]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86_64/kernel/setup.c
Merge ../linus
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 *
9 * $Id$
10 */
11
12 /*
13 * This file handles the architecture-dependent parts of initialization
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/a.out.h>
26 #include <linux/tty.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <linux/config.h>
30 #include <linux/init.h>
31 #include <linux/initrd.h>
32 #include <linux/highmem.h>
33 #include <linux/bootmem.h>
34 #include <linux/module.h>
35 #include <asm/processor.h>
36 #include <linux/console.h>
37 #include <linux/seq_file.h>
38 #include <linux/crash_dump.h>
39 #include <linux/root_dev.h>
40 #include <linux/pci.h>
41 #include <linux/acpi.h>
42 #include <linux/kallsyms.h>
43 #include <linux/edd.h>
44 #include <linux/mmzone.h>
45 #include <linux/kexec.h>
46 #include <linux/cpufreq.h>
47 #include <linux/dmi.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/ctype.h>
50
51 #include <asm/mtrr.h>
52 #include <asm/uaccess.h>
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/msr.h>
57 #include <asm/desc.h>
58 #include <video/edid.h>
59 #include <asm/e820.h>
60 #include <asm/dma.h>
61 #include <asm/mpspec.h>
62 #include <asm/mmu_context.h>
63 #include <asm/bootsetup.h>
64 #include <asm/proto.h>
65 #include <asm/setup.h>
66 #include <asm/mach_apic.h>
67 #include <asm/numa.h>
68 #include <asm/swiotlb.h>
69 #include <asm/sections.h>
70 #include <asm/gart-mapping.h>
71 #include <asm/dmi.h>
72
73 /*
74 * Machine setup..
75 */
76
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
78
79 unsigned long mmu_cr4_features;
80
81 int acpi_disabled;
82 EXPORT_SYMBOL(acpi_disabled);
83 #ifdef CONFIG_ACPI
84 extern int __initdata acpi_ht;
85 extern acpi_interrupt_flags acpi_sci_flags;
86 int __initdata acpi_force = 0;
87 #endif
88
89 int acpi_numa __initdata;
90
91 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
92 int bootloader_type;
93
94 unsigned long saved_video_mode;
95
96 /*
97 * Early DMI memory
98 */
99 int dmi_alloc_index;
100 char dmi_alloc_data[DMI_MAX_DATA];
101
102 /*
103 * Setup options
104 */
105 struct screen_info screen_info;
106 struct sys_desc_table_struct {
107 unsigned short length;
108 unsigned char table[0];
109 };
110
111 struct edid_info edid_info;
112 struct e820map e820;
113
114 extern int root_mountflags;
115
116 char command_line[COMMAND_LINE_SIZE];
117
118 struct resource standard_io_resources[] = {
119 { .name = "dma1", .start = 0x00, .end = 0x1f,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "pic1", .start = 0x20, .end = 0x21,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer0", .start = 0x40, .end = 0x43,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "timer1", .start = 0x50, .end = 0x53,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "keyboard", .start = 0x60, .end = 0x6f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "pic2", .start = 0xa0, .end = 0xa1,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "dma2", .start = 0xc0, .end = 0xdf,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
135 { .name = "fpu", .start = 0xf0, .end = 0xff,
136 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
137 };
138
139 #define STANDARD_IO_RESOURCES \
140 (sizeof standard_io_resources / sizeof standard_io_resources[0])
141
142 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
143
144 struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
149 };
150 struct resource code_resource = {
151 .name = "Kernel code",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
155 };
156
157 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
158
159 static struct resource system_rom_resource = {
160 .name = "System ROM",
161 .start = 0xf0000,
162 .end = 0xfffff,
163 .flags = IORESOURCE_ROM,
164 };
165
166 static struct resource extension_rom_resource = {
167 .name = "Extension ROM",
168 .start = 0xe0000,
169 .end = 0xeffff,
170 .flags = IORESOURCE_ROM,
171 };
172
173 static struct resource adapter_rom_resources[] = {
174 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM },
184 { .name = "Adapter ROM", .start = 0, .end = 0,
185 .flags = IORESOURCE_ROM }
186 };
187
188 #define ADAPTER_ROM_RESOURCES \
189 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
190
191 static struct resource video_rom_resource = {
192 .name = "Video ROM",
193 .start = 0xc0000,
194 .end = 0xc7fff,
195 .flags = IORESOURCE_ROM,
196 };
197
198 static struct resource video_ram_resource = {
199 .name = "Video RAM area",
200 .start = 0xa0000,
201 .end = 0xbffff,
202 .flags = IORESOURCE_RAM,
203 };
204
205 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
206
207 static int __init romchecksum(unsigned char *rom, unsigned long length)
208 {
209 unsigned char *p, sum = 0;
210
211 for (p = rom; p < rom + length; p++)
