]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86_64/kernel/time.c
Merge master.kernel.org:/home/rmk/linux-2.6-serial
[mirror_ubuntu-artful-kernel.git] / arch / x86_64 / kernel / time.c
1 /*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/time.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/sysdev.h>
26 #include <linux/bcd.h>
27 #include <linux/kallsyms.h>
28 #include <linux/acpi.h>
29 #ifdef CONFIG_ACPI
30 #include <acpi/achware.h> /* for PM timer frequency */
31 #endif
32 #include <asm/8253pit.h>
33 #include <asm/pgtable.h>
34 #include <asm/vsyscall.h>
35 #include <asm/timex.h>
36 #include <asm/proto.h>
37 #include <asm/hpet.h>
38 #include <asm/sections.h>
39 #include <linux/cpufreq.h>
40 #include <linux/hpet.h>
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/apic.h>
43 #endif
44
45 #ifdef CONFIG_CPU_FREQ
46 static void cpufreq_delayed_get(void);
47 #endif
48 extern void i8254_timer_resume(void);
49 extern int using_apic_timer;
50
51 DEFINE_SPINLOCK(rtc_lock);
52 DEFINE_SPINLOCK(i8253_lock);
53
54 int nohpet __initdata = 0;
55 static int notsc __initdata = 0;
56
57 #undef HPET_HACK_ENABLE_DANGEROUS
58
59 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
60 static unsigned long hpet_period; /* fsecs / HPET clock */
61 unsigned long hpet_tick; /* HPET clocks / interrupt */
62 int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
63 unsigned long vxtime_hz = PIT_TICK_RATE;
64 int report_lost_ticks; /* command line option */
65 unsigned long long monotonic_base;
66
67 struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
68
69 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
70 unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
71 struct timespec __xtime __section_xtime;
72 struct timezone __sys_tz __section_sys_tz;
73
74 /*
75 * do_gettimeoffset() returns microseconds since last timer interrupt was
76 * triggered by hardware. A memory read of HPET is slower than a register read
77 * of TSC, but much more reliable. It's also synchronized to the timer
78 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
79 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
80 * This is not a problem, because jiffies hasn't updated either. They are bound
81 * together by xtime_lock.
82 */
83
84 static inline unsigned int do_gettimeoffset_tsc(void)
85 {
86 unsigned long t;
87 unsigned long x;
88 t = get_cycles_sync();
89 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
90 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
91 return x;
92 }
93
94 static inline unsigned int do_gettimeoffset_hpet(void)
95 {
96 /* cap counter read to one tick to avoid inconsistencies */
97 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
98 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
99 }
100
101 unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
102
103 /*
104 * This version of gettimeofday() has microsecond resolution and better than
105 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
106 * MHz) HPET timer.
107 */
108
109 void do_gettimeofday(struct timeval *tv)
110 {
111 unsigned long seq, t;
112 unsigned int sec, usec;
113
114 do {
115 seq = read_seqbegin(&xtime_lock);
116
117 sec = xtime.tv_sec;
118 usec = xtime.tv_nsec / 1000;
119
120 /* i386 does some correction here to keep the clock
121 monotonous even when ntpd is fixing drift.
122 But they didn't work for me, there is a non monotonic
123 clock anyways with ntp.
124 I dropped all corrections now until a real solution can
125 be found. Note when you fix it here you need to do the same
126 in arch/x86_64/kernel/vsyscall.c and export all needed
127 variables in vmlinux.lds. -AK */
128
129 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
130 do_gettimeoffset();
131 usec += t;
132
133 } while (read_seqretry(&xtime_lock, seq));
134
135 tv->tv_sec = sec + usec / 1000000;
136 tv->tv_usec = usec % 1000000;
137 }
138
139 EXPORT_SYMBOL(do_gettimeofday);
140
141 /*
142 * settimeofday() first undoes the correction that gettimeofday would do
143 * on the time, and then saves it. This is ugly, but has been like this for
144 * ages already.
145 */
146
147 int do_settimeofday(struct timespec *tv)
148 {
149 time_t wtm_sec, sec = tv->tv_sec;
150 long wtm_nsec, nsec = tv->tv_nsec;
151
152 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
153 return -EINVAL;
154
155 write_seqlock_irq(&xtime_lock);
156
157 nsec -= do_gettimeoffset() * 1000 +
158 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
159
160 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
161 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
162
163 set_normalized_timespec(&xtime, sec, nsec);
164 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
165
166 ntp_clear();
167
168 write_sequnlock_irq(&xtime_lock);
169 clock_was_set();
170 return 0;
171 }
172
173 EXPORT_SYMBOL(do_settimeofday);
174
175 unsigned long profile_pc(struct pt_regs *regs)
176 {
177 unsigned long pc = instruction_pointer(regs);
178
179 /* Assume the lock function has either no stack frame or only a single word.
180 This checks if the address on the stack looks like a kernel text address.
181 There is a small window for false hits, but in that case the tick
182 is just accounted to the spinlock function.
