]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86_64/kernel/setup.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 *
9 * $Id$
10 */
11
12 /*
13 * This file handles the architecture-dependent parts of initialization
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
47 #include <linux/dmi.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/ctype.h>
50
51 #include <asm/mtrr.h>
52 #include <asm/uaccess.h>
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/msr.h>
57 #include <asm/desc.h>
58 #include <video/edid.h>
59 #include <asm/e820.h>
60 #include <asm/dma.h>
61 #include <asm/mpspec.h>
62 #include <asm/mmu_context.h>
63 #include <asm/bootsetup.h>
64 #include <asm/proto.h>
65 #include <asm/setup.h>
66 #include <asm/mach_apic.h>
67 #include <asm/numa.h>
68 #include <asm/swiotlb.h>
69 #include <asm/sections.h>
70 #include <asm/gart-mapping.h>
71 #include <asm/dmi.h>
72
73 /*
74 * Machine setup..
75 */
76
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
78
79 unsigned long mmu_cr4_features;
80
81 int acpi_disabled;
82 EXPORT_SYMBOL(acpi_disabled);
83 #ifdef CONFIG_ACPI
84 extern int __initdata acpi_ht;
85 extern acpi_interrupt_flags acpi_sci_flags;
86 int __initdata acpi_force = 0;
87 #endif
88
89 int acpi_numa __initdata;
90
91 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
92 int bootloader_type;
93
94 unsigned long saved_video_mode;
95
96 /*
97 * Early DMI memory
98 */
99 int dmi_alloc_index;
100 char dmi_alloc_data[DMI_MAX_DATA];
101
102 /*
103 * Setup options
104 */
105 struct screen_info screen_info;
106 struct sys_desc_table_struct {
107 unsigned short length;
108 unsigned char table[0];
109 };
110
111 struct edid_info edid_info;
112 struct e820map e820;
113
114 extern int root_mountflags;
115
116 char command_line[COMMAND_LINE_SIZE];
117
118 struct resource standard_io_resources[] = {
119 { .name = "dma1", .start = 0x00, .end = 0x1f,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "pic1", .start = 0x20, .end = 0x21,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer0", .start = 0x40, .end = 0x43,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "timer1", .start = 0x50, .end = 0x53,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "keyboard", .start = 0x60, .end = 0x6f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "pic2", .start = 0xa0, .end = 0xa1,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "dma2", .start = 0xc0, .end = 0xdf,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
135 { .name = "fpu", .start = 0xf0, .end = 0xff,
136 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
137 };
138
139 #define STANDARD_IO_RESOURCES \
140 (sizeof standard_io_resources / sizeof standard_io_resources[0])
141
142 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
143
144 struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
149 };
150 struct resource code_resource = {
151 .name = "Kernel code",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
155 };
156
157 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
158
159 static struct resource system_rom_resource = {
160 .name = "System ROM",
161 .start = 0xf0000,
162 .end = 0xfffff,
163 .flags = IORESOURCE_ROM,
164 };
165
166 static struct resource extension_rom_resource = {
167 .name = "Extension ROM",
168 .start = 0xe0000,
169 .end = 0xeffff,
170 .flags = IORESOURCE_ROM,
171 };
172
173 static struct resource adapter_rom_resources[] = {
174 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM },
184 { .name = "Adapter ROM", .start = 0, .end = 0,
185 .flags = IORESOURCE_ROM }
186 };
187
188 #define ADAPTER_ROM_RESOURCES \
189 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
190
191 static struct resource video_rom_resource = {
192 .name = "Video ROM",
193 .start = 0xc0000,
194 .end = 0xc7fff,
195 .flags = IORESOURCE_ROM,
196 };
197
198 static struct resource video_ram_resource = {
199 .name = "Video RAM area",
200 .start = 0xa0000,
201 .end = 0xbffff,
202 .flags = IORESOURCE_RAM,
203 };
204
205 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
206
207 static int __init romchecksum(unsigned char *rom, unsigned long length)
208 {
209 unsigned char *p, sum = 0;
210
211 for (p = rom; p < rom + length; p++)
212 sum += *p;
213 return sum == 0;
214 }
215
216 static void __init probe_roms(void)
217 {
218 unsigned long start, length, upper;
219 unsigned char *rom;
220 int i;
221
222 /* video rom */
223 upper = adapter_rom_resources[0].start;
224 for (start = video_rom_resource.start; start < upper; start += 2048) {
225 rom = isa_bus_to_virt(start);
226 if (!romsignature(rom))
227 continue;
228
229 video_rom_resource.start = start;
230
231 /* 0 < length <= 0x7f * 512, historically */
232 length = rom[2] * 512;
233
234 /* if checksum okay, trust length byte */
235 if (length && romchecksum(rom, length))
236 video_rom_resource.end = start + length - 1;
