - table_start) << PAGE_SHIFT);
673
674 /* reserve kernel */
675 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
676 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
677
678 /*
679 * reserve physical page 0 - it's a special BIOS page on many boxes,
680 * enabling clean reboots, SMP operation, laptop functions.
681 */
682 reserve_bootmem_generic(0, PAGE_SIZE);
683
684 /* reserve ebda region */
685 if (ebda_addr)
686 reserve_bootmem_generic(ebda_addr, ebda_size);
687
688 #ifdef CONFIG_SMP
689 /*
690 * But first pinch a few for the stack/trampoline stuff
691 * FIXME: Don't need the extra page at 4K, but need to fix
692 * trampoline before removing it. (see the GDT stuff)
693 */
694 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
695
696 /* Reserve SMP trampoline */
697 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
698 #endif
699
700 #ifdef CONFIG_ACPI_SLEEP
701 /*
702 * Reserve low memory region for sleep support.
703 */
704 acpi_reserve_bootmem();
705 #endif
706 #ifdef CONFIG_X86_LOCAL_APIC
707 /*
708 * Find and reserve possible boot-time SMP configuration:
709 */
710 find_smp_config();
711 #endif
712 #ifdef CONFIG_BLK_DEV_INITRD
713 if (LOADER_TYPE && INITRD_START) {
714 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
715 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
716 initrd_start =
717 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
718 initrd_end = initrd_start+INITRD_SIZE;
719 }
720 else {
721 printk(KERN_ERR "initrd extends beyond end of memory "
722 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
723 (unsigned long)(INITRD_START + INITRD_SIZE),
724 (unsigned long)(end_pfn << PAGE_SHIFT));
725 initrd_start = 0;
726 }
727 }
728 #endif
729 #ifdef CONFIG_KEXEC
730 if (crashk_res.start != crashk_res.end) {
731 reserve_bootmem(crashk_res.start,
732 crashk_res.end - crashk_res.start + 1);
733 }
734 #endif
735
736 paging_init();
737
738 check_ioapic();
739
740 /*
741 * set this early, so we dont allocate cpu0
742 * if MADT list doesnt list BSP first
743 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
744 */
745 cpu_set(0, cpu_present_map);
746 #ifdef CONFIG_ACPI
747 /*
748 * Read APIC and some other early information from ACPI tables.
749 */
750 acpi_boot_init();
751 #endif
752
753 init_cpu_to_node();
754
755 #ifdef CONFIG_X86_LOCAL_APIC
756 /*
757 * get boot-time SMP configuration:
758 */
759 if (smp_found_config)
760 get_smp_config();
761 init_apic_mappings();
762 #endif
763
764 /*
765 * Request address space for all standard RAM and ROM resources
766 * and also for regions reported as reserved by the e820.
