]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86_64/kernel/time.c
[PATCH] Add initalization of the RDTSCP auxilliary values
[mirror_ubuntu-bionic-kernel.git] / arch / x86_64 / kernel / time.c
1 /*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002,2006 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/time.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/sysdev.h>
26 #include <linux/bcd.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/kallsyms.h>
30 #include <linux/acpi.h>
31 #ifdef CONFIG_ACPI
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
34 #endif
35 #include <asm/8253pit.h>
36 #include <asm/pgtable.h>
37 #include <asm/vsyscall.h>
38 #include <asm/timex.h>
39 #include <asm/proto.h>
40 #include <asm/hpet.h>
41 #include <asm/sections.h>
42 #include <linux/cpufreq.h>
43 #include <linux/hpet.h>
44 #ifdef CONFIG_X86_LOCAL_APIC
45 #include <asm/apic.h>
46 #endif
47
48 #ifdef CONFIG_CPU_FREQ
49 static void cpufreq_delayed_get(void);
50 #endif
51 extern void i8254_timer_resume(void);
52 extern int using_apic_timer;
53
54 static char *timename = NULL;
55
56 DEFINE_SPINLOCK(rtc_lock);
57 EXPORT_SYMBOL(rtc_lock);
58 DEFINE_SPINLOCK(i8253_lock);
59
60 int nohpet __initdata = 0;
61 static int notsc __initdata = 0;
62
63 #define USEC_PER_TICK (USEC_PER_SEC / HZ)
64 #define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
65 #define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
66
67 #define NS_SCALE 10 /* 2^10, carefully chosen */
68 #define US_SCALE 32 /* 2^32, arbitralrily chosen */
69
70 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
71 EXPORT_SYMBOL(cpu_khz);
72 static unsigned long hpet_period; /* fsecs / HPET clock */
73 unsigned long hpet_tick; /* HPET clocks / interrupt */
74 int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
75 unsigned long vxtime_hz = PIT_TICK_RATE;
76 int report_lost_ticks; /* command line option */
77 unsigned long long monotonic_base;
78
79 struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
80
81 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
82 unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
83 struct timespec __xtime __section_xtime;
84 struct timezone __sys_tz __section_sys_tz;
85
86 /*
87 * do_gettimeoffset() returns microseconds since last timer interrupt was
88 * triggered by hardware. A memory read of HPET is slower than a register read
89 * of TSC, but much more reliable. It's also synchronized to the timer
90 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
91 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
92 * This is not a problem, because jiffies hasn't updated either. They are bound
93 * together by xtime_lock.
94 */
95
96 static inline unsigned int do_gettimeoffset_tsc(void)
97 {
98 unsigned long t;
99 unsigned long x;
100 t = get_cycles_sync();
101 if (t < vxtime.last_tsc)
102 t = vxtime.last_tsc; /* hack */
103 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
104 return x;
105 }
106
107 static inline unsigned int do_gettimeoffset_hpet(void)
108 {
109 /* cap counter read to one tick to avoid inconsistencies */
110 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
111 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
112 }
113
114 unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
115
116 /*
117 * This version of gettimeofday() has microsecond resolution and better than
118 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
119 * MHz) HPET timer.
120 */
121
122 void do_gettimeofday(struct timeval *tv)
123 {
124 unsigned long seq, t;
125 unsigned int sec, usec;
126
127 do {
128 seq = read_seqbegin(&xtime_lock);
129
130 sec = xtime.tv_sec;
131 usec = xtime.tv_nsec / NSEC_PER_USEC;
132
133 /* i386 does some correction here to keep the clock
134 monotonous even when ntpd is fixing drift.
135 But they didn't work for me, there is a non monotonic
136 clock anyways with ntp.
137 I dropped all corrections now until a real solution can
138 be found. Note when you fix it here you need to do the same
139 in arch/x86_64/kernel/vsyscall.c and export all needed
140 variables in vmlinux.lds. -AK */
141
142 t = (jiffies - wall_jiffies) * USEC_PER_TICK +
143 do_gettimeoffset();
144 usec += t;
145
146 } while (read_seqretry(&xtime_lock, seq));
147
148 tv->tv_sec = sec + usec / USEC_PER_SEC;
149 tv->tv_usec = usec % USEC_PER_SEC;
150 }
151
152 EXPORT_SYMBOL(do_gettimeofday);
153
154 /*
155 * settimeofday() first undoes the correction that gettimeofday would do
156 * on the time, and then saves it. This is ugly, but has been like this for
157 * ages already.