237
238 request_resource(&iomem_resource, &video_rom_resource);
239 break;
240 }
241
242 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
243 if (start < upper)
244 start = upper;
245
246 /* system rom */
247 request_resource(&iomem_resource, &system_rom_resource);
248 upper = system_rom_resource.start;
249
250 /* check for extension rom (ignore length byte!) */
251 rom = isa_bus_to_virt(extension_rom_resource.start);
252 if (romsignature(rom)) {
253 length = extension_rom_resource.end - extension_rom_resource.start + 1;
254 if (romchecksum(rom, length)) {
255 request_resource(&iomem_resource, &extension_rom_resource);
256 upper = extension_rom_resource.start;
257 }
258 }
259
260 /* check for adapter roms on 2k boundaries */
261 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
262 rom = isa_bus_to_virt(start);
263 if (!romsignature(rom))
264 continue;
265
266 /* 0 < length <= 0x7f * 512, historically */
267 length = rom[2] * 512;
268
269 /* but accept any length that fits if checksum okay */
270 if (!length || start + length > upper || !romchecksum(rom, length))
271 continue;
272
273 adapter_rom_resources[i].start = start;
274 adapter_rom_resources[i].end = start + length - 1;
275 request_resource(&iomem_resource, &adapter_rom_resources[i]);
276
277 start = adapter_rom_resources[i++].end & ~2047UL;
278 }
279 }
280
281 /* Check for full argument with no trailing characters */
282 static int fullarg(char *p, char *arg)
283 {
284 int l = strlen(arg);
285 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
286 }
287
288 static __init void parse_cmdline_early (char ** cmdline_p)
289 {
290 char c = ' ', *to = command_line, *from = COMMAND_LINE;
291 int len = 0;
292 int userdef = 0;
293
294 for (;;) {
295 if (c != ' ')
296 goto next_char;
297
298 #ifdef CONFIG_SMP
299 /*
300 * If the BIOS enumerates physical processors before logical,
301 * maxcpus=N at enumeration-time can be used to disable HT.
302 */
303 else if (!memcmp(from, "maxcpus=", 8)) {
304 extern unsigned int maxcpus;
305
306 maxcpus = simple_strtoul(from + 8, NULL, 0);
307 }
308 #endif
309 #ifdef CONFIG_ACPI
310 /* "acpi=off" disables both ACPI table parsing and interpreter init */
311 if (fullarg(from,"acpi=off"))
312 disable_acpi();
313
314 if (fullarg(from, "acpi=force")) {
315 /* add later when we do DMI horrors: */
316 acpi_force = 1;
317 acpi_disabled = 0;
318 }
319
320 /* acpi=ht just means: do ACPI MADT parsing
321 at bootup, but don't enable the full ACPI interpreter */
322 if (fullarg(from, "acpi=ht")) {
323 if (!acpi_force)
324 disable_acpi();
325 acpi_ht = 1;
326 }
327 else if (fullarg(from, "pci=noacpi"))
328 acpi_disable_pci();
329 else if (fullarg(from, "acpi=noirq"))
330 acpi_noirq_set();
331
332 else if (fullarg(from, "acpi_sci=edge"))
333 acpi_sci_flags.trigger = 1;
334 else if (fullarg(from, "acpi_sci=level"))
335 acpi_sci_flags.trigger = 3;
336 else if (fullarg(from, "acpi_sci=high"))
337 acpi_sci_flags.polarity = 1;
338 else if (fullarg(from, "acpi_sci=low"))
339 acpi_sci_flags.polarity = 3;
340
341 /* acpi=strict disables out-of-spec workarounds */
342 else if (fullarg(from, "acpi=strict")) {
343 acpi_strict = 1;
344 }
345 #ifdef CONFIG_X86_IO_APIC
346 else if (fullarg(from, "acpi_skip_timer_override"))
347 acpi_skip_timer_override = 1;
348 #endif
349 #endif
350
351 if (fullarg(from, "disable_timer_pin_1"))
352 disable_timer_pin_1 = 1;
353 if (fullarg(from, "enable_timer_pin_1"))
354 disable_timer_pin_1 = -1;
355
356 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
357 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
358 disable_apic = 1;
359 }
360
361 if (fullarg(from, "noapic"))
362 skip_ioapic_setup = 1;
363
364 if (fullarg(from,"apic")) {
365 skip_ioapic_setup = 0;
366 ioapic_force = 1;
367 }
368
369 if (!memcmp(from, "mem=", 4))
370 parse_memopt(from+4, &from);
371
372 if (!memcmp(from, "memmap=", 7)) {
373 /* exactmap option is for used defined memory */
374 if (!memcmp(from+7, "exactmap", 8)) {
375 #ifdef CONFIG_CRASH_DUMP
376 /* If we are doing a crash dump, we
377 * still need to know the real mem
378 * size before original memory map is
379 * reset.
380 */
381 saved_max_pfn = e820_end_of_ram();
382 #endif
383 from += 8+7;
384 end_pfn_map = 0;
385 e820.nr_map = 0;
386 userdef = 1;
387 }
388 else {
389 parse_memmapopt(from+7, &from);
390 userdef = 1;
391 }
392 }
393
394 #ifdef CONFIG_NUMA
395 if (!memcmp(from, "numa=", 5))
396 numa_setup(from+5);
397 #endif
398
399 if (!memcmp(from,"iommu=",6)) {
400 iommu_setup(from+6);
401 }
402
403 if (fullarg(from,"oops=panic"))
404 panic_on_oops = 1;
405
406 if (!memcmp(from, "noexec=", 7))
407 nonx_setup(from + 7);
408
409 #ifdef CONFIG_KEXEC
410 /* crashkernel=size@addr specifies the location to reserve for
411 * a crash kernel. By reserving this memory we guarantee
412 * that linux never set's it up as a DMA target.
