]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86_64/kernel/smpboot.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/brodo/cpufreq-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/config.h>
42 #include <linux/init.h>
43
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
50
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
62 #include <asm/numa.h>
63
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 /* Package ID of each logical CPU */
67 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
68 /* core ID of each logical CPU */
69 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
70
71 /* Last level cache ID of each logical CPU */
72 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
73
74 /* Bitmask of currently online CPUs */
75 cpumask_t cpu_online_map __read_mostly;
76
77 EXPORT_SYMBOL(cpu_online_map);
78
79 /*
80 * Private maps to synchronize booting between AP and BP.
81 * Probably not needed anymore, but it makes for easier debugging. -AK
82 */
83 cpumask_t cpu_callin_map;
84 cpumask_t cpu_callout_map;
85
86 cpumask_t cpu_possible_map;
87 EXPORT_SYMBOL(cpu_possible_map);
88
89 /* Per CPU bogomips and other parameters */
90 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
91
92 /* Set when the idlers are all forked */
93 int smp_threads_ready;
94
95 /* representing HT siblings of each logical CPU */
96 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
97
98 /* representing HT and core siblings of each logical CPU */
99 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
100 EXPORT_SYMBOL(cpu_core_map);
101
102 /*
103 * Trampoline 80x86 program as an array.
104 */
105
106 extern unsigned char trampoline_data[];
107 extern unsigned char trampoline_end[];
108
109 /* State of each CPU */
110 DEFINE_PER_CPU(int, cpu_state) = { 0 };
111
112 /*
113 * Store all idle threads, this can be reused instead of creating
114 * a new thread. Also avoids complicated thread destroy functionality
115 * for idle threads.
116 */
117 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
118
119 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
120 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
121
122 /*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
128 static unsigned long __cpuinit setup_trampoline(void)
129 {
130 void *tramp = __va(SMP_TRAMPOLINE_BASE);
131 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(tramp);
133 }
134
135 /*
136 * The bootstrap kernel entry code has set these up. Save them for
137 * a given CPU
138 */
139
140 static void __cpuinit smp_store_cpu_info(int id)
141 {
142 struct cpuinfo_x86 *c = cpu_data + id;
143
144 *c = boot_cpu_data;
145 identify_cpu(c);
146 print_cpu_info(c);
147 }
148
149 /*
150 * New Funky TSC sync algorithm borrowed from IA64.
151 * Main advantage is that it doesn't reset the TSCs fully and
152 * in general looks more robust and it works better than my earlier
153 * attempts. I believe it was written by David Mosberger. Some minor
154 * adjustments for x86-64 by me -AK
155 *
156 * Original comment reproduced below.
157 *
158 * Synchronize TSC of the current (slave) CPU with the TSC of the
159 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
160 * eliminate the possibility of unaccounted-for errors (such as
161 * getting a machine check in the middle of a calibration step). The
162 * basic idea is for the slave to ask the master what itc value it has
163 * and to read its own itc before and after the master responds. Each
164 * iteration gives us three timestamps:
165 *
166 * slave master
167 *
168 * t0 ---\
169 * ---\
170 * --->
171 * tm
172 * /---
173 * /---
174 * t1 <---
175 *
176 *
177 * The goal is to adjust the slave's TSC such that tm falls exactly
178 * half-way between t0 and t1. If we achieve this, the clocks are
179 * synchronized provided the interconnect between the slave and the
180 * master is symmetric. Even if the interconnect were asymmetric, we
181 * would still know that the synchronization error is smaller than the
182 * roundtrip latency (t0 - t1).
183 *
184 * When the interconnect is quiet and symmetric, this lets us
185 * synchronize the TSC to within one or two cycles. However, we can
186 * only *guarantee* that the synchronization is accurate to within a
187 * round-trip time, which is typically in the range of several hundred
188 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
189 * are usually almost perfectly synchronized, but we shouldn't assume
190 * that the accuracy is much better than half a micro second or so.