183 Better would be to write these functions in assembler again
184 and check exactly. */
185 if (in_lock_functions(pc)) {
186 char *v = *(char **)regs->rsp;
187 if ((v >= _stext && v <= _etext) ||
188 (v >= _sinittext && v <= _einittext) ||
189 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
190 return (unsigned long)v;
191 return ((unsigned long *)regs->rsp)[1];
192 }
193 return pc;
194 }
195 EXPORT_SYMBOL(profile_pc);
196
197 /*
198 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
199 * ms after the second nowtime has started, because when nowtime is written
200 * into the registers of the CMOS clock, it will jump to the next second
201 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
202 * sheet for details.
203 */
204
205 static void set_rtc_mmss(unsigned long nowtime)
206 {
207 int real_seconds, real_minutes, cmos_minutes;
208 unsigned char control, freq_select;
209
210 /*
211 * IRQs are disabled when we're called from the timer interrupt,
212 * no need for spin_lock_irqsave()
213 */
214
215 spin_lock(&rtc_lock);
216
217 /*
218 * Tell the clock it's being set and stop it.
219 */
220
221 control = CMOS_READ(RTC_CONTROL);
222 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
223
224 freq_select = CMOS_READ(RTC_FREQ_SELECT);
225 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
226
227 cmos_minutes = CMOS_READ(RTC_MINUTES);
228 BCD_TO_BIN(cmos_minutes);
229
230 /*
231 * since we're only adjusting minutes and seconds, don't interfere with hour
232 * overflow. This avoids messing with unknown time zones but requires your RTC
233 * not to be off by more than 15 minutes. Since we're calling it only when
234 * our clock is externally synchronized using NTP, this shouldn't be a problem.
235 */
236
237 real_seconds = nowtime % 60;
238 real_minutes = nowtime / 60;
239 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
240 real_minutes += 30; /* correct for half hour time zone */
241 real_minutes %= 60;
242
243 #if 0
244 /* AMD 8111 is a really bad time keeper and hits this regularly.
245 It probably was an attempt to avoid screwing up DST, but ignore
246 that for now. */
247 if (abs(real_minutes - cmos_minutes) >= 30) {
248 printk(KERN_WARNING "time.c: can't update CMOS clock "
249 "from %d to %d\n", cmos_minutes, real_minutes);
250 } else
251 #endif
252
253 {
254 BIN_TO_BCD(real_seconds);
255 BIN_TO_BCD(real_minutes);
256 CMOS_WRITE(real_seconds, RTC_SECONDS);
257 CMOS_WRITE(real_minutes, RTC_MINUTES);
258 }
259
260 /*
261 * The following flags have to be released exactly in this order, otherwise the
262 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
263 * not reset the oscillator and will not update precisely 500 ms later. You
264 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
265 * believes data sheets anyway ... -- Markus Kuhn
266 */
267
268 CMOS_WRITE(control, RTC_CONTROL);
269 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
270
271 spin_unlock(&rtc_lock);
272 }
273
274
275 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
276 * Note: This function is required to return accurate
277 * time even in the absence of multiple timer ticks.
278 */
279 unsigned long long monotonic_clock(void)
280 {
281 unsigned long seq;
282 u32 last_offset, this_offset, offset;
283 unsigned long long base;
284
285 if (vxtime.mode == VXTIME_HPET) {
286 do {
287 seq = read_seqbegin(&xtime_lock);
288
289 last_offset = vxtime.last;
290 base = monotonic_base;
291 this_offset = hpet_readl(HPET_COUNTER);
292 } while (read_seqretry(&xtime_lock, seq));
293 offset = (this_offset - last_offset);
294 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
295 return base + offset;
296 } else {
297 do {
298 seq = read_seqbegin(&xtime_lock);
299
300 last_offset = vxtime.last_tsc;
301 base = monotonic_base;
302 } while (read_seqretry(&xtime_lock, seq));
303 this_offset = get_cycles_sync();
304 offset = (this_offset - last_offset)*1000/cpu_khz;
305 return base + offset;
306 }
307 }
308 EXPORT_SYMBOL(monotonic_clock);
309
310 static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
311 {
312 static long lost_count;
313 static int warned;
314
315 if (report_lost_ticks) {
316 printk(KERN_WARNING "time.c: Lost %d timer "
317 "tick(s)! ", lost);
318 print_symbol("rip %s)\n", regs->rip);
319 }
320
321 if (lost_count == 1000 && !warned) {
322 printk(KERN_WARNING
323 "warning: many lost ticks.\n"
324 KERN_WARNING "Your time source seems to be instable or "
325 "some driver is hogging interupts\n");
326 print_symbol("rip %s\n", regs->rip);
327 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
328 printk(KERN_WARNING "Falling back to HPET\n");
329 if (hpet_use_timer)
330 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
331 else
332 vxtime.last = hpet_readl(HPET_COUNTER);
333 vxtime.mode = VXTIME_HPET;
334 do_gettimeoffset = do_gettimeoffset_hpet;
335 }
336 /* else should fall back to PIT, but code missing. */
337 warned = 1;
338 } else
339 lost_count++;
340
341 #ifdef CONFIG_CPU_FREQ
342 /* In some cases the CPU can change frequency without us noticing
343 (like going into thermal throttle)
344 Give cpufreq a change to catch up. */
345 if ((lost_count+1) % 25 == 0) {
346 cpufreq_delayed_get();
347 }
348 #endif
349 }
350
351 void main_timer_handler(struct pt_regs *regs)
352 {
353 static unsigned long rtc_update = 0;
354 unsigned long tsc;
355 int delay, offset = 0, lost = 0;
356
357 /*
358 * Here we are in the timer irq handler. We have irqs locally disabled (so we
359 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
360 * on the other CPU, so we need a lock. We also need to lock the vsyscall
361 * variables, because both do_timer() and us change them -arca+vojtech
362 */
363
364 write_seqlock(&xtime_lock);
365
366 if (vxtime.hpet_address)
367 offset = hpet_readl(HPET_COUNTER);
368
369 if (hpet_use_timer) {
370 /* if we're using the hpet timer functionality,
371 * we can more accurately know the counter value
372 * when the timer interrupt occured.