158 */
159
160 int do_settimeofday(struct timespec *tv)
161 {
162 time_t wtm_sec, sec = tv->tv_sec;
163 long wtm_nsec, nsec = tv->tv_nsec;
164
165 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
166 return -EINVAL;
167
168 write_seqlock_irq(&xtime_lock);
169
170 nsec -= do_gettimeoffset() * NSEC_PER_USEC +
171 (jiffies - wall_jiffies) * NSEC_PER_TICK;
172
173 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
174 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
175
176 set_normalized_timespec(&xtime, sec, nsec);
177 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
178
179 ntp_clear();
180
181 write_sequnlock_irq(&xtime_lock);
182 clock_was_set();
183 return 0;
184 }
185
186 EXPORT_SYMBOL(do_settimeofday);
187
188 unsigned long profile_pc(struct pt_regs *regs)
189 {
190 unsigned long pc = instruction_pointer(regs);
191
192 /* Assume the lock function has either no stack frame or only a single
193 word. This checks if the address on the stack looks like a kernel
194 text address.
195 There is a small window for false hits, but in that case the tick
196 is just accounted to the spinlock function.
197 Better would be to write these functions in assembler again
198 and check exactly. */
199 if (!user_mode(regs) && in_lock_functions(pc)) {
200 char *v = *(char **)regs->rsp;
201 if ((v >= _stext && v <= _etext) ||
202 (v >= _sinittext && v <= _einittext) ||
203 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
204 return (unsigned long)v;
205 return ((unsigned long *)regs->rsp)[1];
206 }
207 return pc;
208 }
209 EXPORT_SYMBOL(profile_pc);
210
211 /*
212 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
213 * ms after the second nowtime has started, because when nowtime is written
214 * into the registers of the CMOS clock, it will jump to the next second
215 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
216 * sheet for details.
217 */
218
219 static void set_rtc_mmss(unsigned long nowtime)
220 {
221 int real_seconds, real_minutes, cmos_minutes;
222 unsigned char control, freq_select;
223
224 /*
225 * IRQs are disabled when we're called from the timer interrupt,
226 * no need for spin_lock_irqsave()
227 */
228
229 spin_lock(&rtc_lock);
230
231 /*
232 * Tell the clock it's being set and stop it.
233 */
234
235 control = CMOS_READ(RTC_CONTROL);
236 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
237
238 freq_select = CMOS_READ(RTC_FREQ_SELECT);
239 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
240
241 cmos_minutes = CMOS_READ(RTC_MINUTES);
242 BCD_TO_BIN(cmos_minutes);
243
244 /*
245 * since we're only adjusting minutes and seconds, don't interfere with hour
246 * overflow. This avoids messing with unknown time zones but requires your RTC
247 * not to be off by more than 15 minutes. Since we're calling it only when
248 * our clock is externally synchronized using NTP, this shouldn't be a problem.
249 */
250
251 real_seconds = nowtime % 60;
252 real_minutes = nowtime / 60;
253 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
254 real_minutes += 30; /* correct for half hour time zone */
255 real_minutes %= 60;
256
257 if (abs(real_minutes - cmos_minutes) >= 30) {
258 printk(KERN_WARNING "time.c: can't update CMOS clock "
259 "from %d to %d\n", cmos_minutes, real_minutes);
260 } else {
261 BIN_TO_BCD(real_seconds);
262 BIN_TO_BCD(real_minutes);
263 CMOS_WRITE(real_seconds, RTC_SECONDS);
264 CMOS_WRITE(real_minutes, RTC_MINUTES);
265 }
266
267 /*
268 * The following flags have to be released exactly in this order, otherwise the
269 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
270 * not reset the oscillator and will not update precisely 500 ms later. You
271 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
272 * believes data sheets anyway ... -- Markus Kuhn
273 */
274
275 CMOS_WRITE(control, RTC_CONTROL);
276 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
277
278 spin_unlock(&rtc_lock);
279 }
280
281
282 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
283 * Note: This function is required to return accurate
284 * time even in the absence of multiple timer ticks.