413 * Useful for holding code to do something appropriate
414 * after a kernel panic.
415 */
416 else if (!memcmp(from, "crashkernel=", 12)) {
417 unsigned long size, base;
418 size = memparse(from+12, &from);
419 if (*from == '@') {
420 base = memparse(from+1, &from);
421 /* FIXME: Do I want a sanity check
422 * to validate the memory range?
423 */
424 crashk_res.start = base;
425 crashk_res.end = base + size - 1;
426 }
427 }
428 #endif
429
430 #ifdef CONFIG_PROC_VMCORE
431 /* elfcorehdr= specifies the location of elf core header
432 * stored by the crashed kernel. This option will be passed
433 * by kexec loader to the capture kernel.
434 */
435 else if(!memcmp(from, "elfcorehdr=", 11))
436 elfcorehdr_addr = memparse(from+11, &from);
437 #endif
438
439 #ifdef CONFIG_HOTPLUG_CPU
440 else if (!memcmp(from, "additional_cpus=", 16))
441 setup_additional_cpus(from+16);
442 #endif
443
444 next_char:
445 c = *(from++);
446 if (!c)
447 break;
448 if (COMMAND_LINE_SIZE <= ++len)
449 break;
450 *(to++) = c;
451 }
452 if (userdef) {
453 printk(KERN_INFO "user-defined physical RAM map:\n");
454 e820_print_map("user");
455 }
456 *to = '\0';
457 *cmdline_p = command_line;
458 }
459
460 #ifndef CONFIG_NUMA
461 static void __init
462 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
463 {
464 unsigned long bootmap_size, bootmap;
465
466 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
467 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
468 if (bootmap == -1L)
469 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
470 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
471 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
472 reserve_bootmem(bootmap, bootmap_size);
473 }
474 #endif
475
476 /* Use inline assembly to define this because the nops are defined
477 as inline assembly strings in the include files and we cannot
478 get them easily into strings. */
479 asm("\t.data\nk8nops: "
480 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
481 K8_NOP7 K8_NOP8);
482
483 extern unsigned char k8nops[];
484 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
485 NULL,
486 k8nops,
487 k8nops + 1,
488 k8nops + 1 + 2,
489 k8nops + 1 + 2 + 3,
490 k8nops + 1 + 2 + 3 + 4,
491 k8nops + 1 + 2 + 3 + 4 + 5,
492 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
493 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
494 };
495
496 extern char __vsyscall_0;
497
498 /* Replace instructions with better alternatives for this CPU type.
499
500 This runs before SMP is initialized to avoid SMP problems with
501 self modifying code. This implies that assymetric systems where
502 APs have less capabilities than the boot processor are not handled.
503 In this case boot with "noreplacement". */
504 void apply_alternatives(void *start, void *end)
505 {
506 struct alt_instr *a;
507 int diff, i, k;
508 for (a = start; (void *)a < end; a++) {
509 u8 *instr;
510
511 if (!boot_cpu_has(a->cpuid))
512 continue;
513
514 BUG_ON(a->replacementlen > a->instrlen);
515 instr = a->instr;
516 /* vsyscall code is not mapped yet. resolve it manually. */
517 if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END)
518 instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
519 __inline_memcpy(instr, a->replacement, a->replacementlen);
520 diff = a->instrlen - a->replacementlen;
521
522 /* Pad the rest with nops */
523 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
524 k = diff;
525 if (k > ASM_NOP_MAX)
526 k = ASM_NOP_MAX;
527 __inline_memcpy(instr + i, k8_nops[k], k);
528 }
529 }
530 }
531
532 static int no_replacement __initdata = 0;
533
534 void __init alternative_instructions(void)
535 {
536 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
537 if (no_replacement)
538 return;
539 apply_alternatives(__alt_instructions, __alt_instructions_end);
540 }
541
542 static int __init noreplacement_setup(char *s)
543 {
544 no_replacement = 1;
545 return 1;
546 }
547
548 __setup("noreplacement", noreplacement_setup);
549
550 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
551 struct edd edd;
552 #ifdef CONFIG_EDD_MODULE
553 EXPORT_SYMBOL(edd);
554 #endif
555 /**
556 * copy_edd() - Copy the BIOS EDD information
557 * from boot_params into a safe place.