373 */
374 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
375 delay = hpet_readl(HPET_COUNTER) - offset;
376 } else {
377 spin_lock(&i8253_lock);
378 outb_p(0x00, 0x43);
379 delay = inb_p(0x40);
380 delay |= inb(0x40) << 8;
381 spin_unlock(&i8253_lock);
382 delay = LATCH - 1 - delay;
383 }
384
385 tsc = get_cycles_sync();
386
387 if (vxtime.mode == VXTIME_HPET) {
388 if (offset - vxtime.last > hpet_tick) {
389 lost = (offset - vxtime.last) / hpet_tick - 1;
390 }
391
392 monotonic_base +=
393 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
394
395 vxtime.last = offset;
396 #ifdef CONFIG_X86_PM_TIMER
397 } else if (vxtime.mode == VXTIME_PMTMR) {
398 lost = pmtimer_mark_offset();
399 #endif
400 } else {
401 offset = (((tsc - vxtime.last_tsc) *
402 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
403
404 if (offset < 0)
405 offset = 0;
406
407 if (offset > (USEC_PER_SEC / HZ)) {
408 lost = offset / (USEC_PER_SEC / HZ);
409 offset %= (USEC_PER_SEC / HZ);
410 }
411
412 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
413
414 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
415
416 if ((((tsc - vxtime.last_tsc) *
417 vxtime.tsc_quot) >> 32) < offset)
418 vxtime.last_tsc = tsc -
419 (((long) offset << 32) / vxtime.tsc_quot) - 1;
420 }
421
422 if (lost > 0) {
423 handle_lost_ticks(lost, regs);
424 jiffies += lost;
425 }
426
427 /*
428 * Do the timer stuff.
429 */
430
431 do_timer(regs);
432 #ifndef CONFIG_SMP
433 update_process_times(user_mode(regs));
434 #endif
435
436 /*
437 * In the SMP case we use the local APIC timer interrupt to do the profiling,
438 * except when we simulate SMP mode on a uniprocessor system, in that case we
439 * have to call the local interrupt handler.
440 */
441
442 #ifndef CONFIG_X86_LOCAL_APIC
443 profile_tick(CPU_PROFILING, regs);
444 #else
445 if (!using_apic_timer)
446 smp_local_timer_interrupt(regs);
447 #endif
448
449 /*
450 * If we have an externally synchronized Linux clock, then update CMOS clock
451 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
452 * closest to exactly 500 ms before the next second. If the update fails, we
453 * don't care, as it'll be updated on the next turn, and the problem (time way
454 * off) isn't likely to go away much sooner anyway.
455 */
456
457 if (ntp_synced() && xtime.tv_sec > rtc_update &&
458 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
459 set_rtc_mmss(xtime.tv_sec);
460 rtc_update = xtime.tv_sec + 660;
461 }
462
463 write_sequnlock(&xtime_lock);
464 }
465
466 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
467 {
468 if (apic_runs_main_timer > 1)
469 return IRQ_HANDLED;
470 main_timer_handler(regs);
471 #ifdef CONFIG_X86_LOCAL_APIC
472 if (using_apic_timer)
473 smp_send_timer_broadcast_ipi();
474 #endif
475 return IRQ_HANDLED;
476 }
477
478 static unsigned int cyc2ns_scale;
479 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
480
481 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
482 {
483 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
484 }
485
486 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
487 {
488 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
489 }
490
491 unsigned long long sched_clock(void)
492 {
493 unsigned long a = 0;
494
495 #if 0
496 /* Don't do a HPET read here. Using TSC always is much faster
497 and HPET may not be mapped yet when the scheduler first runs.