285 */
286 unsigned long long monotonic_clock(void)
287 {
288 unsigned long seq;
289 u32 last_offset, this_offset, offset;
290 unsigned long long base;
291
292 if (vxtime.mode == VXTIME_HPET) {
293 do {
294 seq = read_seqbegin(&xtime_lock);
295
296 last_offset = vxtime.last;
297 base = monotonic_base;
298 this_offset = hpet_readl(HPET_COUNTER);
299 } while (read_seqretry(&xtime_lock, seq));
300 offset = (this_offset - last_offset);
301 offset *= NSEC_PER_TICK / hpet_tick;
302 } else {
303 do {
304 seq = read_seqbegin(&xtime_lock);
305
306 last_offset = vxtime.last_tsc;
307 base = monotonic_base;
308 } while (read_seqretry(&xtime_lock, seq));
309 this_offset = get_cycles_sync();
310 /* FIXME: 1000 or 1000000? */
311 offset = (this_offset - last_offset)*1000 / cpu_khz;
312 }
313 return base + offset;
314 }
315 EXPORT_SYMBOL(monotonic_clock);
316
317 static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
318 {
319 static long lost_count;
320 static int warned;
321 if (report_lost_ticks) {
322 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
323 print_symbol("rip %s)\n", regs->rip);
324 }
325
326 if (lost_count == 1000 && !warned) {
327 printk(KERN_WARNING "warning: many lost ticks.\n"
328 KERN_WARNING "Your time source seems to be instable or "
329 "some driver is hogging interupts\n");
330 print_symbol("rip %s\n", regs->rip);
331 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
332 printk(KERN_WARNING "Falling back to HPET\n");
333 if (hpet_use_timer)
334 vxtime.last = hpet_readl(HPET_T0_CMP) -
335 hpet_tick;
336 else
337 vxtime.last = hpet_readl(HPET_COUNTER);
338 vxtime.mode = VXTIME_HPET;
339 do_gettimeoffset = do_gettimeoffset_hpet;
340 }
341 /* else should fall back to PIT, but code missing. */
342 warned = 1;
343 } else
344 lost_count++;
345
346 #ifdef CONFIG_CPU_FREQ
347 /* In some cases the CPU can change frequency without us noticing
348 Give cpufreq a change to catch up. */
349 if ((lost_count+1) % 25 == 0)
350 cpufreq_delayed_get();
351 #endif
352 }
353
354 void main_timer_handler(struct pt_regs *regs)
355 {
356 static unsigned long rtc_update = 0;
357 unsigned long tsc;
358 int delay = 0, offset = 0, lost = 0;
359
360 /*
361 * Here we are in the timer irq handler. We have irqs locally disabled (so we
362 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
363 * on the other CPU, so we need a lock. We also need to lock the vsyscall
364 * variables, because both do_timer() and us change them -arca+vojtech
365 */
366
367 write_seqlock(&xtime_lock);
368
369 if (vxtime.hpet_address)
370 offset = hpet_readl(HPET_COUNTER);
371
372 if (hpet_use_timer) {
373 /* if we're using the hpet timer functionality,
374 * we can more accurately know the counter value
375 * when the timer interrupt occured.
376 */
377 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
378 delay = hpet_readl(HPET_COUNTER) - offset;
379 } else if (!pmtmr_ioport) {
380 spin_lock(&i8253_lock);
381 outb_p(0x00, 0x43);
382 delay = inb_p(0x40);
383 delay |= inb(0x40) << 8;
384 spin_unlock(&i8253_lock);
385 delay = LATCH - 1 - delay;
386 }
387
388 tsc = get_cycles_sync();
389
390 if (vxtime.mode == VXTIME_HPET) {
391 if (offset - vxtime.last > hpet_tick) {
392 lost = (offset - vxtime.last) / hpet_tick - 1;
393 }
394
395 monotonic_base +=
396 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
397
398 vxtime.last = offset;
399 #ifdef CONFIG_X86_PM_TIMER
400 } else if (vxtime.mode == VXTIME_PMTMR) {
401 lost = pmtimer_mark_offset();
402 #endif
403 } else {
404 offset = (((tsc - vxtime.last_tsc) *
405 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
406
407 if (offset < 0)
408 offset = 0;
409
410 if (offset > USEC_PER_TICK) {
411 lost = offset / USEC_PER_TICK;
412 offset %= USEC_PER_TICK;
413 }
414
415 /* FIXME: 1000 or 1000000? */
416 monotonic_base += (tsc - vxtime.last_tsc) * 1000000 / cpu_khz;
417
418 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
419
420 if ((((tsc - vxtime.last_tsc) *
421 vxtime.tsc_quot) >> US_SCALE) < offset)
422 vxtime.last_tsc = tsc -
423 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
424 }
425
426 if (lost > 0) {
427 handle_lost_ticks(lost, regs);
428 jiffies += lost;
429 }
430
431 /*
432 * Do the timer stuff.