191 *
192 * [there are other errors like the latency of RDTSC and of the
193 * WRMSR. These can also account to hundreds of cycles. So it's
194 * probably worse. It claims 153 cycles error on a dual Opteron,
195 * but I suspect the numbers are actually somewhat worse -AK]
196 */
197
198 #define MASTER 0
199 #define SLAVE (SMP_CACHE_BYTES/8)
200
201 /* Intentionally don't use cpu_relax() while TSC synchronization
202 because we don't want to go into funky power save modi or cause
203 hypervisors to schedule us away. Going to sleep would likely affect
204 latency and low latency is the primary objective here. -AK */
205 #define no_cpu_relax() barrier()
206
207 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
208 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
209 static int notscsync __cpuinitdata;
210
211 #undef DEBUG_TSC_SYNC
212
213 #define NUM_ROUNDS 64 /* magic value */
214 #define NUM_ITERS 5 /* likewise */
215
216 /* Callback on boot CPU */
217 static __cpuinit void sync_master(void *arg)
218 {
219 unsigned long flags, i;
220
221 go[MASTER] = 0;
222
223 local_irq_save(flags);
224 {
225 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 while (!go[MASTER])
227 no_cpu_relax();
228 go[MASTER] = 0;
229 rdtscll(go[SLAVE]);
230 }
231 }
232 local_irq_restore(flags);
233 }
234
235 /*
236 * Return the number of cycles by which our tsc differs from the tsc
237 * on the master (time-keeper) CPU. A positive number indicates our
238 * tsc is ahead of the master, negative that it is behind.
239 */
240 static inline long
241 get_delta(long *rt, long *master)
242 {
243 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
244 unsigned long tcenter, t0, t1, tm;
245 int i;
246
247 for (i = 0; i < NUM_ITERS; ++i) {
248 rdtscll(t0);
249 go[MASTER] = 1;
250 while (!(tm = go[SLAVE]))
251 no_cpu_relax();
252 go[SLAVE] = 0;
253 rdtscll(t1);
254
255 if (t1 - t0 < best_t1 - best_t0)
256 best_t0 = t0, best_t1 = t1, best_tm = tm;
257 }
258
259 *rt = best_t1 - best_t0;
260 *master = best_tm - best_t0;
261
262 /* average best_t0 and best_t1 without overflow: */
263 tcenter = (best_t0/2 + best_t1/2);
264 if (best_t0 % 2 + best_t1 % 2 == 2)
265 ++tcenter;
266 return tcenter - best_tm;
267 }
268
269 static __cpuinit void sync_tsc(unsigned int master)
270 {
271 int i, done = 0;
272 long delta, adj, adjust_latency = 0;
273 unsigned long flags, rt, master_time_stamp, bound;
274 #ifdef DEBUG_TSC_SYNC
275 static struct syncdebug {
276 long rt; /* roundtrip time */
277 long master; /* master's timestamp */
278 long diff; /* difference between midpoint and master's timestamp */
279 long lat; /* estimate of tsc adjustment latency */
280 } t[NUM_ROUNDS] __cpuinitdata;
281 #endif
282
283 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
284 smp_processor_id(), master);
285
286 go[MASTER] = 1;
287
288 /* It is dangerous to broadcast IPI as cpus are coming up,
289 * as they may not be ready to accept them. So since
290 * we only need to send the ipi to the boot cpu direct
291 * the message, and avoid the race.
292 */
293 smp_call_function_single(master, sync_master, NULL, 1, 0);
294
295 while (go[MASTER]) /* wait for master to be ready */
296 no_cpu_relax();
297
298 spin_lock_irqsave(&tsc_sync_lock, flags);
299 {
300 for (i = 0; i < NUM_ROUNDS; ++i) {
301 delta = get_delta(&rt, &master_time_stamp);
302 if (delta == 0) {
303 done = 1; /* let's lock on to this... */
304 bound = rt;
305 }
306
307 if (!done) {
308 unsigned long t;
309 if (i > 0) {
310 adjust_latency += -delta;
311 adj = -delta + adjust_latency/4;
312 } else
313 adj = -delta;
314
315 rdtscll(t);
316 wrmsrl(MSR_IA32_TSC, t + adj);
317 }
318 #ifdef DEBUG_TSC_SYNC
319 t[i].rt = rt;
320 t[i].master = master_time_stamp;
321 t[i].diff = delta;
322 t[i].lat = adjust_latency/4;
323 #endif
324 }
325 }
326 spin_unlock_irqrestore(&tsc_sync_lock, flags);
327
328 #ifdef DEBUG_TSC_SYNC
329 for (i = 0; i < NUM_ROUNDS; ++i)
330 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
331 t[i].rt, t[i].master, t[i].diff, t[i].lat);
332 #endif
333
334 printk(KERN_INFO
335 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
336 "maxerr %lu cycles)\n",
337 smp_processor_id(), master, delta, rt);
338 }
339
340 static void __cpuinit tsc_sync_wait(void)
341 {
342 /*
343 * When the CPU has synchronized TSCs assume the BIOS
344 * or the hardware already synced. Otherwise we could
345 * mess up a possible perfect synchronization with a
346 * not-quite-perfect algorithm.