498 Disadvantage is a small drift between CPUs in some configurations,
499 but that should be tolerable. */
500 if (__vxtime.mode == VXTIME_HPET)
501 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
502 #endif
503
504 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
505 which means it is not completely exact and may not be monotonous between
506 CPUs. But the errors should be too small to matter for scheduling
507 purposes. */
508
509 rdtscll(a);
510 return cycles_2_ns(a);
511 }
512
513 static unsigned long get_cmos_time(void)
514 {
515 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
516 unsigned char uip = 0, this = 0;
517 unsigned long flags;
518
519 /*
520 * The Linux interpretation of the CMOS clock register contents: When the
521 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
522 * second which has precisely just started. Waiting for this can take up to 1
523 * second, we timeout approximately after 2.4 seconds on a machine with
524 * standard 8.3 MHz ISA bus.
525 */
526
527 spin_lock_irqsave(&rtc_lock, flags);
528
529 while (timeout && (!uip || this)) {
530 uip |= this;
531 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
532 timeout--;
533 }
534
535 /*
536 * Here we are safe to assume the registers won't change for a whole
537 * second, so we just go ahead and read them.
538 */
539 sec = CMOS_READ(RTC_SECONDS);
540 min = CMOS_READ(RTC_MINUTES);
541 hour = CMOS_READ(RTC_HOURS);
542 day = CMOS_READ(RTC_DAY_OF_MONTH);
543 mon = CMOS_READ(RTC_MONTH);
544 year = CMOS_READ(RTC_YEAR);
545
546 spin_unlock_irqrestore(&rtc_lock, flags);
547
548 /*
549 * We know that x86-64 always uses BCD format, no need to check the
550 * config register.
551 */
552
553 BCD_TO_BIN(sec);
554 BCD_TO_BIN(min);
555 BCD_TO_BIN(hour);
556 BCD_TO_BIN(day);
557 BCD_TO_BIN(mon);
558 BCD_TO_BIN(year);
559
560 /*
561 * x86-64 systems only exists since 2002.
562 * This will work up to Dec 31, 2100
563 */
564 year += 2000;
565
566 return mktime(year, mon, day, hour, min, sec);
567 }
568
569 #ifdef CONFIG_CPU_FREQ
570
571 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
572 changes.
573
574 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
575 not that important because current Opteron setups do not support
576 scaling on SMP anyroads.
577
578 Should fix up last_tsc too. Currently gettimeofday in the
579 first tick after the change will be slightly wrong. */
580
581 #include <linux/workqueue.h>
582
583 static unsigned int cpufreq_delayed_issched = 0;
584 static unsigned int cpufreq_init = 0;
585 static struct work_struct cpufreq_delayed_get_work;
586
587 static void handle_cpufreq_delayed_get(void *v)
588 {
589 unsigned int cpu;
590 for_each_online_cpu(cpu) {
591 cpufreq_get(cpu);
592 }
593 cpufreq_delayed_issched = 0;
594 }
595
596 /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
597 * to verify the CPU frequency the timing core thinks the CPU is running
598 * at is still correct.
599 */
600 static void cpufreq_delayed_get(void)
601 {
602 static int warned;
603 if (cpufreq_init && !cpufreq_delayed_issched) {
604 cpufreq_delayed_issched = 1;
605 if (!warned) {
606 warned = 1;
607 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
608 }
609 schedule_work(&cpufreq_delayed_get_work);
610 }
611 }
612
613 static unsigned int ref_freq = 0;
614 static unsigned long loops_per_jiffy_ref = 0;
615
616 static unsigned long cpu_khz_ref = 0;
617
618 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
619 void *data)
620 {
621 struct cpufreq_freqs *freq = data;
622 unsigned long *lpj, dummy;
623
624 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
625 return 0;
626
627 lpj = &dummy;
628 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
629 #ifdef CONFIG_SMP
630 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
631 #else
632 lpj = &boot_cpu_data.loops_per_jiffy;
633 #endif
634
635 if (!ref_freq) {
636 ref_freq = freq->old;
637 loops_per_jiffy_ref = *lpj;
638 cpu_khz_ref = cpu_khz;
639 }
640 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
641 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
642 (val == CPUFREQ_RESUMECHANGE)) {
643 *lpj =
644 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
645
646 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
647 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
648 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
649 }
650
651 set_cyc2ns_scale(cpu_khz_ref);
652
653 return 0;
654 }
655
656 static struct notifier_block time_cpufreq_notifier_block = {
657 .notifier_call = time_cpufreq_notifier
658 };
659
660 static int __init cpufreq_tsc(void)
661 {
662 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
663 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
664 CPUFREQ_TRANSITION_NOTIFIER))
665 cpufreq_init = 1;
666 return 0;
667 }
668
669 core_initcall(cpufreq_tsc);
670
671 #endif
672
673 /*
674 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
675 * it to the HPET timer of known frequency.