767 */
768 probe_roms();
769 e820_reserve_resources();
770
771 request_resource(&iomem_resource, &video_ram_resource);
772
773 {
774 unsigned i;
775 /* request I/O space for devices used on all i[345]86 PCs */
776 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
777 request_resource(&ioport_resource, &standard_io_resources[i]);
778 }
779
780 e820_setup_gap();
781
782 #ifdef CONFIG_GART_IOMMU
783 iommu_hole_init();
784 #endif
785
786 #ifdef CONFIG_VT
787 #if defined(CONFIG_VGA_CONSOLE)
788 conswitchp = &vga_con;
789 #elif defined(CONFIG_DUMMY_CONSOLE)
790 conswitchp = &dummy_con;
791 #endif
792 #endif
793 }
794
795 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
796 {
797 unsigned int *v;
798
799 if (c->extended_cpuid_level < 0x80000004)
800 return 0;
801
802 v = (unsigned int *) c->x86_model_id;
803 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
804 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
805 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
806 c->x86_model_id[48] = 0;
807 return 1;
808 }
809
810
811 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
812 {
813 unsigned int n, dummy, eax, ebx, ecx, edx;
814
815 n = c->extended_cpuid_level;
816
817 if (n >= 0x80000005) {
818 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
819 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
820 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
821 c->x86_cache_size=(ecx>>24)+(edx>>24);
822 /* On K8 L1 TLB is inclusive, so don't count it */
823 c->x86_tlbsize = 0;
824 }
825
826 if (n >= 0x80000006) {
827 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828 ecx = cpuid_ecx(0x80000006);
829 c->x86_cache_size = ecx >> 16;
830 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831
832 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
833 c->x86_cache_size, ecx & 0xFF);
834 }
835
836 if (n >= 0x80000007)
837 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
838 if (n >= 0x80000008) {
839 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
840 c->x86_virt_bits = (eax >> 8) & 0xff;
841 c->x86_phys_bits = eax & 0xff;
842 }
843 }
844
845 #ifdef CONFIG_NUMA
846 static int nearby_node(int apicid)
847 {
848 int i;
849 for (i = apicid - 1; i >= 0; i--) {
850 int node = apicid_to_node[i];
851 if (node != NUMA_NO_NODE && node_online(node))
852 return node;
853 }
854 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
855 int node = apicid_to_node[i];
856 if (node != NUMA_NO_NODE && node_online(node))
857 return node;
858 }
859 return first_node(node_online_map); /* Shouldn't happen */
860 }
861 #endif
862
863 /*
864 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
865 * Assumes number of cores is a power of two.
866 */
867 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
868 {
869 #ifdef CONFIG_SMP
870 int cpu = smp_processor_id();
871 unsigned bits;
872 #ifdef CONFIG_NUMA
873 int node = 0;
874 unsigned apicid = hard_smp_processor_id();
875 #endif
876
877 bits = 0;
878 while ((1 << bits) < c->x86_max_cores)
879 bits++;
880
881 /* Low order bits define the core id (index of core in socket) */
882 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
883 /* Convert the APIC ID into the socket ID */
884 phys_proc_id[cpu] = phys_pkg_id(bits);
885
886 #ifdef CONFIG_NUMA
887 node = phys_proc_id[cpu];
888 if (apicid_to_node[apicid] != NUMA_NO_NODE)
889 node = apicid_to_node[apicid];
890 if (!node_online(node)) {
891 /* Two possibilities here:
892 - The CPU is missing memory and no node was created.
893 In that case try picking one from a nearby CPU
894 - The APIC IDs differ from the HyperTransport node IDs
895 which the K8 northbridge parsing fills in.
896 Assume they are all increased by a constant offset,
897 but in the same order as the HT nodeids.
898 If that doesn't result in a usable node fall back to the
899 path for the previous case. */
900 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
901 if (ht_nodeid >= 0 &&
902 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
903 node = apicid_to_node[ht_nodeid];
904 /* Pick a nearby node */
905 if (!node_online(node))
906 node = nearby_node(apicid);
907 }