347 */
348 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
349 return;
350 sync_tsc(0);
351 }
352
353 static __init int notscsync_setup(char *s)
354 {
355 notscsync = 1;
356 return 0;
357 }
358 __setup("notscsync", notscsync_setup);
359
360 static atomic_t init_deasserted __cpuinitdata;
361
362 /*
363 * Report back to the Boot Processor.
364 * Running on AP.
365 */
366 void __cpuinit smp_callin(void)
367 {
368 int cpuid, phys_id;
369 unsigned long timeout;
370
371 /*
372 * If waken up by an INIT in an 82489DX configuration
373 * we may get here before an INIT-deassert IPI reaches
374 * our local APIC. We have to wait for the IPI or we'll
375 * lock up on an APIC access.
376 */
377 while (!atomic_read(&init_deasserted))
378 cpu_relax();
379
380 /*
381 * (This works even if the APIC is not enabled.)
382 */
383 phys_id = GET_APIC_ID(apic_read(APIC_ID));
384 cpuid = smp_processor_id();
385 if (cpu_isset(cpuid, cpu_callin_map)) {
386 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
387 phys_id, cpuid);
388 }
389 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
390
391 /*
392 * STARTUP IPIs are fragile beasts as they might sometimes
393 * trigger some glue motherboard logic. Complete APIC bus
394 * silence for 1 second, this overestimates the time the
395 * boot CPU is spending to send the up to 2 STARTUP IPIs
396 * by a factor of two. This should be enough.
397 */
398
399 /*
400 * Waiting 2s total for startup (udelay is not yet working)
401 */
402 timeout = jiffies + 2*HZ;
403 while (time_before(jiffies, timeout)) {
404 /*
405 * Has the boot CPU finished it's STARTUP sequence?
406 */
407 if (cpu_isset(cpuid, cpu_callout_map))
408 break;
409 cpu_relax();
410 }
411
412 if (!time_before(jiffies, timeout)) {
413 panic("smp_callin: CPU%d started up but did not get a callout!\n",
414 cpuid);
415 }
416
417 /*
418 * the boot CPU has finished the init stage and is spinning
419 * on callin_map until we finish. We are free to set up this
420 * CPU, first the APIC. (this is probably redundant on most
421 * boards)
422 */
423
424 Dprintk("CALLIN, before setup_local_APIC().\n");
425 setup_local_APIC();
426
427 /*
428 * Get our bogomips.
429 *
430 * Need to enable IRQs because it can take longer and then
431 * the NMI watchdog might kill us.
432 */
433 local_irq_enable();
434 calibrate_delay();
435 local_irq_disable();
436 Dprintk("Stack at about %p\n",&cpuid);
437
438 disable_APIC_timer();
439
440 /*
441 * Save our processor parameters
442 */
443 smp_store_cpu_info(cpuid);
444
445 /*
446 * Allow the master to continue.
447 */
448 cpu_set(cpuid, cpu_callin_map);
449 }
450
451 /* maps the cpu to the sched domain representing multi-core */
452 cpumask_t cpu_coregroup_map(int cpu)
453 {
454 struct cpuinfo_x86 *c = cpu_data + cpu;
455 /*
456 * For perf, we return last level cache shared map.
457 * TBD: when power saving sched policy is added, we will return
458 * cpu_core_map when power saving policy is enabled
459 */
460 return c->llc_shared_map;
461 }
462
463 /* representing cpus for which sibling maps can be computed */
464 static cpumask_t cpu_sibling_setup_map;
465
466 static inline void set_cpu_sibling_map(int cpu)
467 {
468 int i;
469 struct cpuinfo_x86 *c = cpu_data;
470
471 cpu_set(cpu, cpu_sibling_setup_map);
472
473 if (smp_num_siblings > 1) {
474 for_each_cpu_mask(i, cpu_sibling_setup_map) {
475 if (phys_proc_id[cpu] == phys_proc_id[i] &&
476 cpu_core_id[cpu] == cpu_core_id[i]) {
477 cpu_set(i, cpu_sibling_map[cpu]);
478 cpu_set(cpu, cpu_sibling_map[i]);
479 cpu_set(i, cpu_core_map[cpu]);
480 cpu_set(cpu, cpu_core_map[i]);
481 cpu_set(i, c[cpu].llc_shared_map);
482 cpu_set(cpu, c[i].llc_shared_map);
483 }
484 }
485 } else {
486 cpu_set(cpu, cpu_sibling_map[cpu]);
487 }
488
489 cpu_set(cpu, c[cpu].llc_shared_map);
490
491 if (current_cpu_data.x86_max_cores == 1) {
492 cpu_core_map[cpu] = cpu_sibling_map[cpu];
493 c[cpu].booted_cores = 1;
494 return;
495 }
496
497 for_each_cpu_mask(i, cpu_sibling_setup_map) {
498 if (cpu_llc_id[cpu] != BAD_APICID &&
499 cpu_llc_id[cpu] == cpu_llc_id[i]) {
500 cpu_set(i, c[cpu].llc_shared_map);
501 cpu_set(cpu, c[i].llc_shared_map);
502 }
503 if (phys_proc_id[cpu] == phys_proc_id[i]) {
504 cpu_set(i, cpu_core_map[cpu]);
505 cpu_set(cpu, cpu_core_map[i]);
506 /*
507 * Does this new cpu bringup a new core?