676 */
677
678 #define TICK_COUNT 100000000
679
680 static unsigned int __init hpet_calibrate_tsc(void)
681 {
682 int tsc_start, hpet_start;
683 int tsc_now, hpet_now;
684 unsigned long flags;
685
686 local_irq_save(flags);
687 local_irq_disable();
688
689 hpet_start = hpet_readl(HPET_COUNTER);
690 rdtscl(tsc_start);
691
692 do {
693 local_irq_disable();
694 hpet_now = hpet_readl(HPET_COUNTER);
695 tsc_now = get_cycles_sync();
696 local_irq_restore(flags);
697 } while ((tsc_now - tsc_start) < TICK_COUNT &&
698 (hpet_now - hpet_start) < TICK_COUNT);
699
700 return (tsc_now - tsc_start) * 1000000000L
701 / ((hpet_now - hpet_start) * hpet_period / 1000);
702 }
703
704
705 /*
706 * pit_calibrate_tsc() uses the speaker output (channel 2) of
707 * the PIT. This is better than using the timer interrupt output,
708 * because we can read the value of the speaker with just one inb(),
709 * where we need three i/o operations for the interrupt channel.
710 * We count how many ticks the TSC does in 50 ms.
711 */
712
713 static unsigned int __init pit_calibrate_tsc(void)
714 {
715 unsigned long start, end;
716 unsigned long flags;
717
718 spin_lock_irqsave(&i8253_lock, flags);
719
720 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
721
722 outb(0xb0, 0x43);
723 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
724 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
725 start = get_cycles_sync();
726 while ((inb(0x61) & 0x20) == 0);
727 end = get_cycles_sync();
728
729 spin_unlock_irqrestore(&i8253_lock, flags);
730
731 return (end - start) / 50;
732 }
733
734 #ifdef CONFIG_HPET
735 static __init int late_hpet_init(void)
736 {
737 struct hpet_data hd;
738 unsigned int ntimer;
739
740 if (!vxtime.hpet_address)
741 return -1;
742
743 memset(&hd, 0, sizeof (hd));
744
745 ntimer = hpet_readl(HPET_ID);
746 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
747 ntimer++;
748
749 /*
750 * Register with driver.
751 * Timer0 and Timer1 is used by platform.
752 */
753 hd.hd_phys_address = vxtime.hpet_address;
754 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
755 hd.hd_nirqs = ntimer;
756 hd.hd_flags = HPET_DATA_PLATFORM;
757 hpet_reserve_timer(&hd, 0);
758 #ifdef CONFIG_HPET_EMULATE_RTC
759 hpet_reserve_timer(&hd, 1);
760 #endif
761 hd.hd_irq[0] = HPET_LEGACY_8254;
762 hd.hd_irq[1] = HPET_LEGACY_RTC;
763 if (ntimer > 2) {
764 struct hpet *hpet;
765 struct hpet_timer *timer;
766 int i;
767
768 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
769
770 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
771 timer++, i++)
772 hd.hd_irq[i] = (timer->hpet_config &
773 Tn_INT_ROUTE_CNF_MASK) >>
774 Tn_INT_ROUTE_CNF_SHIFT;
775
776 }
777
778 hpet_alloc(&hd);
779 return 0;
780 }
781 fs_initcall(late_hpet_init);
782 #endif
783
784 static int hpet_timer_stop_set_go(unsigned long tick)
785 {
786 unsigned int cfg;
787
788 /*
789 * Stop the timers and reset the main counter.
790 */
791
792 cfg = hpet_readl(HPET_CFG);
793 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
794 hpet_writel(cfg, HPET_CFG);
795 hpet_writel(0, HPET_COUNTER);
796 hpet_writel(0, HPET_COUNTER + 4);
797
798 /*
799 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
800 * and period also hpet_tick.
801 */
802 if (hpet_use_timer) {
803 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
804 HPET_TN_32BIT, HPET_T0_CFG);
805 hpet_writel(hpet_tick, HPET_T0_CMP);
806 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
807 cfg |= HPET_CFG_LEGACY;
808 }
809 /*
810 * Go!
811 */
812
813 cfg |= HPET_CFG_ENABLE;
814 hpet_writel(cfg, HPET_CFG);
815
816 return 0;
817 }
818
819 static int hpet_init(void)
820 {
821 unsigned int id;
822
823 if (!vxtime.hpet_address)
824 return -1;
825 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
826 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
827
828 /*
829 * Read the period, compute tick and quotient.