908 numa_set_node(cpu, node);
909
910 printk(KERN_INFO "CPU %d/%x(%d) -> Node %d -> Core %d\n",
911 cpu, apicid, c->x86_max_cores, node, cpu_core_id[cpu]);
912 #endif
913 #endif
914 }
915
916 static int __init init_amd(struct cpuinfo_x86 *c)
917 {
918 int r;
919 unsigned level;
920
921 #ifdef CONFIG_SMP
922 unsigned long value;
923
924 /*
925 * Disable TLB flush filter by setting HWCR.FFDIS on K8
926 * bit 6 of msr C001_0015
927 *
928 * Errata 63 for SH-B3 steppings
929 * Errata 122 for all steppings (F+ have it disabled by default)
930 */
931 if (c->x86 == 15) {
932 rdmsrl(MSR_K8_HWCR, value);
933 value |= 1 << 6;
934 wrmsrl(MSR_K8_HWCR, value);
935 }
936 #endif
937
938 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
939 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
940 clear_bit(0*32+31, &c->x86_capability);
941
942 /* On C+ stepping K8 rep microcode works well for copy/memset */
943 level = cpuid_eax(1);
944 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
945 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
946
947 /* Enable workaround for FXSAVE leak */
948 if (c->x86 >= 6)
949 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
950
951 r = get_model_name(c);
952 if (!r) {
953 switch (c->x86) {
954 case 15:
955 /* Should distinguish Models here, but this is only
956 a fallback anyways. */
957 strcpy(c->x86_model_id, "Hammer");
958 break;
959 }
960 }
961 display_cacheinfo(c);
962
963 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
964 if (c->x86_power & (1<<8))
965 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
966
967 if (c->extended_cpuid_level >= 0x80000008) {
968 c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
969
970 amd_detect_cmp(c);
971 }
972
973 return r;
974 }
975
976 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
977 {
978 #ifdef CONFIG_SMP
979 u32 eax, ebx, ecx, edx;
980 int index_msb, core_bits;
981 int cpu = smp_processor_id();
982
983 cpuid(1, &eax, &ebx, &ecx, &edx);
984
985
986 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
987 return;
988
989 smp_num_siblings = (ebx & 0xff0000) >> 16;
990
991 if (smp_num_siblings == 1) {
992 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
993 } else if (smp_num_siblings > 1 ) {
994
995 if (smp_num_siblings > NR_CPUS) {
996 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
997 smp_num_siblings = 1;
998 return;
999 }
1000
1001 index_msb = get_count_order(smp_num_siblings);
1002 phys_proc_id[cpu] = phys_pkg_id(index_msb);
1003
1004 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
1005 phys_proc_id[cpu]);
1006
1007 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
1008
1009 index_msb = get_count_order(smp_num_siblings) ;
1010
1011 core_bits = get_count_order(c->x86_max_cores);
1012
1013 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
1014 ((1 << core_bits) - 1);
1015
1016 if (c->x86_max_cores > 1)
1017 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
1018 cpu_core_id[cpu]);
1019 }
1020 #endif
1021 }
1022
1023 /*
1024 * find out the number of processor cores on the die
1025 */
1026 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
1027 {
1028 unsigned int eax;
1029
1030 if (c->cpuid_level < 4)
1031 return 1;
1032
1033 __asm__("cpuid"
1034 : "=a" (eax)
1035 : "0" (4), "c" (0)
1036 : "bx", "dx");
1037
1038 if (eax & 0x1f)
1039 return ((eax >> 26) + 1);
1040 else
1041 return 1;
1042 }
1043
1044 static void srat_detect_node(void)
1045 {
1046 #ifdef CONFIG_NUMA
1047 unsigned node;
1048 int cpu = smp_processor_id();
1049
1050 /* Don't do the funky fallback heuristics the AMD version employs
1051 for now. */
1052 node = apicid_to_node[hard_smp_processor_id()];
1053 if (node == NUMA_NO_NODE)
1054 node = first_node(node_online_map);
1055 numa_set_node(cpu, node);
1056
1057 if (acpi_numa > 0)
1058 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1059 #endif
1060 }
1061
1062 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1063 {
1064 /* Cache sizes */
1065 unsigned n;
1066
1067 init_intel_cacheinfo(c);
1068 n = c->extended_cpuid_level;
1069 if (n >= 0x80000008) {
1070 unsigned eax = cpuid_eax(0x80000008);