212 sum += *p;
213 return sum == 0;
214 }
215
216 static void __init probe_roms(void)
217 {
218 unsigned long start, length, upper;
219 unsigned char *rom;
220 int i;
221
222 /* video rom */
223 upper = adapter_rom_resources[0].start;
224 for (start = video_rom_resource.start; start < upper; start += 2048) {
225 rom = isa_bus_to_virt(start);
226 if (!romsignature(rom))
227 continue;
228
229 video_rom_resource.start = start;
230
231 /* 0 < length <= 0x7f * 512, historically */
232 length = rom[2] * 512;
233
234 /* if checksum okay, trust length byte */
235 if (length && romchecksum(rom, length))
236 video_rom_resource.end = start + length - 1;
237
238 request_resource(&iomem_resource, &video_rom_resource);
239 break;
240 }
241
242 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
243 if (start < upper)
244 start = upper;
245
246 /* system rom */
247 request_resource(&iomem_resource, &system_rom_resource);
248 upper = system_rom_resource.start;
249
250 /* check for extension rom (ignore length byte!) */
251 rom = isa_bus_to_virt(extension_rom_resource.start);
252 if (romsignature(rom)) {
253 length = extension_rom_resource.end - extension_rom_resource.start + 1;
254 if (romchecksum(rom, length)) {
255 request_resource(&iomem_resource, &extension_rom_resource);
256 upper = extension_rom_resource.start;
257 }
258 }
259
260 /* check for adapter roms on 2k boundaries */
261 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
262 rom = isa_bus_to_virt(start);
263 if (!romsignature(rom))
264 continue;
265
266 /* 0 < length <= 0x7f * 512, historically */
267 length = rom[2] * 512;
268
269 /* but accept any length that fits if checksum okay */
270 if (!length || start + length > upper || !romchecksum(rom, length))
271 continue;
272
273 adapter_rom_resources[i].start = start;
274 adapter_rom_resources[i].end = start + length - 1;
275 request_resource(&iomem_resource, &adapter_rom_resources[i]);
276
277 start = adapter_rom_resources[i++].end & ~2047UL;
278 }
279 }
280
281 /* Check for full argument with no trailing characters */
282 static int fullarg(char *p, char *arg)
283 {
284 int l = strlen(arg);
285 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
286 }
287
288 static __init void parse_cmdline_early (char ** cmdline_p)
289 {
290 char c = ' ', *to = command_line, *from = COMMAND_LINE;
291 int len = 0;
292 int userdef = 0;
293
294 for (;;) {
295 if (c != ' ')
296 goto next_char;
297
298 #ifdef CONFIG_SMP
299 /*
300 * If the BIOS enumerates physical processors before logical,
301 * maxcpus=N at enumeration-time can be used to disable HT.
302 */
303 else if (!memcmp(from, "maxcpus=", 8)) {
304 extern unsigned int maxcpus;
305
306 maxcpus = simple_strtoul(from + 8, NULL, 0);
307 }
308 #endif
309 #ifdef CONFIG_ACPI
310 /* "acpi=off" disables both ACPI table parsing and interpreter init */
311 if (fullarg(from,"acpi=off"))
312 disable_acpi();
313
314 if (fullarg(from, "acpi=force")) {
315 /* add later when we do DMI horrors: */
316 acpi_force = 1;
317 acpi_disabled = 0;
318 }
319
320 /* acpi=ht just means: do ACPI MADT parsing
321 at bootup, but don't enable the full ACPI interpreter */
322 if (fullarg(from, "acpi=ht")) {
323 if (!acpi_force)
324 disable_acpi();
325 acpi_ht = 1;
326 }
327 else if (fullarg(from, "pci=noacpi"))
328 acpi_disable_pci();
329 else if (fullarg(from, "acpi=noirq"))
330 acpi_noirq_set();
331
332 else if (fullarg(from, "acpi_sci=edge"))
333 acpi_sci_flags.trigger = 1;
334 else if (fullarg(from, "acpi_sci=level"))
335 acpi_sci_flags.trigger = 3;
336 else if (fullarg(from, "acpi_sci=high"))
337 acpi_sci_flags.polarity = 1;
338 else if (fullarg(from, "acpi_sci=low"))
339 acpi_sci_flags.polarity = 3;
340
341 /* acpi=strict disables out-of-spec workarounds */
342 else if (fullarg(from, "acpi=strict")) {
343 acpi_strict = 1;
344 }
345 #ifdef CONFIG_X86_IO_APIC
346 else if (fullarg(from, "acpi_skip_timer_override"))
347 acpi_skip_timer_override = 1;
348 #endif
349 #endif
350
351 if (fullarg(from, "disable_timer_pin_1"))
352 disable_timer_pin_1 = 1;
353 if (fullarg(from, "enable_timer_pin_1"))
354 disable_timer_pin_1 = -1;
355
356 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
357 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
358 disable_apic = 1;
359 }
360
361 if (fullarg(from, "noapic"))
362 skip_ioapic_setup = 1;
363
364 if (fullarg(from,"apic")) {
365 skip_ioapic_setup = 0;
366 ioapic_force = 1;
367 }
368
369 if (!memcmp(from, "mem=", 4))
370 parse_memopt(from+4, &from);
371
372 if (!memcmp(from, "memmap=", 7)) {
373 /* exactmap option is for used defined memory */
374 if (!memcmp(from+7, "exactmap", 8)) {
375 #ifdef CONFIG_CRASH_DUMP
376 /* If we are doing a crash dump, we
377 * still need to know the real mem
378 * size before original memory map is
379 * reset.