558 *
559 */
560 static inline void copy_edd(void)
561 {
562 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
563 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
564 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
565 edd.edd_info_nr = EDD_NR;
566 }
567 #else
568 static inline void copy_edd(void)
569 {
570 }
571 #endif
572
573 #define EBDA_ADDR_POINTER 0x40E
574 static void __init reserve_ebda_region(void)
575 {
576 unsigned int addr;
577 /**
578 * there is a real-mode segmented pointer pointing to the
579 * 4K EBDA area at 0x40E
580 */
581 addr = *(unsigned short *)phys_to_virt(EBDA_ADDR_POINTER);
582 addr <<= 4;
583 if (addr)
584 reserve_bootmem_generic(addr, PAGE_SIZE);
585 }
586
587 void __init setup_arch(char **cmdline_p)
588 {
589 unsigned long kernel_end;
590
591 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
592 screen_info = SCREEN_INFO;
593 edid_info = EDID_INFO;
594 saved_video_mode = SAVED_VIDEO_MODE;
595 bootloader_type = LOADER_TYPE;
596
597 #ifdef CONFIG_BLK_DEV_RAM
598 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
599 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
600 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
601 #endif
602 setup_memory_region();
603 copy_edd();
604
605 if (!MOUNT_ROOT_RDONLY)
606 root_mountflags &= ~MS_RDONLY;
607 init_mm.start_code = (unsigned long) &_text;
608 init_mm.end_code = (unsigned long) &_etext;
609 init_mm.end_data = (unsigned long) &_edata;
610 init_mm.brk = (unsigned long) &_end;
611
612 code_resource.start = virt_to_phys(&_text);
613 code_resource.end = virt_to_phys(&_etext)-1;
614 data_resource.start = virt_to_phys(&_etext);
615 data_resource.end = virt_to_phys(&_edata)-1;
616
617 parse_cmdline_early(cmdline_p);
618
619 early_identify_cpu(&boot_cpu_data);
620
621 /*
622 * partially used pages are not usable - thus
623 * we are rounding upwards:
624 */
625 end_pfn = e820_end_of_ram();
626 num_physpages = end_pfn; /* for pfn_valid */
627
628 check_efer();
629
630 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
631
632 dmi_scan_machine();
633
634 zap_low_mappings(0);
635
636 #ifdef CONFIG_ACPI
637 /*
638 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
639 * Call this early for SRAT node setup.
640 */
641 acpi_boot_table_init();
642 #endif
643
644 #ifdef CONFIG_ACPI_NUMA
645 /*
646 * Parse SRAT to discover nodes.
647 */
648 acpi_numa_init();
649 #endif
650
651 #ifdef CONFIG_NUMA
652 numa_initmem_init(0, end_pfn);
653 #else
654 contig_initmem_init(0, end_pfn);
655 #endif
656
657 /* Reserve direct mapping */
658 reserve_bootmem_generic(table_start << PAGE_SHIFT,
659 (table_end - table_start) << PAGE_SHIFT);
660
661 /* reserve kernel */
662 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
663 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
664
665 /*
666 * reserve physical page 0 - it's a special BIOS page on many boxes,
667 * enabling clean reboots, SMP operation, laptop functions.
668 */
669 reserve_bootmem_generic(0, PAGE_SIZE);
670
671 /* reserve ebda region */
672 reserve_ebda_region();
673
674 #ifdef CONFIG_SMP
675 /*
676 * But first pinch a few for the stack/trampoline stuff
677 * FIXME: Don't need the extra page at 4K, but need to fix
678 * trampoline before removing it. (see the GDT stuff)
679 */
680 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
681
682 /* Reserve SMP trampoline */
683 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
684 #endif
685
686 #ifdef CONFIG_ACPI_SLEEP
687 /*
688 * Reserve low memory region for sleep support.
689 */
690 acpi_reserve_bootmem();
691 #endif
692 #ifdef CONFIG_X86_LOCAL_APIC
693 /*
694 * Find and reserve possible boot-time SMP configuration:
695 */
696 find_smp_config();
697 #endif
698 #ifdef CONFIG_BLK_DEV_INITRD
699 if (LOADER_TYPE && INITRD_START) {
700 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
701 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
702 initrd_start =
703 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
704 initrd_end = initrd_start+INITRD_SIZE;
705 }
706 else {
707 printk(KERN_ERR "initrd extends beyond end of memory "
708 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
709 (unsigned long)(INITRD_START + INITRD_SIZE),
710 (unsigned long)(end_pfn << PAGE_SHIFT));
711 initrd_start = 0;
712 }
713 }
714 #endif
715 #ifdef CONFIG_KEXEC
716 if (crashk_res.start != crashk_res.end) {
717 reserve_bootmem(crashk_res.start,
718 crashk_res.end - crashk_res.start + 1);
719 }
720 #endif
721
722 paging_init();
723
724 check_ioapic();
725
726 /*
727 * set this early, so we dont allocate cpu0
728 * if MADT list doesnt list BSP first
729 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
730 */
731 cpu_set(0, cpu_present_map);
732 #ifdef CONFIG_ACPI
733 /*
734 * Read APIC and some other early information from ACPI tables.
735 */
736 acpi_boot_init();
737 #endif
738
739 init_cpu_to_node();
740
741 #ifdef CONFIG_X86_LOCAL_APIC
742 /*
743 * get boot-time SMP configuration:
744 */
745 if (smp_found_config)
746 get_smp_config();
747 init_apic_mappings();
748 #endif
749
750 /*
751 * Request address space for all standard RAM and ROM resources
752 * and also for regions reported as reserved by the e820.