433 */
434
435 do_timer(regs);
436 #ifndef CONFIG_SMP
437 update_process_times(user_mode(regs));
438 #endif
439
440 /*
441 * In the SMP case we use the local APIC timer interrupt to do the profiling,
442 * except when we simulate SMP mode on a uniprocessor system, in that case we
443 * have to call the local interrupt handler.
444 */
445
446 #ifndef CONFIG_X86_LOCAL_APIC
447 profile_tick(CPU_PROFILING, regs);
448 #else
449 if (!using_apic_timer)
450 smp_local_timer_interrupt(regs);
451 #endif
452
453 /*
454 * If we have an externally synchronized Linux clock, then update CMOS clock
455 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
456 * closest to exactly 500 ms before the next second. If the update fails, we
457 * don't care, as it'll be updated on the next turn, and the problem (time way
458 * off) isn't likely to go away much sooner anyway.
459 */
460
461 if (ntp_synced() && xtime.tv_sec > rtc_update &&
462 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
463 set_rtc_mmss(xtime.tv_sec);
464 rtc_update = xtime.tv_sec + 660;
465 }
466
467 write_sequnlock(&xtime_lock);
468 }
469
470 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
471 {
472 if (apic_runs_main_timer > 1)
473 return IRQ_HANDLED;
474 main_timer_handler(regs);
475 #ifdef CONFIG_X86_LOCAL_APIC
476 if (using_apic_timer)
477 smp_send_timer_broadcast_ipi();
478 #endif
479 return IRQ_HANDLED;
480 }
481
482 static unsigned int cyc2ns_scale __read_mostly;
483
484 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
485 {
486 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
487 }
488
489 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
490 {
491 return (cyc * cyc2ns_scale) >> NS_SCALE;
492 }
493
494 unsigned long long sched_clock(void)
495 {
496 unsigned long a = 0;
497
498 #if 0
499 /* Don't do a HPET read here. Using TSC always is much faster
500 and HPET may not be mapped yet when the scheduler first runs.
501 Disadvantage is a small drift between CPUs in some configurations,
502 but that should be tolerable. */
503 if (__vxtime.mode == VXTIME_HPET)
504 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
505 #endif
506
507 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
508 which means it is not completely exact and may not be monotonous between
509 CPUs. But the errors should be too small to matter for scheduling
510 purposes. */
511
512 rdtscll(a);
513 return cycles_2_ns(a);
514 }
515
516 static unsigned long get_cmos_time(void)
517 {
518 unsigned int year, mon, day, hour, min, sec;
519 unsigned long flags;
520 unsigned extyear = 0;
521
522 spin_lock_irqsave(&rtc_lock, flags);
523
524 do {
525 sec = CMOS_READ(RTC_SECONDS);
526 min = CMOS_READ(RTC_MINUTES);
527 hour = CMOS_READ(RTC_HOURS);
528 day = CMOS_READ(RTC_DAY_OF_MONTH);
529 mon = CMOS_READ(RTC_MONTH);
530 year = CMOS_READ(RTC_YEAR);
531 #ifdef CONFIG_ACPI
532 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
533 acpi_fadt.century)
534 extyear = CMOS_READ(acpi_fadt.century);
535 #endif
536 } while (sec != CMOS_READ(RTC_SECONDS));
537
538 spin_unlock_irqrestore(&rtc_lock, flags);
539
540 /*
541 * We know that x86-64 always uses BCD format, no need to check the
542 * config register.