508 */
509 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
510 /*
511 * for each core in package, increment
512 * the booted_cores for this new cpu
513 */
514 if (first_cpu(cpu_sibling_map[i]) == i)
515 c[cpu].booted_cores++;
516 /*
517 * increment the core count for all
518 * the other cpus in this package
519 */
520 if (i != cpu)
521 c[i].booted_cores++;
522 } else if (i != cpu && !c[cpu].booted_cores)
523 c[cpu].booted_cores = c[i].booted_cores;
524 }
525 }
526 }
527
528 /*
529 * Setup code on secondary processor (after comming out of the trampoline)
530 */
531 void __cpuinit start_secondary(void)
532 {
533 /*
534 * Dont put anything before smp_callin(), SMP
535 * booting is too fragile that we want to limit the
536 * things done here to the most necessary things.
537 */
538 cpu_init();
539 preempt_disable();
540 smp_callin();
541
542 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
543 barrier();
544
545 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
546 setup_secondary_APIC_clock();
547
548 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
549
550 if (nmi_watchdog == NMI_IO_APIC) {
551 disable_8259A_irq(0);
552 enable_NMI_through_LVT0(NULL);
553 enable_8259A_irq(0);
554 }
555
556 enable_APIC_timer();
557
558 /*
559 * The sibling maps must be set before turing the online map on for
560 * this cpu
561 */
562 set_cpu_sibling_map(smp_processor_id());
563
564 /*
565 * Wait for TSC sync to not schedule things before.
566 * We still process interrupts, which could see an inconsistent
567 * time in that window unfortunately.
568 * Do this here because TSC sync has global unprotected state.
569 */
570 tsc_sync_wait();
571
572 /*
573 * We need to hold call_lock, so there is no inconsistency
574 * between the time smp_call_function() determines number of
575 * IPI receipients, and the time when the determination is made
576 * for which cpus receive the IPI in genapic_flat.c. Holding this
577 * lock helps us to not include this cpu in a currently in progress
578 * smp_call_function().
579 */
580 lock_ipi_call_lock();
581
582 /*
583 * Allow the master to continue.
584 */
585 cpu_set(smp_processor_id(), cpu_online_map);
586 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
587 unlock_ipi_call_lock();
588
589 cpu_idle();
590 }
591
592 extern volatile unsigned long init_rsp;
593 extern void (*initial_code)(void);
594
595 #ifdef APIC_DEBUG
596 static void inquire_remote_apic(int apicid)
597 {
598 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
599 char *names[] = { "ID", "VERSION", "SPIV" };
600 int timeout, status;
601
602 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
603
604 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
605 printk("... APIC #%d %s: ", apicid, names[i]);
606
607 /*
608 * Wait for idle.
609 */
610 apic_wait_icr_idle();
611
612 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
613 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
614
615 timeout = 0;
616 do {
617 udelay(100);
618 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
619 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
620
621 switch (status) {
622 case APIC_ICR_RR_VALID:
623 status = apic_read(APIC_RRR);
624 printk("%08x\n", status);
625 break;
626 default:
627 printk("failed\n");
628 }
629 }
630 }
631 #endif
632
633 /*
634 * Kick the secondary to wake up.