380 */
381 saved_max_pfn = e820_end_of_ram();
382 #endif
383 from += 8+7;
384 end_pfn_map = 0;
385 e820.nr_map = 0;
386 userdef = 1;
387 }
388 else {
389 parse_memmapopt(from+7, &from);
390 userdef = 1;
391 }
392 }
393
394 #ifdef CONFIG_NUMA
395 if (!memcmp(from, "numa=", 5))
396 numa_setup(from+5);
397 #endif
398
399 if (!memcmp(from,"iommu=",6)) {
400 iommu_setup(from+6);
401 }
402
403 if (fullarg(from,"oops=panic"))
404 panic_on_oops = 1;
405
406 if (!memcmp(from, "noexec=", 7))
407 nonx_setup(from + 7);
408
409 #ifdef CONFIG_KEXEC
410 /* crashkernel=size@addr specifies the location to reserve for
411 * a crash kernel. By reserving this memory we guarantee
412 * that linux never set's it up as a DMA target.
413 * Useful for holding code to do something appropriate
414 * after a kernel panic.
415 */
416 else if (!memcmp(from, "crashkernel=", 12)) {
417 unsigned long size, base;
418 size = memparse(from+12, &from);
419 if (*from == '@') {
420 base = memparse(from+1, &from);
421 /* FIXME: Do I want a sanity check
422 * to validate the memory range?
423 */
424 crashk_res.start = base;
425 crashk_res.end = base + size - 1;
426 }
427 }
428 #endif
429
430 #ifdef CONFIG_PROC_VMCORE
431 /* elfcorehdr= specifies the location of elf core header
432 * stored by the crashed kernel. This option will be passed
433 * by kexec loader to the capture kernel.
434 */
435 else if(!memcmp(from, "elfcorehdr=", 11))
436 elfcorehdr_addr = memparse(from+11, &from);
437 #endif
438
439 #ifdef CONFIG_HOTPLUG_CPU
440 else if (!memcmp(from, "additional_cpus=", 16))
441 setup_additional_cpus(from+16);
442 #endif
443
444 next_char:
445 c = *(from++);
446 if (!c)
447 break;
448 if (COMMAND_LINE_SIZE <= ++len)
449 break;
450 *(to++) = c;
451 }
452 if (userdef) {
453 printk(KERN_INFO "user-defined physical RAM map:\n");
454 e820_print_map("user");
455 }
456 *to = '\0';
457 *cmdline_p = command_line;
458 }
459
460 #ifndef CONFIG_NUMA
461 static void __init
462 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
463 {
464 unsigned long bootmap_size, bootmap;
465
466 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
467 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
468 if (bootmap == -1L)
469 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
470 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
471 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
472 reserve_bootmem(bootmap, bootmap_size);
473 }
474 #endif
475
476 /* Use inline assembly to define this because the nops are defined
477 as inline assembly strings in the include files and we cannot
478 get them easily into strings. */
479 asm("\t.data\nk8nops: "
480 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
481 K8_NOP7 K8_NOP8);
482
483 extern unsigned char k8nops[];
484 static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
485 NULL,
486 k8nops,
487 k8nops + 1,
488 k8nops + 1 + 2,
489 k8nops + 1 + 2 + 3,
490 k8nops + 1 + 2 + 3 + 4,
491 k8nops + 1 + 2 + 3 + 4 + 5,
492 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
493 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
494 };
495
496 extern char __vsyscall_0;
497
498 /* Replace instructions with better alternatives for this CPU type.
499
500 This runs before SMP is initialized to avoid SMP problems with
501 self modifying code. This implies that assymetric systems where
502 APs have less capabilities than the boot processor are not handled.
503 In this case boot with "noreplacement". */
504 void apply_alternatives(void *start, void *end)
505 {
506 struct alt_instr *a;
507 int diff, i, k;
508 for (a = start; (void *)a < end; a++) {
509 u8 *instr;
510
511 if (!boot_cpu_has(a->cpuid))
512 continue;
513
514 BUG_ON(a->replacementlen > a->instrlen);
515 instr = a->instr;
516 /* vsyscall code is not mapped yet. resolve it manually. */
517 if (instr >= (u8 *)VSYSCALL_START && instr < (u8*)VSYSCALL_END)
518 instr = __va(instr - (u8*)VSYSCALL_START + (u8*)__pa_symbol(&__vsyscall_0));
519 __inline_memcpy(instr, a->replacement, a->replacementlen);
520 diff = a->instrlen - a->replacementlen;
521
522 /* Pad the rest with nops */
523 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
524 k = diff;
525 if (k > ASM_NOP_MAX)
526 k = ASM_NOP_MAX;
527 __inline_memcpy(instr + i, k8_nops[k], k);
528 }
529 }
530 }
531
532 static int no_replacement __initdata = 0;
533
534 void __init alternative_instructions(void)
535 {
536 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
537 if (no_replacement)
538 return;
539 apply_alternatives(__alt_instructions, __alt_instructions_end);
540 }
541
542 static int __init noreplacement_setup(char *s)
543 {
544 no_replacement = 1;
545 return 1;
546 }
547
548 __setup("noreplacement", noreplacement_setup);
549
550 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
551 struct edd edd;
552 #ifdef CONFIG_EDD_MODULE
553 EXPORT_SYMBOL(edd);
554 #endif
555 /**
556 * copy_edd() - Copy the BIOS EDD information
557 * from boot_params into a safe place.