543 */
544
545 BCD_TO_BIN(sec);
546 BCD_TO_BIN(min);
547 BCD_TO_BIN(hour);
548 BCD_TO_BIN(day);
549 BCD_TO_BIN(mon);
550 BCD_TO_BIN(year);
551
552 if (extyear) {
553 BCD_TO_BIN(extyear);
554 year += extyear;
555 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
556 } else {
557 /*
558 * x86-64 systems only exists since 2002.
559 * This will work up to Dec 31, 2100
560 */
561 year += 2000;
562 }
563
564 return mktime(year, mon, day, hour, min, sec);
565 }
566
567 #ifdef CONFIG_CPU_FREQ
568
569 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
570 changes.
571
572 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
573 not that important because current Opteron setups do not support
574 scaling on SMP anyroads.
575
576 Should fix up last_tsc too. Currently gettimeofday in the
577 first tick after the change will be slightly wrong. */
578
579 #include <linux/workqueue.h>
580
581 static unsigned int cpufreq_delayed_issched = 0;
582 static unsigned int cpufreq_init = 0;
583 static struct work_struct cpufreq_delayed_get_work;
584
585 static void handle_cpufreq_delayed_get(void *v)
586 {
587 unsigned int cpu;
588 for_each_online_cpu(cpu) {
589 cpufreq_get(cpu);
590 }
591 cpufreq_delayed_issched = 0;
592 }
593
594 /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
595 * to verify the CPU frequency the timing core thinks the CPU is running
596 * at is still correct.
597 */
598 static void cpufreq_delayed_get(void)
599 {
600 static int warned;
601 if (cpufreq_init && !cpufreq_delayed_issched) {
602 cpufreq_delayed_issched = 1;
603 if (!warned) {
604 warned = 1;
605 printk(KERN_DEBUG
606 "Losing some ticks... checking if CPU frequency changed.\n");
607 }
608 schedule_work(&cpufreq_delayed_get_work);
609 }
610 }
611
612 static unsigned int ref_freq = 0;
613 static unsigned long loops_per_jiffy_ref = 0;
614
615 static unsigned long cpu_khz_ref = 0;
616
617 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
618 void *data)
619 {
620 struct cpufreq_freqs *freq = data;
621 unsigned long *lpj, dummy;
622
623 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
624 return 0;
625
626 lpj = &dummy;
627 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
628 #ifdef CONFIG_SMP
629 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
630 #else
631 lpj = &boot_cpu_data.loops_per_jiffy;
632 #endif
633
634 if (!ref_freq) {
635 ref_freq = freq->old;
636 loops_per_jiffy_ref = *lpj;
637 cpu_khz_ref = cpu_khz;
638 }
639 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
640 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
641 (val == CPUFREQ_RESUMECHANGE)) {
642 *lpj =
643 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
644
645 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
646 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
647 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
648 }
649
650 set_cyc2ns_scale(cpu_khz_ref);
651
652 return 0;
653 }
654
655 static struct notifier_block time_cpufreq_notifier_block = {
656 .notifier_call = time_cpufreq_notifier
657 };
658
659 static int __init cpufreq_tsc(void)
660 {
661 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
662 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
663 CPUFREQ_TRANSITION_NOTIFIER))
664 cpufreq_init = 1;
665 return 0;
666 }
667
668 core_initcall(cpufreq_tsc);
669
670 #endif
671
672 /*
673 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
674 * it to the HPET timer of known frequency.
675 */
676
677 #define TICK_COUNT 100000000
678
679 static unsigned int __init hpet_calibrate_tsc(void)
680 {
681 int tsc_start, hpet_start;
682 int tsc_now, hpet_now;
683 unsigned long flags;
684
685 local_irq_save(flags);
686 local_irq_disable();
687
688 hpet_start = hpet_readl(HPET_COUNTER);
689 rdtscl(tsc_start);
690
691 do {
692 local_irq_disable();
693 hpet_now = hpet_readl(HPET_COUNTER);
694 tsc_now = get_cycles_sync();
695 local_irq_restore(flags);
696 } while ((tsc_now - tsc_start) < TICK_COUNT &&
697 (hpet_now - hpet_start) < TICK_COUNT);
698
699 return (tsc_now - tsc_start) * 1000000000L
700 / ((hpet_now - hpet_start) * hpet_period / 1000);
701 }
702
703
704 /*
705 * pit_calibrate_tsc() uses the speaker output (channel 2) of
706 * the PIT. This is better than using the timer interrupt output,
707 * because we can read the value of the speaker with just one inb(),
708 * where we need three i/o operations for the interrupt channel.