753 */
754 probe_roms();
755 e820_reserve_resources();
756
757 request_resource(&iomem_resource, &video_ram_resource);
758
759 {
760 unsigned i;
761 /* request I/O space for devices used on all i[345]86 PCs */
762 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
763 request_resource(&ioport_resource, &standard_io_resources[i]);
764 }
765
766 e820_setup_gap();
767
768 #ifdef CONFIG_GART_IOMMU
769 iommu_hole_init();
770 #endif
771
772 #ifdef CONFIG_VT
773 #if defined(CONFIG_VGA_CONSOLE)
774 conswitchp = &vga_con;
775 #elif defined(CONFIG_DUMMY_CONSOLE)
776 conswitchp = &dummy_con;
777 #endif
778 #endif
779 }
780
781 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
782 {
783 unsigned int *v;
784
785 if (c->extended_cpuid_level < 0x80000004)
786 return 0;
787
788 v = (unsigned int *) c->x86_model_id;
789 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 c->x86_model_id[48] = 0;
793 return 1;
794 }
795
796
797 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
798 {
799 unsigned int n, dummy, eax, ebx, ecx, edx;
800
801 n = c->extended_cpuid_level;
802
803 if (n >= 0x80000005) {
804 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
805 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
806 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
807 c->x86_cache_size=(ecx>>24)+(edx>>24);
808 /* On K8 L1 TLB is inclusive, so don't count it */
809 c->x86_tlbsize = 0;
810 }
811
812 if (n >= 0x80000006) {
813 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
814 ecx = cpuid_ecx(0x80000006);
815 c->x86_cache_size = ecx >> 16;
816 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
817
818 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
819 c->x86_cache_size, ecx & 0xFF);
820 }
821
822 if (n >= 0x80000007)
823 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
824 if (n >= 0x80000008) {
825 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
826 c->x86_virt_bits = (eax >> 8) & 0xff;
827 c->x86_phys_bits = eax & 0xff;
828 }
829 }
830
831 #ifdef CONFIG_NUMA
832 static int nearby_node(int apicid)
833 {
834 int i;
835 for (i = apicid - 1; i >= 0; i--) {
836 int node = apicid_to_node[i];
837 if (node != NUMA_NO_NODE && node_online(node))
838 return node;
839 }
840 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
841 int node = apicid_to_node[i];
842 if (node != NUMA_NO_NODE && node_online(node))
843 return node;
844 }
845 return first_node(node_online_map); /* Shouldn't happen */
846 }
847 #endif
848
849 /*
850 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
851 * Assumes number of cores is a power of two.
852 */
853 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
854 {
855 #ifdef CONFIG_SMP
856 int cpu = smp_processor_id();
857 unsigned bits;
858 #ifdef CONFIG_NUMA
859 int node = 0;
860 unsigned apicid = hard_smp_processor_id();
861 #endif
862
863 bits = 0;
864 while ((1 << bits) < c->x86_max_cores)
865 bits++;
866
867 /* Low order bits define the core id (index of core in socket) */
868 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
869 /* Convert the APIC ID into the socket ID */
870 phys_proc_id[cpu] = phys_pkg_id(bits);
871
872 #ifdef CONFIG_NUMA
873 node = phys_proc_id[cpu];
874 if (apicid_to_node[apicid] != NUMA_NO_NODE)
875 node = apicid_to_node[apicid];
876 if (!node_online(node)) {
877 /* Two possibilities here:
878 - The CPU is missing memory and no node was created.
879 In that case try picking one from a nearby CPU
880 - The APIC IDs differ from the HyperTransport node IDs
881 which the K8 northbridge parsing fills in.
882 Assume they are all increased by a constant offset,
883 but in the same order as the HT nodeids.