558 *
559 */
560 static inline void copy_edd(void)
561 {
562 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
563 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
564 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
565 edd.edd_info_nr = EDD_NR;
566 }
567 #else
568 static inline void copy_edd(void)
569 {
570 }
571 #endif
572
573 #define EBDA_ADDR_POINTER 0x40E
574 static void __init reserve_ebda_region(void)
575 {
576 unsigned int addr;
577 /**
578 * there is a real-mode segmented pointer pointing to the
579 * 4K EBDA area at 0x40E
580 */
581 addr = *(unsigned short *)phys_to_virt(EBDA_ADDR_POINTER);
582 addr <<= 4;
583 if (addr)
584 reserve_bootmem_generic(addr, PAGE_SIZE);
585 }
586
587 void __init setup_arch(char **cmdline_p)
588 {
589 unsigned long kernel_end;
590
591 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
592 screen_info = SCREEN_INFO;
593 edid_info = EDID_INFO;
594 saved_video_mode = SAVED_VIDEO_MODE;
595 bootloader_type = LOADER_TYPE;
596
597 #ifdef CONFIG_BLK_DEV_RAM
598 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
599 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
600 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
601 #endif
602 setup_memory_region();
603 copy_edd();
604
605 if (!MOUNT_ROOT_RDONLY)
606 root_mountflags &= ~MS_RDONLY;
607 init_mm.start_code = (unsigned long) &_text;
608 init_mm.end_code = (unsigned long) &_etext;
609 init_mm.end_data = (unsigned long) &_edata;
610 init_mm.brk = (unsigned long) &_end;
611
612 code_resource.start = virt_to_phys(&_text);
613 code_resource.end = virt_to_phys(&_etext)-1;
614 data_resource.start = virt_to_phys(&_etext);
615 data_resource.end = virt_to_phys(&_edata)-1;
616
617 parse_cmdline_early(cmdline_p);
618
619 early_identify_cpu(&boot_cpu_data);
620
621 /*
622 * partially used pages are not usable - thus
623 * we are rounding upwards:
624 */
625 end_pfn = e820_end_of_ram();
626 num_physpages = end_pfn; /* for pfn_valid */
627
628 check_efer();
629
630 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
631
632 dmi_scan_machine();
633
634 zap_low_mappings(0);
635
636 #ifdef CONFIG_ACPI
637 /*
638 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
639 * Call this early for SRAT node setup.
640 */
641 acpi_boot_table_init();
642 #endif
643
644 #ifdef CONFIG_ACPI_NUMA
645 /*
646 * Parse SRAT to discover nodes.
647 */
648 acpi_numa_init();
649 #endif
650
651 #ifdef CONFIG_NUMA
652 numa_initmem_init(0, end_pfn);
653 #else
654 contig_initmem_init(0, end_pfn);
655 #endif
656
657 /* Reserve direct mapping */
658 reserve_bootmem_generic(table_start << PAGE_SHIFT,
659 (table_end - table_start) << PAGE_SHIFT);
660
661 /* reserve kernel */
662 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
663 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
664
665 /*
666 * reserve physical page 0 - it's a special BIOS page on many boxes,
667 * enabling clean reboots, SMP operation, laptop functions.
668 */
669 reserve_bootmem_generic(0, PAGE_SIZE);
670
671 /* reserve ebda region */
672 reserve_ebda_region();
673
674 #ifdef CONFIG_SMP
675 /*
676 * But first pinch a few for the stack/trampoline stuff
677 * FIXME: Don't need the extra page at 4K, but need to fix
678 * trampoline before removing it. (see the GDT stuff)
679 */
680 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
681
682 /* Reserve SMP trampoline */
683 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
684 #endif
685
686 #ifdef CONFIG_ACPI_SLEEP
687 /*
688 * Reserve low memory region for sleep support.
689 */
690 acpi_reserve_bootmem();
691 #endif
692 #ifdef CONFIG_X86_LOCAL_APIC
693 /*
694 * Find and reserve possible boot-time SMP configuration:
695 */
696 find_smp_config();
697 #endif
698 #ifdef CONFIG_BLK_DEV_INITRD
699 if (LOADER_TYPE && INITRD_START) {
700 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
701 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
702 initrd_start =
703 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
704 initrd_end = initrd_start+INITRD_SIZE;
705 }
706 else {
707 printk(KERN_ERR "initrd extends beyond end of memory "
708 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
709 (unsigned long)(INITRD_START + INITRD_SIZE),
710 (unsigned long)(end_pfn << PAGE_SHIFT));
711 initrd_start = 0;
712 }
713 }
714 #endif
715 #ifdef CONFIG_KEXEC
716 if (crashk_res.start != crashk_res.end) {
717 reserve_bootmem(crashk_res.start,
718 crashk_res.end - crashk_res.start + 1);
719 }
720 #endif
721
722 paging_init();
723
724 check_ioapic();
725
726 /*
727 * set this early, so we dont allocate cpu0
728 * if MADT list doesnt list BSP first
729 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
730 */
731 cpu_set(0, cpu_present_map);
732 #ifdef CONFIG_ACPI
733 /*
734 * Read APIC and some other early information from ACPI tables.