1071 c->x86_virt_bits = (eax >> 8) & 0xff;
1072 c->x86_phys_bits = eax & 0xff;
1073 /* CPUID workaround for Intel 0F34 CPU */
1074 if (c->x86_vendor == X86_VENDOR_INTEL &&
1075 c->x86 == 0xF && c->x86_model == 0x3 &&
1076 c->x86_mask == 0x4)
1077 c->x86_phys_bits = 36;
1078 }
1079
1080 if (c->x86 == 15)
1081 c->x86_cache_alignment = c->x86_clflush_size * 2;
1082 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1083 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1084 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1085 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1086 c->x86_max_cores = intel_num_cpu_cores(c);
1087
1088 srat_detect_node();
1089 }
1090
1091 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1092 {
1093 char *v = c->x86_vendor_id;
1094
1095 if (!strcmp(v, "AuthenticAMD"))
1096 c->x86_vendor = X86_VENDOR_AMD;
1097 else if (!strcmp(v, "GenuineIntel"))
1098 c->x86_vendor = X86_VENDOR_INTEL;
1099 else
1100 c->x86_vendor = X86_VENDOR_UNKNOWN;
1101 }
1102
1103 struct cpu_model_info {
1104 int vendor;
1105 int family;
1106 char *model_names[16];
1107 };
1108
1109 /* Do some early cpuid on the boot CPU to get some parameter that are
1110 needed before check_bugs. Everything advanced is in identify_cpu
1111 below. */
1112 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1113 {
1114 u32 tfms;
1115
1116 c->loops_per_jiffy = loops_per_jiffy;
1117 c->x86_cache_size = -1;
1118 c->x86_vendor = X86_VENDOR_UNKNOWN;
1119 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1120 c->x86_vendor_id[0] = '\0'; /* Unset */
1121 c->x86_model_id[0] = '\0'; /* Unset */
1122 c->x86_clflush_size = 64;
1123 c->x86_cache_alignment = c->x86_clflush_size;
1124 c->x86_max_cores = 1;
1125 c->extended_cpuid_level = 0;
1126 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1127
1128 /* Get vendor name */
1129 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1130 (unsigned int *)&c->x86_vendor_id[0],
1131 (unsigned int *)&c->x86_vendor_id[8],
1132 (unsigned int *)&c->x86_vendor_id[4]);
1133
1134 get_cpu_vendor(c);
1135
1136 /* Initialize the standard set of capabilities */
1137 /* Note that the vendor-specific code below might override */
1138
1139 /* Intel-defined flags: level 0x00000001 */
1140 if (c->cpuid_level >= 0x00000001) {
1141 __u32 misc;
1142 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1143 &c->x86_capability[0]);
1144 c->x86 = (tfms >> 8) & 0xf;
1145 c->x86_model = (tfms >> 4) & 0xf;
1146 c->x86_mask = tfms & 0xf;
1147 if (c->x86 == 0xf)
1148 c->x86 += (tfms >> 20) & 0xff;
1149 if (c->x86 >= 0x6)
1150 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1151 if (c->x86_capability[0] & (1<<19))
1152 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1153 } else {
1154 /* Have CPUID level 0 only - unheard of */
1155 c->x86 = 4;
1156 }
1157
1158 #ifdef CONFIG_SMP
1159 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1160 #endif
1161 }
1162
1163 /*
1164 * This does the hard work of actually picking apart the CPU stuff...
1165 */
1166 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1167 {
1168 int i;
1169 u32 xlvl;
1170
1171 early_identify_cpu(c);
1172
1173 /* AMD-defined flags: level 0x80000001 */
1174 xlvl = cpuid_eax(0x80000000);
1175 c->extended_cpuid_level = xlvl;
1176 if ((xlvl & 0xffff0000) == 0x80000000) {
1177 if (xlvl >= 0x80000001) {
1178 c->x86_capability[1] = cpuid_edx(0x80000001);
1179 c->x86_capability[6] = cpuid_ecx(0x80000001);
1180 }
1181 if (xlvl >= 0x80000004)
1182 get_model_name(c); /* Default name */
1183 }
1184
1185 /* Transmeta-defined flags: level 0x80860001 */
1186 xlvl = cpuid_eax(0x80860000);
1187 if ((xlvl & 0xffff0000) == 0x80860000) {
1188 /* Don't set x86_cpuid_level here for now to not confuse. */
1189 if (xlvl >= 0x80860001)
1190 c->x86_capability[2] = cpuid_edx(0x80860001);
1191 }
1192
1193 c->apicid = phys_pkg_id(0);
1194
1195 /*
1196 * Vendor-specific initialization. In this section we
1197 * canonicalize the feature flags, meaning if there are
1198 * features a certain CPU supports which CPUID doesn't
1199 * tell us, CPUID claiming incorrect flags, or other bugs,
1200 * we handle them here.