884 If that doesn't result in a usable node fall back to the
885 path for the previous case. */
886 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
887 if (ht_nodeid >= 0 &&
888 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
889 node = apicid_to_node[ht_nodeid];
890 /* Pick a nearby node */
891 if (!node_online(node))
892 node = nearby_node(apicid);
893 }
894 numa_set_node(cpu, node);
895
896 printk(KERN_INFO "CPU %d/%x(%d) -> Node %d -> Core %d\n",
897 cpu, apicid, c->x86_max_cores, node, cpu_core_id[cpu]);
898 #endif
899 #endif
900 }
901
902 static int __init init_amd(struct cpuinfo_x86 *c)
903 {
904 int r;
905 unsigned level;
906
907 #ifdef CONFIG_SMP
908 unsigned long value;
909
910 /*
911 * Disable TLB flush filter by setting HWCR.FFDIS on K8
912 * bit 6 of msr C001_0015
913 *
914 * Errata 63 for SH-B3 steppings
915 * Errata 122 for all steppings (F+ have it disabled by default)
916 */
917 if (c->x86 == 15) {
918 rdmsrl(MSR_K8_HWCR, value);
919 value |= 1 << 6;
920 wrmsrl(MSR_K8_HWCR, value);
921 }
922 #endif
923
924 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
925 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
926 clear_bit(0*32+31, &c->x86_capability);
927
928 /* On C+ stepping K8 rep microcode works well for copy/memset */
929 level = cpuid_eax(1);
930 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
931 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
932
933 /* Enable workaround for FXSAVE leak */
934 if (c->x86 >= 6)
935 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
936
937 r = get_model_name(c);
938 if (!r) {
939 switch (c->x86) {
940 case 15:
941 /* Should distinguish Models here, but this is only
942 a fallback anyways. */
943 strcpy(c->x86_model_id, "Hammer");
944 break;
945 }
946 }
947 display_cacheinfo(c);
948
949 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
950 if (c->x86_power & (1<<8))
951 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
952
953 if (c->extended_cpuid_level >= 0x80000008) {
954 c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
955
956 amd_detect_cmp(c);
957 }
958
959 return r;
960 }
961
962 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
963 {
964 #ifdef CONFIG_SMP
965 u32 eax, ebx, ecx, edx;
966 int index_msb, core_bits;
967 int cpu = smp_processor_id();
968
969 cpuid(1, &eax, &ebx, &ecx, &edx);
970
971
972 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
973 return;
974
975 smp_num_siblings = (ebx & 0xff0000) >> 16;
976
977 if (smp_num_siblings == 1) {
978 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
979 } else if (smp_num_siblings > 1 ) {
980
981 if (smp_num_siblings > NR_CPUS) {
982 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
983 smp_num_siblings = 1;
984 return;
985 }
986
987 index_msb = get_count_order(smp_num_siblings);
988 phys_proc_id[cpu] = phys_pkg_id(index_msb);
989
990 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
991 phys_proc_id[cpu]);
992
993 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
994
995 index_msb = get_count_order(smp_num_siblings) ;
996
997 core_bits = get_count_order(c->x86_max_cores);
998
999 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
1000 ((1 << core_bits) - 1);
1001
1002 if (c->x86_max_cores > 1)
1003 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
1004 cpu_core_id[cpu]);
1005 }
1006 #endif
1007 }
1008
1009 /*
1010 * find out the number of processor cores on the die
1011 */
1012 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
1013 {
1014 unsigned int eax;
1015
1016 if (c->cpuid_level < 4)
1017 return 1;
1018
1019 __asm__("cpuid"
1020 : "=a" (eax)
1021 : "0" (4), "c" (0)
1022 : "bx", "dx");
1023
1024 if (eax & 0x1f)
1025 return ((eax >> 26) + 1);
1026 else
1027 return 1;
1028 }
1029
1030 static void srat_detect_node(void)
1031 {
1032 #ifdef CONFIG_NUMA
1033 unsigned node;
1034 int cpu = smp_processor_id();
1035
1036 /* Don't do the funky fallback heuristics the AMD version employs
1037 for now. */
1038 node = apicid_to_node[hard_smp_processor_id()];
1039 if (node == NUMA_NO_NODE)
1040 node = 0;
1041 numa_set_node(cpu, node);
1042
1043 if (acpi_numa > 0)
1044 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1045 #endif
1046 }
1047
1048 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1049 {
1050 /* Cache sizes */
1051 unsigned n;
1052
1053 init_intel_cacheinfo(c);
1054 n = c->extended_cpuid_level;
1055 if (n >= 0x80000008) {
1056 unsigned eax = cpuid_eax(0x80000008);
1057 c->x86_virt_bits = (eax >> 8) & 0xff;
1058 c->x86_phys_bits = eax & 0xff;
1059 /* CPUID workaround for Intel 0F34 CPU */
1060 if (c->x86_vendor == X86_VENDOR_INTEL &&
1061 c->x86 == 0xF && c->x86_model == 0x3 &&
1062 c->x86_mask == 0x4)
1063 c->x86_phys_bits = 36;
1064 }
1065
1066 if (c->x86 == 15)
1067 c->x86_cache_alignment = c->x86_clflush_size * 2;
1068 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1069 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1070 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1071 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1072 c->x86_max_cores = intel_num_cpu_cores(c);
1073
1074 srat_detect_node();