735 */
736 acpi_boot_init();
737 #endif
738
739 init_cpu_to_node();
740
741 #ifdef CONFIG_X86_LOCAL_APIC
742 /*
743 * get boot-time SMP configuration:
744 */
745 if (smp_found_config)
746 get_smp_config();
747 init_apic_mappings();
748 #endif
749
750 /*
751 * Request address space for all standard RAM and ROM resources
752 * and also for regions reported as reserved by the e820.
753 */
754 probe_roms();
755 e820_reserve_resources();
756
757 request_resource(&iomem_resource, &video_ram_resource);
758
759 {
760 unsigned i;
761 /* request I/O space for devices used on all i[345]86 PCs */
762 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
763 request_resource(&ioport_resource, &standard_io_resources[i]);
764 }
765
766 e820_setup_gap();
767
768 #ifdef CONFIG_GART_IOMMU
769 iommu_hole_init();
770 #endif
771
772 #ifdef CONFIG_VT
773 #if defined(CONFIG_VGA_CONSOLE)
774 conswitchp = &vga_con;
775 #elif defined(CONFIG_DUMMY_CONSOLE)
776 conswitchp = &dummy_con;
777 #endif
778 #endif
779 }
780
781 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
782 {
783 unsigned int *v;
784
785 if (c->extended_cpuid_level < 0x80000004)
786 return 0;
787
788 v = (unsigned int *) c->x86_model_id;
789 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 c->x86_model_id[48] = 0;
793 return 1;
794 }
795
796
797 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
798 {
799 unsigned int n, dummy, eax, ebx, ecx, edx;
800
801 n = c->extended_cpuid_level;
802
803 if (n >= 0x80000005) {
804 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
805 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
806 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
807 c->x86_cache_size=(ecx>>24)+(edx>>24);
808 /* On K8 L1 TLB is inclusive, so don't count it */
809 c->x86_tlbsize = 0;
810 }
811
812 if (n >= 0x80000006) {
813 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
814 ecx = cpuid_ecx(0x80000006);
815 c->x86_cache_size = ecx >> 16;
816 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
817
818 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
819 c->x86_cache_size, ecx & 0xFF);
820 }
821
822 if (n >= 0x80000007)
823 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
824 if (n >= 0x80000008) {
825 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
826 c->x86_virt_bits = (eax >> 8) & 0xff;
827 c->x86_phys_bits = eax & 0xff;
828 }
829 }
830
831 #ifdef CONFIG_NUMA
832 static int nearby_node(int apicid)
833 {
834 int i;
835 for (i = apicid - 1; i >= 0; i--) {
836 int node = apicid_to_node[i];
837 if (node != NUMA_NO_NODE && node_online(node))
838 return node;
839 }
840 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
841 int node = apicid_to_node[i];
842 if (node != NUMA_NO_NODE && node_online(node))
843 return node;
844 }
845 return first_node(node_online_map); /* Shouldn't happen */
846 }
847 #endif
848
849 /*
850 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
851 * Assumes number of cores is a power of two.
852 */
853 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
854 {
855 #ifdef CONFIG_SMP
856 int cpu = smp_processor_id();
857 unsigned bits;
858 #ifdef CONFIG_NUMA
859 int node = 0;
860 unsigned apicid = hard_smp_processor_id();
861 #endif
862
863 bits = 0;
864 while ((1 << bits) < c->x86_max_cores)
865 bits++;
866
867 /* Low order bits define the core id (index of core in socket) */
868 cpu_core_id[cpu] = phys_proc_id[cpu] & ((1 << bits)-1);
869 /* Convert the APIC ID into the socket ID */
870 phys_proc_id[cpu] = phys_pkg_id(bits);
871
872 #ifdef CONFIG_NUMA
873 node = phys_proc_id[cpu];
874 if (apicid_to_node[apicid] != NUMA_NO_NODE)
875 node = apicid_to_node[apicid];
876 if (!node_online(node)) {
877 /* Two possibilities here:
878 - The CPU is missing memory and no node was created.
879 In that case try picking one from a nearby CPU
880 - The APIC IDs differ from the HyperTransport node IDs
881 which the K8 northbridge parsing fills in.
882 Assume they are all increased by a constant offset,
883 but in the same order as the HT nodeids.