635 */
636 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
637 {
638 unsigned long send_status = 0, accept_status = 0;
639 int maxlvt, timeout, num_starts, j;
640
641 Dprintk("Asserting INIT.\n");
642
643 /*
644 * Turn INIT on target chip
645 */
646 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
647
648 /*
649 * Send IPI
650 */
651 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
652 | APIC_DM_INIT);
653
654 Dprintk("Waiting for send to finish...\n");
655 timeout = 0;
656 do {
657 Dprintk("+");
658 udelay(100);
659 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
660 } while (send_status && (timeout++ < 1000));
661
662 mdelay(10);
663
664 Dprintk("Deasserting INIT.\n");
665
666 /* Target chip */
667 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
668
669 /* Send IPI */
670 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
671
672 Dprintk("Waiting for send to finish...\n");
673 timeout = 0;
674 do {
675 Dprintk("+");
676 udelay(100);
677 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
678 } while (send_status && (timeout++ < 1000));
679
680 mb();
681 atomic_set(&init_deasserted, 1);
682
683 num_starts = 2;
684
685 /*
686 * Run STARTUP IPI loop.
687 */
688 Dprintk("#startup loops: %d.\n", num_starts);
689
690 maxlvt = get_maxlvt();
691
692 for (j = 1; j <= num_starts; j++) {
693 Dprintk("Sending STARTUP #%d.\n",j);
694 apic_write(APIC_ESR, 0);
695 apic_read(APIC_ESR);
696 Dprintk("After apic_write.\n");
697
698 /*
699 * STARTUP IPI
700 */
701
702 /* Target chip */
703 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
704
705 /* Boot on the stack */
706 /* Kick the second */
707 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
708
709 /*
710 * Give the other CPU some time to accept the IPI.
711 */
712 udelay(300);
713
714 Dprintk("Startup point 1.\n");
715
716 Dprintk("Waiting for send to finish...\n");
717 timeout = 0;
718 do {
719 Dprintk("+");
720 udelay(100);
721 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
722 } while (send_status && (timeout++ < 1000));
723
724 /*
725 * Give the other CPU some time to accept the IPI.
726 */
727 udelay(200);
728 /*
729 * Due to the Pentium erratum 3AP.
730 */
731 if (maxlvt > 3) {
732 apic_write(APIC_ESR, 0);
733 }
734 accept_status = (apic_read(APIC_ESR) & 0xEF);
735 if (send_status || accept_status)
736 break;
737 }
738 Dprintk("After Startup.\n");
739
740 if (send_status)
741 printk(KERN_ERR "APIC never delivered???\n");
742 if (accept_status)
743 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
744
745 return (send_status | accept_status);
746 }
747
748 struct create_idle {
749 struct task_struct *idle;
750 struct completion done;
751 int cpu;
752 };
753
754 void do_fork_idle(void *_c_idle)
755 {
756 struct create_idle *c_idle = _c_idle;
757
758 c_idle->idle = fork_idle(c_idle->cpu);
759 complete(&c_idle->done);
760 }
761
762 /*
763 * Boot one CPU.
764 */
765 static int __cpuinit do_boot_cpu(int cpu, int apicid)
766 {
767 unsigned long boot_error;
768 int timeout;
769 unsigned long start_rip;
770 struct create_idle c_idle = {
771 .cpu = cpu,
772 .done = COMPLETION_INITIALIZER(c_idle.done),
773 };
774 DECLARE_WORK(work, do_fork_idle, &c_idle);
775
776 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
777 if (!cpu_gdt_descr[cpu].address &&
778 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
779 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
780 return -1;
781 }
782
783 /* Allocate node local memory for AP pdas */
784 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
785 struct x8664_pda *newpda, *pda;
786 int node = cpu_to_node(cpu);
787 pda = cpu_pda(cpu);
788 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
789 node);
790 if (newpda) {
791 memcpy(newpda, pda, sizeof (struct x8664_pda));
792 cpu_pda(cpu) = newpda;
793 } else
794 printk(KERN_ERR
795 "Could not allocate node local PDA for CPU %d on node %d\n",
796 cpu, node);
797 }
798
799
800 c_idle.idle = get_idle_for_cpu(cpu);
801
802 if (c_idle.idle) {
803 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
804 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
805 init_idle(c_idle.idle, cpu);
806 goto do_rest;
807 }
808
809 /*
810 * During cold boot process, keventd thread is not spun up yet.
811 * When we do cpu hot-add, we create idle threads on the fly, we should
812 * not acquire any attributes from the calling context. Hence the clean
813 * way to create kernel_threads() is to do that from keventd().
814 * We do the current_is_keventd() due to the fact that ACPI notifier
815 * was also queuing to keventd() and when the caller is already running
816 * in context of keventd(), we would end up with locking up the keventd
817 * thread.