709 * We count how many ticks the TSC does in 50 ms.
710 */
711
712 static unsigned int __init pit_calibrate_tsc(void)
713 {
714 unsigned long start, end;
715 unsigned long flags;
716
717 spin_lock_irqsave(&i8253_lock, flags);
718
719 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
720
721 outb(0xb0, 0x43);
722 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
723 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
724 start = get_cycles_sync();
725 while ((inb(0x61) & 0x20) == 0);
726 end = get_cycles_sync();
727
728 spin_unlock_irqrestore(&i8253_lock, flags);
729
730 return (end - start) / 50;
731 }
732
733 #ifdef CONFIG_HPET
734 static __init int late_hpet_init(void)
735 {
736 struct hpet_data hd;
737 unsigned int ntimer;
738
739 if (!vxtime.hpet_address)
740 return 0;
741
742 memset(&hd, 0, sizeof (hd));
743
744 ntimer = hpet_readl(HPET_ID);
745 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
746 ntimer++;
747
748 /*
749 * Register with driver.
750 * Timer0 and Timer1 is used by platform.
751 */
752 hd.hd_phys_address = vxtime.hpet_address;
753 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
754 hd.hd_nirqs = ntimer;
755 hd.hd_flags = HPET_DATA_PLATFORM;
756 hpet_reserve_timer(&hd, 0);
757 #ifdef CONFIG_HPET_EMULATE_RTC
758 hpet_reserve_timer(&hd, 1);
759 #endif
760 hd.hd_irq[0] = HPET_LEGACY_8254;
761 hd.hd_irq[1] = HPET_LEGACY_RTC;
762 if (ntimer > 2) {
763 struct hpet *hpet;
764 struct hpet_timer *timer;
765 int i;
766
767 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
768 timer = &hpet->hpet_timers[2];
769 for (i = 2; i < ntimer; timer++, i++)
770 hd.hd_irq[i] = (timer->hpet_config &
771 Tn_INT_ROUTE_CNF_MASK) >>
772 Tn_INT_ROUTE_CNF_SHIFT;
773
774 }
775
776 hpet_alloc(&hd);
777 return 0;
778 }
779 fs_initcall(late_hpet_init);
780 #endif
781
782 static int hpet_timer_stop_set_go(unsigned long tick)
783 {
784 unsigned int cfg;
785
786 /*
787 * Stop the timers and reset the main counter.
788 */
789
790 cfg = hpet_readl(HPET_CFG);
791 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
792 hpet_writel(cfg, HPET_CFG);
793 hpet_writel(0, HPET_COUNTER);
794 hpet_writel(0, HPET_COUNTER + 4);
795
796 /*
797 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
798 * and period also hpet_tick.
799 */
800 if (hpet_use_timer) {
801 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
802 HPET_TN_32BIT, HPET_T0_CFG);
803 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
804 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
805 cfg |= HPET_CFG_LEGACY;
806 }
807 /*
808 * Go!
809 */
810
811 cfg |= HPET_CFG_ENABLE;
812 hpet_writel(cfg, HPET_CFG);
813
814 return 0;
815 }
816
817 static int hpet_init(void)
818 {
819 unsigned int id;
820
821 if (!vxtime.hpet_address)
822 return -1;
823 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
824 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
825
826 /*
827 * Read the period, compute tick and quotient.