884 If that doesn't result in a usable node fall back to the
885 path for the previous case. */
886 int ht_nodeid = apicid - (phys_proc_id[0] << bits);
887 if (ht_nodeid >= 0 &&
888 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
889 node = apicid_to_node[ht_nodeid];
890 /* Pick a nearby node */
891 if (!node_online(node))
892 node = nearby_node(apicid);
893 }
894 numa_set_node(cpu, node);
895
896 printk(KERN_INFO "CPU %d/%x(%d) -> Node %d -> Core %d\n",
897 cpu, apicid, c->x86_max_cores, node, cpu_core_id[cpu]);
898 #endif
899 #endif
900 }
901
902 static int __init init_amd(struct cpuinfo_x86 *c)
903 {
904 int r;
905 unsigned level;
906
907 #ifdef CONFIG_SMP
908 unsigned long value;
909
910 /*
911 * Disable TLB flush filter by setting HWCR.FFDIS on K8
912 * bit 6 of msr C001_0015
913 *
914 * Errata 63 for SH-B3 steppings
915 * Errata 122 for all steppings (F+ have it disabled by default)
916 */
917 if (c->x86 == 15) {
918 rdmsrl(MSR_K8_HWCR, value);
919 value |= 1 << 6;
920 wrmsrl(MSR_K8_HWCR, value);
921 }
922 #endif
923
924 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
925 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
926 clear_bit(0*32+31, &c->x86_capability);
927
928 /* On C+ stepping K8 rep microcode works well for copy/memset */
929 level = cpuid_eax(1);
930 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
931 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
932
933 r = get_model_name(c);
934 if (!r) {
935 switch (c->x86) {
936 case 15:
937 /* Should distinguish Models here, but this is only
938 a fallback anyways. */
939 strcpy(c->x86_model_id, "Hammer");
940 break;
941 }
942 }
943 display_cacheinfo(c);
944
945 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
946 if (c->x86_power & (1<<8))
947 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
948
949 if (c->extended_cpuid_level >= 0x80000008) {
950 c->x86_max_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
951
952 amd_detect_cmp(c);
953 }
954
955 return r;
956 }
957
958 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
959 {
960 #ifdef CONFIG_SMP
961 u32 eax, ebx, ecx, edx;
962 int index_msb, core_bits;
963 int cpu = smp_processor_id();
964
965 cpuid(1, &eax, &ebx, &ecx, &edx);
966
967
968 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
969 return;
970
971 smp_num_siblings = (ebx & 0xff0000) >> 16;
972
973 if (smp_num_siblings == 1) {
974 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
975 } else if (smp_num_siblings > 1 ) {
976
977 if (smp_num_siblings > NR_CPUS) {
978 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
979 smp_num_siblings = 1;
980 return;
981 }
982
983 index_msb = get_count_order(smp_num_siblings);
984 phys_proc_id[cpu] = phys_pkg_id(index_msb);
985
986 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
987 phys_proc_id[cpu]);
988
989 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
990
991 index_msb = get_count_order(smp_num_siblings) ;
992
993 core_bits = get_count_order(c->x86_max_cores);
994
995 cpu_core_id[cpu] = phys_pkg_id(index_msb) &
996 ((1 << core_bits) - 1);
997
998 if (c->x86_max_cores > 1)
999 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
1000 cpu_core_id[cpu]);
1001 }
1002 #endif
1003 }
1004
1005 /*
1006 * find out the number of processor cores on the die
1007 */
1008 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
1009 {
1010 unsigned int eax;
1011
1012 if (c->cpuid_level < 4)
1013 return 1;
1014
1015 __asm__("cpuid"
1016 : "=a" (eax)
1017 : "0" (4), "c" (0)
1018 : "bx", "dx");
1019
1020 if (eax & 0x1f)
1021 return ((eax >> 26) + 1);
1022 else
1023 return 1;
1024 }
1025
1026 static void srat_detect_node(void)
1027 {
1028 #ifdef CONFIG_NUMA
1029 unsigned node;
1030 int cpu = smp_processor_id();
1031
1032 /* Don't do the funky fallback heuristics the AMD version employs
1033 for now. */
1034 node = apicid_to_node[hard_smp_processor_id()];
1035 if (node == NUMA_NO_NODE)
1036 node = 0;
1037 numa_set_node(cpu, node);
1038
1039 if (acpi_numa > 0)
1040 printk(KERN_INFO "CPU %d -> Node %d\n", cpu, node);
1041 #endif
1042 }
1043
1044 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
1045 {
1046 /* Cache sizes */
1047 unsigned n;
1048
1049 init_intel_cacheinfo(c);
1050 n = c->extended_cpuid_level;
1051 if (n >= 0x80000008) {
1052 unsigned eax = cpuid_eax(0x80000008);
1053 c->x86_virt_bits = (eax >> 8) & 0xff;
1054 c->x86_phys_bits = eax & 0xff;
1055 /* CPUID workaround for Intel 0F34 CPU */
1056 if (c->x86_vendor == X86_VENDOR_INTEL &&
1057 c->x86 == 0xF && c->x86_model == 0x3 &&
1058 c->x86_mask == 0x4)
1059 c->x86_phys_bits = 36;
1060 }
1061
1062 if (c->x86 == 15)
1063 c->x86_cache_alignment = c->x86_clflush_size * 2;
1064 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1065 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1066 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1067 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1068 c->x86_max_cores = intel_num_cpu_cores(c);