818 */
819 if (!keventd_up() || current_is_keventd())
820 work.func(work.data);
821 else {
822 schedule_work(&work);
823 wait_for_completion(&c_idle.done);
824 }
825
826 if (IS_ERR(c_idle.idle)) {
827 printk("failed fork for CPU %d\n", cpu);
828 return PTR_ERR(c_idle.idle);
829 }
830
831 set_idle_for_cpu(cpu, c_idle.idle);
832
833 do_rest:
834
835 cpu_pda(cpu)->pcurrent = c_idle.idle;
836
837 start_rip = setup_trampoline();
838
839 init_rsp = c_idle.idle->thread.rsp;
840 per_cpu(init_tss,cpu).rsp0 = init_rsp;
841 initial_code = start_secondary;
842 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
843
844 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
845 cpus_weight(cpu_present_map),
846 apicid);
847
848 /*
849 * This grunge runs the startup process for
850 * the targeted processor.
851 */
852
853 atomic_set(&init_deasserted, 0);
854
855 Dprintk("Setting warm reset code and vector.\n");
856
857 CMOS_WRITE(0xa, 0xf);
858 local_flush_tlb();
859 Dprintk("1.\n");
860 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
861 Dprintk("2.\n");
862 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
863 Dprintk("3.\n");
864
865 /*
866 * Be paranoid about clearing APIC errors.
867 */
868 apic_write(APIC_ESR, 0);
869 apic_read(APIC_ESR);
870
871 /*
872 * Status is now clean
873 */
874 boot_error = 0;
875
876 /*
877 * Starting actual IPI sequence...
878 */
879 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
880
881 if (!boot_error) {
882 /*
883 * allow APs to start initializing.
884 */
885 Dprintk("Before Callout %d.\n", cpu);
886 cpu_set(cpu, cpu_callout_map);
887 Dprintk("After Callout %d.\n", cpu);
888
889 /*
890 * Wait 5s total for a response
891 */
892 for (timeout = 0; timeout < 50000; timeout++) {
893 if (cpu_isset(cpu, cpu_callin_map))
894 break; /* It has booted */
895 udelay(100);
896 }
897
898 if (cpu_isset(cpu, cpu_callin_map)) {
899 /* number CPUs logically, starting from 1 (BSP is 0) */
900 Dprintk("CPU has booted.\n");
901 } else {
902 boot_error = 1;
903 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
904 == 0xA5)
905 /* trampoline started but...? */
906 printk("Stuck ??\n");
907 else
908 /* trampoline code not run */
909 printk("Not responding.\n");
910 #ifdef APIC_DEBUG
911 inquire_remote_apic(apicid);
912 #endif
913 }
914 }
915 if (boot_error) {
916 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
917 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
918 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
919 cpu_clear(cpu, cpu_present_map);
920 cpu_clear(cpu, cpu_possible_map);
921 x86_cpu_to_apicid[cpu] = BAD_APICID;
922 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
923 return -EIO;
924 }
925
926 return 0;
927 }
928
929 cycles_t cacheflush_time;
930 unsigned long cache_decay_ticks;
931
932 /*
933 * Cleanup possible dangling ends...
934 */
935 static __cpuinit void smp_cleanup_boot(void)
936 {
937 /*
938 * Paranoid: Set warm reset code and vector here back
939 * to default values.
940 */
941 CMOS_WRITE(0, 0xf);
942
943 /*
944 * Reset trampoline flag
945 */
946 *((volatile int *) phys_to_virt(0x467)) = 0;
947 }
948
949 /*
950 * Fall back to non SMP mode after errors.
951 *
952 * RED-PEN audit/test this more. I bet there is more state messed up here.
953 */
954 static __init void disable_smp(void)
955 {
956 cpu_present_map = cpumask_of_cpu(0);
957 cpu_possible_map = cpumask_of_cpu(0);
958 if (smp_found_config)
959 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
960 else
961 phys_cpu_present_map = physid_mask_of_physid(0);
962 cpu_set(0, cpu_sibling_map[0]);
963 cpu_set(0, cpu_core_map[0]);
964 }
965
966 #ifdef CONFIG_HOTPLUG_CPU
967
968 int additional_cpus __initdata = -1;
969
970 /*
971 * cpu_possible_map should be static, it cannot change as cpu's
972 * are onlined, or offlined. The reason is per-cpu data-structures
973 * are allocated by some modules at init time, and dont expect to
974 * do this dynamically on cpu arrival/departure.
975 * cpu_present_map on the other hand can change dynamically.