828 */
829
830 id = hpet_readl(HPET_ID);
831
832 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
833 return -1;
834
835 hpet_period = hpet_readl(HPET_PERIOD);
836 if (hpet_period < 100000 || hpet_period > 100000000)
837 return -1;
838
839 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
840
841 hpet_use_timer = (id & HPET_ID_LEGSUP);
842
843 return hpet_timer_stop_set_go(hpet_tick);
844 }
845
846 static int hpet_reenable(void)
847 {
848 return hpet_timer_stop_set_go(hpet_tick);
849 }
850
851 #define PIT_MODE 0x43
852 #define PIT_CH0 0x40
853
854 static void __init __pit_init(int val, u8 mode)
855 {
856 unsigned long flags;
857
858 spin_lock_irqsave(&i8253_lock, flags);
859 outb_p(mode, PIT_MODE);
860 outb_p(val & 0xff, PIT_CH0); /* LSB */
861 outb_p(val >> 8, PIT_CH0); /* MSB */
862 spin_unlock_irqrestore(&i8253_lock, flags);
863 }
864
865 void __init pit_init(void)
866 {
867 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
868 }
869
870 void __init pit_stop_interrupt(void)
871 {
872 __pit_init(0, 0x30); /* mode 0 */
873 }
874
875 void __init stop_timer_interrupt(void)
876 {
877 char *name;
878 if (vxtime.hpet_address) {
879 name = "HPET";
880 hpet_timer_stop_set_go(0);
881 } else {
882 name = "PIT";
883 pit_stop_interrupt();
884 }
885 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
886 }
887
888 int __init time_setup(char *str)
889 {
890 report_lost_ticks = 1;
891 return 1;
892 }
893
894 static struct irqaction irq0 = {
895 timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
896 };
897
898 static int __cpuinit
899 time_cpu_notifier(struct notifier_block *nb, unsigned long action, void *hcpu)
900 {
901 unsigned cpu = (unsigned long) hcpu;
902 if (action == CPU_ONLINE &&
903 cpu_has(&cpu_data[cpu], X86_FEATURE_RDTSCP)) {
904 unsigned p;
905 p = smp_processor_id() | (cpu_to_node(smp_processor_id())<<12);
906 write_rdtscp_aux(p);
907 }
908 return NOTIFY_DONE;
909 }
910
911 void __init time_init(void)
912 {
913 if (nohpet)
914 vxtime.hpet_address = 0;
915
916 xtime.tv_sec = get_cmos_time();
917 xtime.tv_nsec = 0;
918
919 set_normalized_timespec(&wall_to_monotonic,
920 -xtime.tv_sec, -xtime.tv_nsec);
921
922 if (!hpet_init())
923 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
924 else
925 vxtime.hpet_address = 0;
926
927 if (hpet_use_timer) {
928 /* set tick_nsec to use the proper rate for HPET */
929 tick_nsec = TICK_NSEC_HPET;
930 cpu_khz = hpet_calibrate_tsc();
931 timename = "HPET";
932 #ifdef CONFIG_X86_PM_TIMER
933 } else if (pmtmr_ioport && !vxtime.hpet_address) {
934 vxtime_hz = PM_TIMER_FREQUENCY;
935 timename = "PM";
936 pit_init();
937 cpu_khz = pit_calibrate_tsc();
938 #endif
939 } else {
940 pit_init();
941 cpu_khz = pit_calibrate_tsc();
942 timename = "PIT";
943 }
944
945 vxtime.mode = VXTIME_TSC;
946 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
947 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
948 vxtime.last_tsc = get_cycles_sync();
949 setup_irq(0, &irq0);
950
951 set_cyc2ns_scale(cpu_khz);
952
953 hotcpu_notifier(time_cpu_notifier, 0);
954 time_cpu_notifier(NULL, CPU_ONLINE, (void *)(long)smp_processor_id());
955
956 #ifndef CONFIG_SMP
957 time_init_gtod();
958 #endif
959 }
960
961 /*
962 * Make an educated guess if the TSC is trustworthy and synchronized
963 * over all CPUs.
964 */
965 __cpuinit int unsynchronized_tsc(void)
966 {
967 #ifdef CONFIG_SMP
968 if (apic_is_clustered_box())
969 return 1;
970 #endif
971 /* Most intel systems have synchronized TSCs except for
972 multi node systems */
973 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
974 #ifdef CONFIG_ACPI
975 /* But TSC doesn't tick in C3 so don't use it there */
976 if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 100)
977 return 1;
978 #endif
979 return 0;
980 }
981
982 /* Assume multi socket systems are not synchronized */
983 return num_present_cpus() > 1;
984 }
985
986 /*
987 * Decide what mode gettimeofday should use.