1201 *
1202 * At the end of this section, c->x86_capability better
1203 * indicate the features this CPU genuinely supports!
1204 */
1205 switch (c->x86_vendor) {
1206 case X86_VENDOR_AMD:
1207 init_amd(c);
1208 break;
1209
1210 case X86_VENDOR_INTEL:
1211 init_intel(c);
1212 break;
1213
1214 case X86_VENDOR_UNKNOWN:
1215 default:
1216 display_cacheinfo(c);
1217 break;
1218 }
1219
1220 select_idle_routine(c);
1221 detect_ht(c);
1222
1223 /*
1224 * On SMP, boot_cpu_data holds the common feature set between
1225 * all CPUs; so make sure that we indicate which features are
1226 * common between the CPUs. The first time this routine gets
1227 * executed, c == &boot_cpu_data.
1228 */
1229 if (c != &boot_cpu_data) {
1230 /* AND the already accumulated flags with these */
1231 for (i = 0 ; i < NCAPINTS ; i++)
1232 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1233 }
1234
1235 #ifdef CONFIG_X86_MCE
1236 mcheck_init(c);
1237 #endif
1238 if (c == &boot_cpu_data)
1239 mtrr_bp_init();
1240 else
1241 mtrr_ap_init();
1242 #ifdef CONFIG_NUMA
1243 numa_add_cpu(smp_processor_id());
1244 #endif
1245 }
1246
1247
1248 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1249 {
1250 if (c->x86_model_id[0])
1251 printk("%s", c->x86_model_id);
1252
1253 if (c->x86_mask || c->cpuid_level >= 0)
1254 printk(" stepping %02x\n", c->x86_mask);
1255 else
1256 printk("\n");
1257 }
1258
1259 /*
1260 * Get CPU information for use by the procfs.
1261 */
1262
1263 static int show_cpuinfo(struct seq_file *m, void *v)
1264 {
1265 struct cpuinfo_x86 *c = v;
1266
1267 /*
1268 * These flag bits must match the definitions in <asm/cpufeature.h>.
1269 * NULL means this bit is undefined or reserved; either way it doesn't
1270 * have meaning as far as Linux is concerned. Note that it's important
1271 * to realize there is a difference between this table and CPUID -- if
1272 * applications want to get the raw CPUID data, they should access
1273 * /dev/cpu/<cpu_nr>/cpuid instead.