830 */
831
832 id = hpet_readl(HPET_ID);
833
834 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
835 return -1;
836
837 hpet_period = hpet_readl(HPET_PERIOD);
838 if (hpet_period < 100000 || hpet_period > 100000000)
839 return -1;
840
841 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
842 hpet_period;
843
844 hpet_use_timer = (id & HPET_ID_LEGSUP);
845
846 return hpet_timer_stop_set_go(hpet_tick);
847 }
848
849 static int hpet_reenable(void)
850 {
851 return hpet_timer_stop_set_go(hpet_tick);
852 }
853
854 #define PIT_MODE 0x43
855 #define PIT_CH0 0x40
856
857 static void __init __pit_init(int val, u8 mode)
858 {
859 unsigned long flags;
860
861 spin_lock_irqsave(&i8253_lock, flags);
862 outb_p(mode, PIT_MODE);
863 outb_p(val & 0xff, PIT_CH0); /* LSB */
864 outb_p(val >> 8, PIT_CH0); /* MSB */
865 spin_unlock_irqrestore(&i8253_lock, flags);
866 }
867
868 void __init pit_init(void)
869 {
870 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
871 }
872
873 void __init pit_stop_interrupt(void)
874 {
875 __pit_init(0, 0x30); /* mode 0 */
876 }
877
878 void __init stop_timer_interrupt(void)
879 {
880 char *name;
881 if (vxtime.hpet_address) {
882 name = "HPET";
883 hpet_timer_stop_set_go(0);
884 } else {
885 name = "PIT";
886 pit_stop_interrupt();
887 }
888 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
889 }
890
891 int __init time_setup(char *str)
892 {
893 report_lost_ticks = 1;
894 return 1;
895 }
896
897 static struct irqaction irq0 = {
898 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
899 };
900
901 void __init time_init(void)
902 {
903 char *timename;
904
905 #ifdef HPET_HACK_ENABLE_DANGEROUS
906 if (!vxtime.hpet_address) {
907 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
908 "manually!\n");
909 outl(0x800038a0, 0xcf8);
910 outl(0xff000001, 0xcfc);
911 outl(0x800038a0, 0xcf8);
912 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
913 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
914 "at %#lx.\n", vxtime.hpet_address);
915 }
916 #endif
917 if (nohpet)
918 vxtime.hpet_address = 0;
919
920 xtime.tv_sec = get_cmos_time();
921 xtime.tv_nsec = 0;
922
923 set_normalized_timespec(&wall_to_monotonic,
924 -xtime.tv_sec, -xtime.tv_nsec);
925
926 if (!hpet_init())
927 vxtime_hz = (1000000000000000L + hpet_period / 2) /
928 hpet_period;
929 else
930 vxtime.hpet_address = 0;
931
932 if (hpet_use_timer) {
933 cpu_khz = hpet_calibrate_tsc();
934 timename = "HPET";
935 #ifdef CONFIG_X86_PM_TIMER
936 } else if (pmtmr_ioport && !vxtime.hpet_address) {
937 vxtime_hz = PM_TIMER_FREQUENCY;
938 timename = "PM";
939 pit_init();
940 cpu_khz = pit_calibrate_tsc();
941 #endif
942 } else {
943 pit_init();
944 cpu_khz = pit_calibrate_tsc();
945 timename = "PIT";
946 }
947
948 printk(KERN_INFO "time.c: Using %ld.%06ld MHz %s timer.\n",
949 vxtime_hz / 1000000, vxtime_hz % 1000000, timename);
950 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
951 cpu_khz / 1000, cpu_khz % 1000);
952 vxtime.mode = VXTIME_TSC;
953 vxtime.quot = (1000000L << 32) / vxtime_hz;
954 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
955 vxtime.last_tsc = get_cycles_sync();
956 setup_irq(0, &irq0);
957
958 set_cyc2ns_scale(cpu_khz);
959
960 #ifndef CONFIG_SMP
961 time_init_gtod();
962 #endif
963 }
964
965 /*
966 * Make an educated guess if the TSC is trustworthy and synchronized
967 * over all CPUs.
968 */
969 __cpuinit int unsynchronized_tsc(void)
970 {
971 #ifdef CONFIG_SMP
972 if (oem_force_hpet_timer())
973 return 1;
974 /* Intel systems are normally all synchronized. Exceptions
975 are handled in the OEM check above. */
976 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
977 return 0;
978 #endif
979 /* Assume multi socket systems are not synchronized */
980 return num_present_cpus() > 1;
981 }
982
983 /*
984 * Decide after all CPUs are booted what mode gettimeofday should use.
985 */
986 void __init time_init_gtod(void)
987 {
988 char *timetype;
989
990 if (unsynchronized_tsc())
991 notsc = 1;
992 if (vxtime.hpet_address && notsc) {
993 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
994 if (hpet_use_timer)
995 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
996 else
997 vxtime.last = hpet_readl(HPET_COUNTER);
998 vxtime.mode = VXTIME_HPET;
999 do_gettimeoffset = do_gettimeoffset_hpet;
1000 #ifdef CONFIG_X86_PM_TIMER
1001 /* Using PM for gettimeofday is quite slow, but we have no other
1002 choice because the TSC is too unreliable on some systems. */
1003 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1004 timetype = "PM";
1005 do_gettimeoffset = do_gettimeoffset_pm;
1006 vxtime.mode = VXTIME_PMTMR;
1007 sysctl_vsyscall = 0;
1008 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1009 #endif
1010 } else {
1011 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1012 vxtime.mode = VXTIME_TSC;
1013 }
1014
1015 printk(KERN_INFO "time.c: Using %s based timekeeping.\n", timetype);
1016 }
1017
1018 __setup("report_lost_ticks", time_setup);
1019
1020 static long clock_cmos_diff;
1021 static unsigned long sleep_start;
1022
1023 /*
1024 * sysfs support for the timer.