1075 }
1076
1077 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1078 {
1079 char *v = c->x86_vendor_id;
1080
1081 if (!strcmp(v, "AuthenticAMD"))
1082 c->x86_vendor = X86_VENDOR_AMD;
1083 else if (!strcmp(v, "GenuineIntel"))
1084 c->x86_vendor = X86_VENDOR_INTEL;
1085 else
1086 c->x86_vendor = X86_VENDOR_UNKNOWN;
1087 }
1088
1089 struct cpu_model_info {
1090 int vendor;
1091 int family;
1092 char *model_names[16];
1093 };
1094
1095 /* Do some early cpuid on the boot CPU to get some parameter that are
1096 needed before check_bugs. Everything advanced is in identify_cpu
1097 below. */
1098 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1099 {
1100 u32 tfms;
1101
1102 c->loops_per_jiffy = loops_per_jiffy;
1103 c->x86_cache_size = -1;
1104 c->x86_vendor = X86_VENDOR_UNKNOWN;
1105 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1106 c->x86_vendor_id[0] = '\0'; /* Unset */
1107 c->x86_model_id[0] = '\0'; /* Unset */
1108 c->x86_clflush_size = 64;
1109 c->x86_cache_alignment = c->x86_clflush_size;
1110 c->x86_max_cores = 1;
1111 c->extended_cpuid_level = 0;
1112 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1113
1114 /* Get vendor name */
1115 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1116 (unsigned int *)&c->x86_vendor_id[0],
1117 (unsigned int *)&c->x86_vendor_id[8],
1118 (unsigned int *)&c->x86_vendor_id[4]);
1119
1120 get_cpu_vendor(c);
1121
1122 /* Initialize the standard set of capabilities */
1123 /* Note that the vendor-specific code below might override */
1124
1125 /* Intel-defined flags: level 0x00000001 */
1126 if (c->cpuid_level >= 0x00000001) {
1127 __u32 misc;
1128 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1129 &c->x86_capability[0]);
1130 c->x86 = (tfms >> 8) & 0xf;
1131 c->x86_model = (tfms >> 4) & 0xf;
1132 c->x86_mask = tfms & 0xf;
1133 if (c->x86 == 0xf)
1134 c->x86 += (tfms >> 20) & 0xff;
1135 if (c->x86 >= 0x6)
1136 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1137 if (c->x86_capability[0] & (1<<19))
1138 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1139 } else {
1140 /* Have CPUID level 0 only - unheard of */
1141 c->x86 = 4;
1142 }
1143
1144 #ifdef CONFIG_SMP
1145 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1146 #endif
1147 }
1148
1149 /*
1150 * This does the hard work of actually picking apart the CPU stuff...
1151 */
1152 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1153 {
1154 int i;
1155 u32 xlvl;
1156
1157 early_identify_cpu(c);
1158
1159 /* AMD-defined flags: level 0x80000001 */
1160 xlvl = cpuid_eax(0x80000000);
1161 c->extended_cpuid_level = xlvl;
1162 if ((xlvl & 0xffff0000) == 0x80000000) {
1163 if (xlvl >= 0x80000001) {
1164 c->x86_capability[1] = cpuid_edx(0x80000001);
1165 c->x86_capability[6] = cpuid_ecx(0x80000001);
1166 }
1167 if (xlvl >= 0x80000004)
1168 get_model_name(c); /* Default name */
1169 }
1170
1171 /* Transmeta-defined flags: level 0x80860001 */
1172 xlvl = cpuid_eax(0x80860000);
1173 if ((xlvl & 0xffff0000) == 0x80860000) {
1174 /* Don't set x86_cpuid_level here for now to not confuse. */
1175 if (xlvl >= 0x80860001)
1176 c->x86_capability[2] = cpuid_edx(0x80860001);
1177 }
1178
1179 c->apicid = phys_pkg_id(0);
1180
1181 /*
1182 * Vendor-specific initialization. In this section we
1183 * canonicalize the feature flags, meaning if there are
1184 * features a certain CPU supports which CPUID doesn't
1185 * tell us, CPUID claiming incorrect flags, or other bugs,
1186 * we handle them here.
1187 *
1188 * At the end of this section, c->x86_capability better
1189 * indicate the features this CPU genuinely supports!
1190 */
1191 switch (c->x86_vendor) {
1192 case X86_VENDOR_AMD:
1193 init_amd(c);
1194 break;
1195
1196 case X86_VENDOR_INTEL:
1197 init_intel(c);
1198 break;
1199
1200 case X86_VENDOR_UNKNOWN:
1201 default:
1202 display_cacheinfo(c);
1203 break;
1204 }
1205
1206 select_idle_routine(c);
1207 detect_ht(c);
1208
1209 /*
1210 * On SMP, boot_cpu_data holds the common feature set between
1211 * all CPUs; so make sure that we indicate which features are
1212 * common between the CPUs. The first time this routine gets
1213 * executed, c == &boot_cpu_data.
1214 */
1215 if (c != &boot_cpu_data) {
1216 /* AND the already accumulated flags with these */
1217 for (i = 0 ; i < NCAPINTS ; i++)
1218 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1219 }
1220
1221 #ifdef CONFIG_X86_MCE
1222 mcheck_init(c);
1223 #endif
1224 if (c == &boot_cpu_data)
1225 mtrr_bp_init();
1226 else
1227 mtrr_ap_init();
1228 #ifdef CONFIG_NUMA
1229 numa_add_cpu(smp_processor_id());
1230 #endif
1231 }
1232
1233
1234 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1235 {
1236 if (c->x86_model_id[0])
1237 printk("%s", c->x86_model_id);
1238
1239 if (c->x86_mask || c->cpuid_level >= 0)
1240 printk(" stepping %02x\n", c->x86_mask);
1241 else
1242 printk("\n");
1243 }
1244
1245 /*
1246 * Get CPU information for use by the procfs.
1247 */
1248
1249 static int show_cpuinfo(struct seq_file *m, void *v)
1250 {
1251 struct cpuinfo_x86 *c = v;
1252
1253 /*
1254 * These flag bits must match the definitions in <asm/cpufeature.h>.