1274 */
1275 static char *x86_cap_flags[] = {
1276 /* Intel-defined */
1277 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1278 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1279 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1280 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1281
1282 /* AMD-defined */
1283 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1284 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1285 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1286 NULL, "fxsr_opt", "rdtscp", NULL, NULL, "lm", "3dnowext", "3dnow",
1287
1288 /* Transmeta-defined */
1289 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1290 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1292 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1293
1294 /* Other (Linux-defined) */
1295 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1296 "constant_tsc", NULL, NULL,
1297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1299 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1300
1301 /* Intel-defined (#2) */
1302 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1303 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1304 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1305 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1306
1307 /* VIA/Cyrix/Centaur-defined */
1308 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1309 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1310 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1311 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1312
1313 /* AMD-defined (#2) */
1314 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1316 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1318 };
1319 static char *x86_power_flags[] = {
1320 "ts", /* temperature sensor */
1321 "fid", /* frequency id control */
1322 "vid", /* voltage id control */
1323 "ttp", /* thermal trip */
1324 "tm",
1325 "stc",
1326 NULL,
1327 /* nothing */ /* constant_tsc - moved to flags */
1328 };
1329
1330
1331 #ifdef CONFIG_SMP
1332 if (!cpu_online(c-cpu_data))
1333 return 0;
1334 #endif
1335
1336 seq_printf(m,"processor\t: %u\n"
1337 "vendor_id\t: %s\n"
1338 "cpu family\t: %d\n"
1339 "model\t\t: %d\n"
1340 "model name\t: %s\n",
1341 (unsigned)(c-cpu_data),
1342 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1343 c->x86,
1344 (int)c->x86_model,
1345 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1346
1347 if (c->x86_mask || c->cpuid_level >= 0)
1348 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1349 else
1350 seq_printf(m, "stepping\t: unknown\n");
1351
1352 if (cpu_has(c,X86_FEATURE_TSC)) {
1353 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1354 if (!freq)
1355 freq = cpu_khz;
1356 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1357 freq / 1000, (freq % 1000));
1358 }
1359
1360 /* Cache size */
1361 if (c->x86_cache_size >= 0)
1362 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1363
1364 #ifdef CONFIG_SMP
1365 if (smp_num_siblings * c->x86_max_cores > 1) {
1366 int cpu = c - cpu_data;
1367 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1368 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1369 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1370 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1371 }
1372 #endif
1373
1374 seq_printf(m,
1375 "fpu\t\t: yes\n"
1376 "fpu_exception\t: yes\n"
1377 "cpuid level\t: %d\n"
1378 "wp\t\t: yes\n"
1379 "flags\t\t:",
1380 c->cpuid_level);
1381
1382 {
1383 int i;
1384 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1385 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1386 seq_printf(m, " %s", x86_cap_flags[i]);
1387 }
1388
1389 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1390 c->loops_per_jiffy/(500000/HZ),
1391 (c->loops_per_jiffy/(5000/HZ)) % 100);
1392
1393 if (c->x86_tlbsize > 0)
1394 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1395 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1396 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1397
1398 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1399 c->x86_phys_bits, c->x86_virt_bits);
1400
1401 seq_printf(m, "power management:");
1402 {
1403 unsigned i;
1404 for (i = 0; i < 32; i++)
1405 if (c->x86_power & (1 << i)) {
1406 if (i < ARRAY_SIZE(x86_power_flags) &&
1407 x86_power_flags[i])
1408 seq_printf(m, "%s%s",
1409 x86_power_flags[i][0]?" ":"",
1410 x86_power_flags[i]);
1411 else
1412 seq_printf(m, " [%d]", i);
1413 }
1414 }
1415
1416 seq_printf(m, "\n\n");
1417
1418 return 0;
1419 }
1420
1421 static void *c_start(struct seq_file *m, loff_t *pos)
1422 {
1423 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1424 }
1425
1426 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1427 {
1428 ++*pos;
1429 return c_start(m, pos);
1430 }
1431
1432 static void c_stop(struct seq_file *m, void *v)
1433 {
1434 }
1435
1436 struct seq_operations cpuinfo_op = {
1437 .start =c_start,
1438 .next = c_next,
1439 .stop = c_stop,
1440 .show = show_cpuinfo,
1441 };
1442
1443 #ifdef CONFIG_INPUT_PCSPKR
1444 #include <linux/platform_device.h>
1445 static __init int add_pcspkr(void)
1446 {
1447 struct platform_device *pd;
1448 int ret;
1449
1450 pd = platform_device_alloc("pcspkr", -1);
1451 if (!pd)
1452 return -ENOMEM;
1453
1454 ret = platform_device_add(pd);
1455 if (ret)
1456 platform_device_put(pd);
1457
1458 return ret;
1459 }
1460 device_initcall(add_pcspkr);
1461 #endif