1025 */
1026
1027 static int timer_suspend(struct sys_device *dev, pm_message_t state)
1028 {
1029 /*
1030 * Estimate time zone so that set_time can update the clock
1031 */
1032 long cmos_time = get_cmos_time();
1033
1034 clock_cmos_diff = -cmos_time;
1035 clock_cmos_diff += get_seconds();
1036 sleep_start = cmos_time;
1037 return 0;
1038 }
1039
1040 static int timer_resume(struct sys_device *dev)
1041 {
1042 unsigned long flags;
1043 unsigned long sec;
1044 unsigned long ctime = get_cmos_time();
1045 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1046
1047 if (vxtime.hpet_address)
1048 hpet_reenable();
1049 else
1050 i8254_timer_resume();
1051
1052 sec = ctime + clock_cmos_diff;
1053 write_seqlock_irqsave(&xtime_lock,flags);
1054 xtime.tv_sec = sec;
1055 xtime.tv_nsec = 0;
1056 if (vxtime.mode == VXTIME_HPET) {
1057 if (hpet_use_timer)
1058 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1059 else
1060 vxtime.last = hpet_readl(HPET_COUNTER);
1061 #ifdef CONFIG_X86_PM_TIMER
1062 } else if (vxtime.mode == VXTIME_PMTMR) {
1063 pmtimer_resume();
1064 #endif
1065 } else
1066 vxtime.last_tsc = get_cycles_sync();
1067 write_sequnlock_irqrestore(&xtime_lock,flags);
1068 jiffies += sleep_length;
1069 wall_jiffies += sleep_length;
1070 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
1071 touch_softlockup_watchdog();
1072 return 0;
1073 }
1074
1075 static struct sysdev_class timer_sysclass = {
1076 .resume = timer_resume,
1077 .suspend = timer_suspend,
1078 set_kset_name("timer"),
1079 };
1080
1081 /* XXX this driverfs stuff should probably go elsewhere later -john */
1082 static struct sys_device device_timer = {
1083 .id = 0,
1084 .cls = &timer_sysclass,
1085 };
1086
1087 static int time_init_device(void)
1088 {
1089 int error = sysdev_class_register(&timer_sysclass);
1090 if (!error)
1091 error = sysdev_register(&device_timer);
1092 return error;
1093 }
1094
1095 device_initcall(time_init_device);
1096
1097 #ifdef CONFIG_HPET_EMULATE_RTC
1098 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1099 * is enabled, we support RTC interrupt functionality in software.
1100 * RTC has 3 kinds of interrupts:
1101 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1102 * is updated
1103 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1104 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1105 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1106 * (1) and (2) above are implemented using polling at a frequency of
1107 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1108 * overhead. (DEFAULT_RTC_INT_FREQ)
1109 * For (3), we use interrupts at 64Hz or user specified periodic
1110 * frequency, whichever is higher.
1111 */
1112 #include <linux/rtc.h>
1113
1114 #define DEFAULT_RTC_INT_FREQ 64
1115 #define RTC_NUM_INTS 1
1116
1117 static unsigned long UIE_on;
1118 static unsigned long prev_update_sec;
1119
1120 static unsigned long AIE_on;
1121 static struct rtc_time alarm_time;
1122
1123 static unsigned long PIE_on;
1124 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1125 static unsigned long PIE_count;
1126
1127 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
1128 static unsigned int hpet_t1_cmp; /* cached comparator register */
1129
1130 int is_hpet_enabled(void)
1131 {
1132 return vxtime.hpet_address != 0;
1133 }
1134
1135 /*
1136 * Timer 1 for RTC, we do not use periodic interrupt feature,
1137 * even if HPET supports periodic interrupts on Timer 1.
1138 * The reason being, to set up a periodic interrupt in HPET, we need to
1139 * stop the main counter. And if we do that everytime someone diables/enables
1140 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1141 * So, for the time being, simulate the periodic interrupt in software.
1142 *
1143 * hpet_rtc_timer_init() is called for the first time and during subsequent
1144 * interuppts reinit happens through hpet_rtc_timer_reinit().
1145 */
1146 int hpet_rtc_timer_init(void)
1147 {
1148 unsigned int cfg, cnt;
1149 unsigned long flags;
1150
1151 if (!is_hpet_enabled())
1152 return 0;
1153 /*
1154 * Set the counter 1 and enable the interrupts.