976 * In case when cpu_hotplug is not compiled, then we resort to current
977 * behaviour, which is cpu_possible == cpu_present.
978 * - Ashok Raj
979 *
980 * Three ways to find out the number of additional hotplug CPUs:
981 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
982 * - The user can overwrite it with additional_cpus=NUM
983 * - Otherwise don't reserve additional CPUs.
984 * We do this because additional CPUs waste a lot of memory.
985 * -AK
986 */
987 __init void prefill_possible_map(void)
988 {
989 int i;
990 int possible;
991
992 if (additional_cpus == -1) {
993 if (disabled_cpus > 0)
994 additional_cpus = disabled_cpus;
995 else
996 additional_cpus = 0;
997 }
998 possible = num_processors + additional_cpus;
999 if (possible > NR_CPUS)
1000 possible = NR_CPUS;
1001
1002 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1003 possible,
1004 max_t(int, possible - num_processors, 0));
1005
1006 for (i = 0; i < possible; i++)
1007 cpu_set(i, cpu_possible_map);
1008 }
1009 #endif
1010
1011 /*
1012 * Various sanity checks.
1013 */
1014 static int __init smp_sanity_check(unsigned max_cpus)
1015 {
1016 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1017 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1018 hard_smp_processor_id());
1019 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1020 }
1021
1022 /*
1023 * If we couldn't find an SMP configuration at boot time,
1024 * get out of here now!
1025 */
1026 if (!smp_found_config) {
1027 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1028 disable_smp();
1029 if (APIC_init_uniprocessor())
1030 printk(KERN_NOTICE "Local APIC not detected."
1031 " Using dummy APIC emulation.\n");
1032 return -1;
1033 }
1034
1035 /*
1036 * Should not be necessary because the MP table should list the boot
1037 * CPU too, but we do it for the sake of robustness anyway.
1038 */
1039 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1040 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1041 boot_cpu_id);
1042 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1043 }
1044
1045 /*
1046 * If we couldn't find a local APIC, then get out of here now!
1047 */
1048 if (!cpu_has_apic) {
1049 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1050 boot_cpu_id);
1051 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1052 nr_ioapics = 0;
1053 return -1;
1054 }
1055
1056 /*
1057 * If SMP should be disabled, then really disable it!
1058 */
1059 if (!max_cpus) {
1060 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1061 nr_ioapics = 0;
1062 return -1;
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * Prepare for SMP bootup. The MP table or ACPI has been read
1070 * earlier. Just do some sanity checking here and enable APIC mode.
1071 */
1072 void __init smp_prepare_cpus(unsigned int max_cpus)
1073 {
1074 nmi_watchdog_default();
1075 current_cpu_data = boot_cpu_data;
1076 current_thread_info()->cpu = 0; /* needed? */
1077 set_cpu_sibling_map(0);
1078
1079 if (smp_sanity_check(max_cpus) < 0) {
1080 printk(KERN_INFO "SMP disabled\n");
1081 disable_smp();
1082 return;
1083 }
1084
1085
1086 /*
1087 * Switch from PIC to APIC mode.
1088 */
1089 connect_bsp_APIC();
1090 setup_local_APIC();
1091
1092 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1093 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1094 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1095 /* Or can we switch back to PIC here? */
1096 }
1097
1098 /*
1099 * Now start the IO-APICs
1100 */
1101 if (!skip_ioapic_setup && nr_ioapics)
1102 setup_IO_APIC();
1103 else
1104 nr_ioapics = 0;
1105
1106 /*
1107 * Set up local APIC timer on boot CPU.
1108 */
1109
1110 setup_boot_APIC_clock();
1111 }
1112
1113 /*
1114 * Early setup to make printk work.
1115 */
1116 void __init smp_prepare_boot_cpu(void)
1117 {
1118 int me = smp_processor_id();
1119 cpu_set(me, cpu_online_map);
1120 cpu_set(me, cpu_callout_map);
1121 per_cpu(cpu_state, me) = CPU_ONLINE;
1122 }
1123
1124 /*
1125 * Entry point to boot a CPU.
1126 */
1127 int __cpuinit __cpu_up(unsigned int cpu)
1128 {
1129 int err;
1130 int apicid = cpu_present_to_apicid(cpu);
1131
1132 WARN_ON(irqs_disabled());
1133
1134 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1135
1136 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1137 !physid_isset(apicid, phys_cpu_present_map)) {
1138 printk("__cpu_up: bad cpu %d\n", cpu);
1139 return -EINVAL;
1140 }
1141
1142 /*
1143 * Already booted CPU?