1069
1070 srat_detect_node();
1071 }
1072
1073 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1074 {
1075 char *v = c->x86_vendor_id;
1076
1077 if (!strcmp(v, "AuthenticAMD"))
1078 c->x86_vendor = X86_VENDOR_AMD;
1079 else if (!strcmp(v, "GenuineIntel"))
1080 c->x86_vendor = X86_VENDOR_INTEL;
1081 else
1082 c->x86_vendor = X86_VENDOR_UNKNOWN;
1083 }
1084
1085 struct cpu_model_info {
1086 int vendor;
1087 int family;
1088 char *model_names[16];
1089 };
1090
1091 /* Do some early cpuid on the boot CPU to get some parameter that are
1092 needed before check_bugs. Everything advanced is in identify_cpu
1093 below. */
1094 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1095 {
1096 u32 tfms;
1097
1098 c->loops_per_jiffy = loops_per_jiffy;
1099 c->x86_cache_size = -1;
1100 c->x86_vendor = X86_VENDOR_UNKNOWN;
1101 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1102 c->x86_vendor_id[0] = '\0'; /* Unset */
1103 c->x86_model_id[0] = '\0'; /* Unset */
1104 c->x86_clflush_size = 64;
1105 c->x86_cache_alignment = c->x86_clflush_size;
1106 c->x86_max_cores = 1;
1107 c->extended_cpuid_level = 0;
1108 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1109
1110 /* Get vendor name */
1111 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1112 (unsigned int *)&c->x86_vendor_id[0],
1113 (unsigned int *)&c->x86_vendor_id[8],
1114 (unsigned int *)&c->x86_vendor_id[4]);
1115
1116 get_cpu_vendor(c);
1117
1118 /* Initialize the standard set of capabilities */
1119 /* Note that the vendor-specific code below might override */
1120
1121 /* Intel-defined flags: level 0x00000001 */
1122 if (c->cpuid_level >= 0x00000001) {
1123 __u32 misc;
1124 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1125 &c->x86_capability[0]);
1126 c->x86 = (tfms >> 8) & 0xf;
1127 c->x86_model = (tfms >> 4) & 0xf;
1128 c->x86_mask = tfms & 0xf;
1129 if (c->x86 == 0xf)
1130 c->x86 += (tfms >> 20) & 0xff;
1131 if (c->x86 >= 0x6)
1132 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1133 if (c->x86_capability[0] & (1<<19))
1134 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1135 } else {
1136 /* Have CPUID level 0 only - unheard of */
1137 c->x86 = 4;
1138 }
1139
1140 #ifdef CONFIG_SMP
1141 phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
1142 #endif
1143 }
1144
1145 /*
1146 * This does the hard work of actually picking apart the CPU stuff...
1147 */
1148 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1149 {
1150 int i;
1151 u32 xlvl;
1152
1153 early_identify_cpu(c);
1154
1155 /* AMD-defined flags: level 0x80000001 */
1156 xlvl = cpuid_eax(0x80000000);
1157 c->extended_cpuid_level = xlvl;
1158 if ((xlvl & 0xffff0000) == 0x80000000) {
1159 if (xlvl >= 0x80000001) {
1160 c->x86_capability[1] = cpuid_edx(0x80000001);
1161 c->x86_capability[6] = cpuid_ecx(0x80000001);
1162 }
1163 if (xlvl >= 0x80000004)
1164 get_model_name(c); /* Default name */
1165 }
1166
1167 /* Transmeta-defined flags: level 0x80860001 */
1168 xlvl = cpuid_eax(0x80860000);
1169 if ((xlvl & 0xffff0000) == 0x80860000) {
1170 /* Don't set x86_cpuid_level here for now to not confuse. */
1171 if (xlvl >= 0x80860001)
1172 c->x86_capability[2] = cpuid_edx(0x80860001);
1173 }
1174
1175 c->apicid = phys_pkg_id(0);
1176
1177 /*
1178 * Vendor-specific initialization. In this section we
1179 * canonicalize the feature flags, meaning if there are
1180 * features a certain CPU supports which CPUID doesn't
1181 * tell us, CPUID claiming incorrect flags, or other bugs,
1182 * we handle them here.
1183 *
1184 * At the end of this section, c->x86_capability better
1185 * indicate the features this CPU genuinely supports!
1186 */
1187 switch (c->x86_vendor) {
1188 case X86_VENDOR_AMD:
1189 init_amd(c);
1190 break;
1191
1192 case X86_VENDOR_INTEL:
1193 init_intel(c);
1194 break;
1195
1196 case X86_VENDOR_UNKNOWN:
1197 default:
1198 display_cacheinfo(c);
1199 break;
1200 }
1201
1202 select_idle_routine(c);
1203 detect_ht(c);
1204
1205 /*
1206 * On SMP, boot_cpu_data holds the common feature set between
1207 * all CPUs; so make sure that we indicate which features are
1208 * common between the CPUs. The first time this routine gets
1209 * executed, c == &boot_cpu_data.
1210 */
1211 if (c != &boot_cpu_data) {
1212 /* AND the already accumulated flags with these */
1213 for (i = 0 ; i < NCAPINTS ; i++)
1214 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1215 }
1216
1217 #ifdef CONFIG_X86_MCE
1218 mcheck_init(c);
1219 #endif
1220 if (c == &boot_cpu_data)
1221 mtrr_bp_init();
1222 else
1223 mtrr_ap_init();
1224 #ifdef CONFIG_NUMA
1225 numa_add_cpu(smp_processor_id());
1226 #endif
1227 }
1228
1229
1230 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1231 {
1232 if (c->x86_model_id[0])
1233 printk("%s", c->x86_model_id);
1234
1235 if (c->x86_mask || c->cpuid_level >= 0)
1236 printk(" stepping %02x\n", c->x86_mask);
1237 else
1238 printk("\n");
1239 }
1240
1241 /*
1242 * Get CPU information for use by the procfs.