1155 */
1156 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1157 hpet_rtc_int_freq = PIE_freq;
1158 else
1159 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1160
1161 local_irq_save(flags);
1162 cnt = hpet_readl(HPET_COUNTER);
1163 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1164 hpet_writel(cnt, HPET_T1_CMP);
1165 hpet_t1_cmp = cnt;
1166 local_irq_restore(flags);
1167
1168 cfg = hpet_readl(HPET_T1_CFG);
1169 cfg &= ~HPET_TN_PERIODIC;
1170 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1171 hpet_writel(cfg, HPET_T1_CFG);
1172
1173 return 1;
1174 }
1175
1176 static void hpet_rtc_timer_reinit(void)
1177 {
1178 unsigned int cfg, cnt;
1179
1180 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1181 cfg = hpet_readl(HPET_T1_CFG);
1182 cfg &= ~HPET_TN_ENABLE;
1183 hpet_writel(cfg, HPET_T1_CFG);
1184 return;
1185 }
1186
1187 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1188 hpet_rtc_int_freq = PIE_freq;
1189 else
1190 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1191
1192 /* It is more accurate to use the comparator value than current count.*/
1193 cnt = hpet_t1_cmp;
1194 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1195 hpet_writel(cnt, HPET_T1_CMP);
1196 hpet_t1_cmp = cnt;
1197 }
1198
1199 /*
1200 * The functions below are called from rtc driver.
1201 * Return 0 if HPET is not being used.
1202 * Otherwise do the necessary changes and return 1.
1203 */
1204 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1205 {
1206 if (!is_hpet_enabled())
1207 return 0;
1208
1209 if (bit_mask & RTC_UIE)
1210 UIE_on = 0;
1211 if (bit_mask & RTC_PIE)
1212 PIE_on = 0;
1213 if (bit_mask & RTC_AIE)
1214 AIE_on = 0;
1215
1216 return 1;
1217 }
1218
1219 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1220 {
1221 int timer_init_reqd = 0;
1222
1223 if (!is_hpet_enabled())
1224 return 0;
1225
1226 if (!(PIE_on | AIE_on | UIE_on))
1227 timer_init_reqd = 1;
1228
1229 if (bit_mask & RTC_UIE) {
1230 UIE_on = 1;
1231 }
1232 if (bit_mask & RTC_PIE) {
1233 PIE_on = 1;
1234 PIE_count = 0;
1235 }
1236 if (bit_mask & RTC_AIE) {
1237 AIE_on = 1;
1238 }
1239
1240 if (timer_init_reqd)
1241 hpet_rtc_timer_init();
1242
1243 return 1;
1244 }
1245
1246 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1247 {
1248 if (!is_hpet_enabled())
1249 return 0;
1250
1251 alarm_time.tm_hour = hrs;
1252 alarm_time.tm_min = min;
1253 alarm_time.tm_sec = sec;
1254
1255 return 1;
1256 }
1257
1258 int hpet_set_periodic_freq(unsigned long freq)
1259 {
1260 if (!is_hpet_enabled())
1261 return 0;
1262
1263 PIE_freq = freq;
1264 PIE_count = 0;
1265
1266 return 1;
1267 }
1268
1269 int hpet_rtc_dropped_irq(void)
1270 {
1271 if (!is_hpet_enabled())
1272 return 0;
1273
1274 return 1;
1275 }
1276
1277 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1278 {
1279 struct rtc_time curr_time;
1280 unsigned long rtc_int_flag = 0;
1281 int call_rtc_interrupt = 0;
1282
1283 hpet_rtc_timer_reinit();
1284
1285 if (UIE_on | AIE_on) {
1286 rtc_get_rtc_time(&curr_time);
1287 }
1288 if (UIE_on) {
1289 if (curr_time.tm_sec != prev_update_sec) {
1290 /* Set update int info, call real rtc int routine */
1291 call_rtc_interrupt = 1;
1292 rtc_int_flag = RTC_UF;
1293 prev_update_sec = curr_time.tm_sec;
1294 }
1295 }
1296 if (PIE_on) {
1297 PIE_count++;
1298 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1299 /* Set periodic int info, call real rtc int routine */
1300 call_rtc_interrupt = 1;
1301 rtc_int_flag |= RTC_PF;
1302 PIE_count = 0;
1303 }
1304 }
1305 if (AIE_on) {
1306 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1307 (curr_time.tm_min == alarm_time.tm_min) &&
1308 (curr_time.tm_hour == alarm_time.tm_hour)) {
1309 /* Set alarm int info, call real rtc int routine */
1310 call_rtc_interrupt = 1;
1311 rtc_int_flag |= RTC_AF;
1312 }
1313 }
1314 if (call_rtc_interrupt) {
1315 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1316 rtc_interrupt(rtc_int_flag, dev_id, regs);
1317 }
1318 return IRQ_HANDLED;
1319 }
1320 #endif
1321
1322 static int __init nohpet_setup(char *s)
1323 {
1324 nohpet = 1;
1325 return 0;
1326 }
1327
1328 __setup("nohpet", nohpet_setup);
1329
1330 int __init notsc_setup(char *s)
1331 {
1332 notsc = 1;
1333 return 0;
1334 }
1335
1336 __setup("notsc", notsc_setup);