1144 */
1145 if (cpu_isset(cpu, cpu_callin_map)) {
1146 Dprintk("do_boot_cpu %d Already started\n", cpu);
1147 return -ENOSYS;
1148 }
1149
1150 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1151 /* Boot it! */
1152 err = do_boot_cpu(cpu, apicid);
1153 if (err < 0) {
1154 Dprintk("do_boot_cpu failed %d\n", err);
1155 return err;
1156 }
1157
1158 /* Unleash the CPU! */
1159 Dprintk("waiting for cpu %d\n", cpu);
1160
1161 while (!cpu_isset(cpu, cpu_online_map))
1162 cpu_relax();
1163 err = 0;
1164
1165 return err;
1166 }
1167
1168 /*
1169 * Finish the SMP boot.
1170 */
1171 void __init smp_cpus_done(unsigned int max_cpus)
1172 {
1173 smp_cleanup_boot();
1174
1175 #ifdef CONFIG_X86_IO_APIC
1176 setup_ioapic_dest();
1177 #endif
1178
1179 check_nmi_watchdog();
1180 }
1181
1182 #ifdef CONFIG_HOTPLUG_CPU
1183
1184 static void remove_siblinginfo(int cpu)
1185 {
1186 int sibling;
1187 struct cpuinfo_x86 *c = cpu_data;
1188
1189 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1190 cpu_clear(cpu, cpu_core_map[sibling]);
1191 /*
1192 * last thread sibling in this cpu core going down
1193 */
1194 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1195 c[sibling].booted_cores--;
1196 }
1197
1198 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1199 cpu_clear(cpu, cpu_sibling_map[sibling]);
1200 cpus_clear(cpu_sibling_map[cpu]);
1201 cpus_clear(cpu_core_map[cpu]);
1202 phys_proc_id[cpu] = BAD_APICID;
1203 cpu_core_id[cpu] = BAD_APICID;
1204 cpu_clear(cpu, cpu_sibling_setup_map);
1205 }
1206
1207 void remove_cpu_from_maps(void)
1208 {
1209 int cpu = smp_processor_id();
1210
1211 cpu_clear(cpu, cpu_callout_map);
1212 cpu_clear(cpu, cpu_callin_map);
1213 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1214 clear_node_cpumask(cpu);
1215 }
1216
1217 int __cpu_disable(void)
1218 {
1219 int cpu = smp_processor_id();
1220
1221 /*
1222 * Perhaps use cpufreq to drop frequency, but that could go
1223 * into generic code.
1224 *
1225 * We won't take down the boot processor on i386 due to some
1226 * interrupts only being able to be serviced by the BSP.
1227 * Especially so if we're not using an IOAPIC -zwane
1228 */
1229 if (cpu == 0)
1230 return -EBUSY;
1231
1232 clear_local_APIC();
1233
1234 /*
1235 * HACK:
1236 * Allow any queued timer interrupts to get serviced
1237 * This is only a temporary solution until we cleanup
1238 * fixup_irqs as we do for IA64.
1239 */
1240 local_irq_enable();
1241 mdelay(1);
1242
1243 local_irq_disable();
1244 remove_siblinginfo(cpu);
1245
1246 /* It's now safe to remove this processor from the online map */
1247 cpu_clear(cpu, cpu_online_map);
1248 remove_cpu_from_maps();
1249 fixup_irqs(cpu_online_map);
1250 return 0;
1251 }
1252
1253 void __cpu_die(unsigned int cpu)
1254 {
1255 /* We don't do anything here: idle task is faking death itself. */
1256 unsigned int i;
1257
1258 for (i = 0; i < 10; i++) {
1259 /* They ack this in play_dead by setting CPU_DEAD */
1260 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1261 printk ("CPU %d is now offline\n", cpu);
1262 return;
1263 }
1264 msleep(100);
1265 }
1266 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1267 }
1268
1269 __init int setup_additional_cpus(char *s)
1270 {
1271 return get_option(&s, &additional_cpus);
1272 }
1273 __setup("additional_cpus=", setup_additional_cpus);
1274
1275 #else /* ... !CONFIG_HOTPLUG_CPU */
1276
1277 int __cpu_disable(void)
1278 {
1279 return -ENOSYS;
1280 }
1281
1282 void __cpu_die(unsigned int cpu)
1283 {
1284 /* We said "no" in __cpu_disable */
1285 BUG();
1286 }
1287 #endif /* CONFIG_HOTPLUG_CPU */