1243 */
1244
1245 static int show_cpuinfo(struct seq_file *m, void *v)
1246 {
1247 struct cpuinfo_x86 *c = v;
1248
1249 /*
1250 * These flag bits must match the definitions in <asm/cpufeature.h>.
1251 * NULL means this bit is undefined or reserved; either way it doesn't
1252 * have meaning as far as Linux is concerned. Note that it's important
1253 * to realize there is a difference between this table and CPUID -- if
1254 * applications want to get the raw CPUID data, they should access
1255 * /dev/cpu/<cpu_nr>/cpuid instead.
1256 */
1257 static char *x86_cap_flags[] = {
1258 /* Intel-defined */
1259 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1260 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1261 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1262 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1263
1264 /* AMD-defined */
1265 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1266 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1267 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1268 NULL, "fxsr_opt", "rdtscp", NULL, NULL, "lm", "3dnowext", "3dnow",
1269
1270 /* Transmeta-defined */
1271 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1272 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1275
1276 /* Other (Linux-defined) */
1277 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1278 "constant_tsc", NULL, NULL,
1279 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1280 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1281 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1282
1283 /* Intel-defined (#2) */
1284 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1285 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1286 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1287 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1288
1289 /* VIA/Cyrix/Centaur-defined */
1290 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1292 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1294
1295 /* AMD-defined (#2) */
1296 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1299 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1300 };
1301 static char *x86_power_flags[] = {
1302 "ts", /* temperature sensor */
1303 "fid", /* frequency id control */
1304 "vid", /* voltage id control */
1305 "ttp", /* thermal trip */
1306 "tm",
1307 "stc",
1308 NULL,
1309 /* nothing */ /* constant_tsc - moved to flags */
1310 };
1311
1312
1313 #ifdef CONFIG_SMP
1314 if (!cpu_online(c-cpu_data))
1315 return 0;
1316 #endif
1317
1318 seq_printf(m,"processor\t: %u\n"
1319 "vendor_id\t: %s\n"
1320 "cpu family\t: %d\n"
1321 "model\t\t: %d\n"
1322 "model name\t: %s\n",
1323 (unsigned)(c-cpu_data),
1324 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1325 c->x86,
1326 (int)c->x86_model,
1327 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1328
1329 if (c->x86_mask || c->cpuid_level >= 0)
1330 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1331 else
1332 seq_printf(m, "stepping\t: unknown\n");
1333
1334 if (cpu_has(c,X86_FEATURE_TSC)) {
1335 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1336 if (!freq)
1337 freq = cpu_khz;
1338 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1339 freq / 1000, (freq % 1000));
1340 }
1341
1342 /* Cache size */
1343 if (c->x86_cache_size >= 0)
1344 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1345
1346 #ifdef CONFIG_SMP
1347 if (smp_num_siblings * c->x86_max_cores > 1) {
1348 int cpu = c - cpu_data;
1349 seq_printf(m, "physical id\t: %d\n", phys_proc_id[cpu]);
1350 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1351 seq_printf(m, "core id\t\t: %d\n", cpu_core_id[cpu]);
1352 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1353 }
1354 #endif
1355
1356 seq_printf(m,
1357 "fpu\t\t: yes\n"
1358 "fpu_exception\t: yes\n"
1359 "cpuid level\t: %d\n"
1360 "wp\t\t: yes\n"
1361 "flags\t\t:",
1362 c->cpuid_level);
1363
1364 {
1365 int i;
1366 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1367 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1368 seq_printf(m, " %s", x86_cap_flags[i]);
1369 }
1370
1371 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1372 c->loops_per_jiffy/(500000/HZ),
1373 (c->loops_per_jiffy/(5000/HZ)) % 100);
1374
1375 if (c->x86_tlbsize > 0)
1376 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1377 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1378 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1379
1380 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1381 c->x86_phys_bits, c->x86_virt_bits);
1382
1383 seq_printf(m, "power management:");
1384 {
1385 unsigned i;
1386 for (i = 0; i < 32; i++)
1387 if (c->x86_power & (1 << i)) {
1388 if (i < ARRAY_SIZE(x86_power_flags) &&
1389 x86_power_flags[i])
1390 seq_printf(m, "%s%s",
1391 x86_power_flags[i][0]?" ":"",
1392 x86_power_flags[i]);
1393 else
1394 seq_printf(m, " [%d]", i);
1395 }
1396 }
1397
1398 seq_printf(m, "\n\n");
1399
1400 return 0;
1401 }
1402
1403 static void *c_start(struct seq_file *m, loff_t *pos)
1404 {
1405 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1406 }
1407
1408 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1409 {
1410 ++*pos;
1411 return c_start(m, pos);
1412 }
1413
1414 static void c_stop(struct seq_file *m, void *v)
1415 {
1416 }
1417
1418 struct seq_operations cpuinfo_op = {
1419 .start =c_start,
1420 .next = c_next,
1421 .stop = c_stop,
1422 .show = show_cpuinfo,
1423 };
1424