1255 * NULL means this bit is undefined or reserved; either way it doesn't
1256 * have meaning as far as Linux is concerned. Note that it's important
1257 * to realize there is a difference between this table and CPUID -- if
1258 * applications want to get the raw CPUID data, they should access
1259 * /dev/cpu/<cpu_nr>/cpuid instead.
1260 */
1261 static char *x86_cap_flags[] = {
1262 /* Intel-defined */
1263 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1264 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1265 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1266 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1267
1268 /* AMD-defined */
1269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1270 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1271 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1272 NULL, "fxsr_opt", "rdtscp", NULL, NULL, "lm", "3dnowext", "3dnow",
1273
1274 /* Transmeta-defined */
1275 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1276 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1278 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1279
1280 /* Other (Linux-defined) */
1281 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1282 "constant_tsc", NULL, NULL,
1283 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1284 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1285 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1286
1287 /* Intel-defined (#2) */
1288 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1289 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1290 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1292
1293 /* VIA/Cyrix/Centaur-defined */
1294 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1296 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1298
1299 /* AMD-defined (#2) */
1300 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1301 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1302 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1303 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1304 };
1305 static char *x86_power_flags[] = {
1306 "ts", /* temperature sensor */
1307 "fid", /* frequency id control */
1308 "vid", /* voltage id control */
1309 "ttp", /* thermal trip */
1310 "tm",
1311 "stc",
1312 NULL,
1313 /* nothing */ /* constant_tsc - moved to flags */
1314 };
1315
1316
1317 #ifdef CONFIG_SMP
1318 if (!cpu_online(c-cpu_data))
1319 return 0;
1320 #endif
1321
1322 seq_printf(m,"processor\t: %u\n"
1323 "vendor_id\t: %s\n"
1324 "cpu family\t: %d\n"
1325 "model\t\t: %d\n"
1326 "model name\t: %s\n",
1327 (unsigned)(c-cpu_data),
1328 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1329 c->x86,
1330 (int)c->x86_model,
1331 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1332
1333 if (c->x86_mask || c->cpuid_level >= 0)
1334 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1335 else
1336 seq_printf(m, "stepping\t: unknown\n");
1337
1338 if (cpu_has(c,X86_FEATURE_TSC)) {
1339 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1340 if (!freq)
1341 freq = cpu_khz;
1342 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1343 freq / 1000, (freq % 1000));
1344 }
1345
1346 /* Cache size */
1347 if (c->x86_cache_size >= 0)
1348 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1349
1350 #ifdef CONFIG_SMP
1351 if (smp_num_siblings * c->x86_max_cores > 1) {
1352 int cpu = c - cpu_data;
1353 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1354 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1355 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1356 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1357 }
1358 #endif
1359
1360 seq_printf(m,
1361 "fpu\t\t: yes\n"
1362 "fpu_exception\t: yes\n"
1363 "cpuid level\t: %d\n"
1364 "wp\t\t: yes\n"
1365 "flags\t\t:",
1366 c->cpuid_level);
1367
1368 {
1369 int i;
1370 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1371 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1372 seq_printf(m, " %s", x86_cap_flags[i]);
1373 }
1374
1375 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1376 c->loops_per_jiffy/(500000/HZ),
1377 (c->loops_per_jiffy/(5000/HZ)) % 100);
1378
1379 if (c->x86_tlbsize > 0)
1380 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1381 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1382 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1383
1384 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1385 c->x86_phys_bits, c->x86_virt_bits);
1386
1387 seq_printf(m, "power management:");
1388 {
1389 unsigned i;
1390 for (i = 0; i < 32; i++)
1391 if (c->x86_power & (1 << i)) {
1392 if (i < ARRAY_SIZE(x86_power_flags) &&
1393 x86_power_flags[i])
1394 seq_printf(m, "%s%s",
1395 x86_power_flags[i][0]?" ":"",
1396 x86_power_flags[i]);
1397 else
1398 seq_printf(m, " [%d]", i);
1399 }
1400 }
1401
1402 seq_printf(m, "\n\n");
1403
1404 return 0;
1405 }
1406
1407 static void *c_start(struct seq_file *m, loff_t *pos)
1408 {
1409 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1410 }
1411
1412 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1413 {
1414 ++*pos;
1415 return c_start(m, pos);
1416 }
1417
1418 static void c_stop(struct seq_file *m, void *v)
1419 {
1420 }
1421
1422 struct seq_operations cpuinfo_op = {
1423 .start =c_start,
1424 .next = c_next,
1425 .stop = c_stop,
1426 .show = show_cpuinfo,
1427 };
1428
1429 #ifdef CONFIG_INPUT_PCSPKR
1430 #include <linux/platform_device.h>
1431 static __init int add_pcspkr(void)
1432 {
1433 struct platform_device *pd;
1434 int ret;
1435
1436 pd = platform_device_alloc("pcspkr", -1);
1437 if (!pd)
1438 return -ENOMEM;
1439
1440 ret = platform_device_add(pd);
1441 if (ret)
1442 platform_device_put(pd);
1443
1444 return ret;
1445 }
1446 device_initcall(add_pcspkr);
1447 #endif