988 */
989 void time_init_gtod(void)
990 {
991 char *timetype;
992
993 if (unsynchronized_tsc())
994 notsc = 1;
995
996 if (vxtime.hpet_address && notsc) {
997 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
998 if (hpet_use_timer)
999 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1000 else
1001 vxtime.last = hpet_readl(HPET_COUNTER);
1002 vxtime.mode = VXTIME_HPET;
1003 do_gettimeoffset = do_gettimeoffset_hpet;
1004 #ifdef CONFIG_X86_PM_TIMER
1005 /* Using PM for gettimeofday is quite slow, but we have no other
1006 choice because the TSC is too unreliable on some systems. */
1007 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1008 timetype = "PM";
1009 do_gettimeoffset = do_gettimeoffset_pm;
1010 vxtime.mode = VXTIME_PMTMR;
1011 sysctl_vsyscall = 0;
1012 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1013 #endif
1014 } else {
1015 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1016 vxtime.mode = VXTIME_TSC;
1017 }
1018
1019 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
1020 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
1021 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
1022 cpu_khz / 1000, cpu_khz % 1000);
1023 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
1024 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1025 vxtime.last_tsc = get_cycles_sync();
1026
1027 set_cyc2ns_scale(cpu_khz);
1028 }
1029
1030 __setup("report_lost_ticks", time_setup);
1031
1032 static long clock_cmos_diff;
1033 static unsigned long sleep_start;
1034
1035 /*
1036 * sysfs support for the timer.
1037 */
1038
1039 static int timer_suspend(struct sys_device *dev, pm_message_t state)
1040 {
1041 /*
1042 * Estimate time zone so that set_time can update the clock
1043 */
1044 long cmos_time = get_cmos_time();
1045
1046 clock_cmos_diff = -cmos_time;
1047 clock_cmos_diff += get_seconds();
1048 sleep_start = cmos_time;
1049 return 0;
1050 }
1051
1052 static int timer_resume(struct sys_device *dev)
1053 {
1054 unsigned long flags;
1055 unsigned long sec;
1056 unsigned long ctime = get_cmos_time();
1057 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1058
1059 if (vxtime.hpet_address)
1060 hpet_reenable();
1061 else
1062 i8254_timer_resume();
1063
1064 sec = ctime + clock_cmos_diff;
1065 write_seqlock_irqsave(&xtime_lock,flags);
1066 xtime.tv_sec = sec;
1067 xtime.tv_nsec = 0;
1068 if (vxtime.mode == VXTIME_HPET) {
1069 if (hpet_use_timer)
1070 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1071 else
1072 vxtime.last = hpet_readl(HPET_COUNTER);
1073 #ifdef CONFIG_X86_PM_TIMER
1074 } else if (vxtime.mode == VXTIME_PMTMR) {
1075 pmtimer_resume();
1076 #endif
1077 } else
1078 vxtime.last_tsc = get_cycles_sync();
1079 write_sequnlock_irqrestore(&xtime_lock,flags);
1080 jiffies += sleep_length;
1081 wall_jiffies += sleep_length;
1082 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
1083 touch_softlockup_watchdog();
1084 return 0;
1085 }
1086
1087 static struct sysdev_class timer_sysclass = {
1088 .resume = timer_resume,
1089 .suspend = timer_suspend,
1090 set_kset_name("timer"),
1091 };
1092
1093 /* XXX this driverfs stuff should probably go elsewhere later -john */
1094 static struct sys_device device_timer = {
1095 .id = 0,
1096 .cls = &timer_sysclass,
1097 };
1098
1099 static int time_init_device(void)
1100 {
1101 int error = sysdev_class_register(&timer_sysclass);
1102 if (!error)
1103 error = sysdev_register(&device_timer);
1104 return error;
1105 }
1106
1107 device_initcall(time_init_device);
1108
1109 #ifdef CONFIG_HPET_EMULATE_RTC
1110 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1111 * is enabled, we support RTC interrupt functionality in software.
1112 * RTC has 3 kinds of interrupts:
1113 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1114 * is updated
1115 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1116 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1117 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1118 * (1) and (2) above are implemented using polling at a frequency of
1119 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1120 * overhead. (DEFAULT_RTC_INT_FREQ)
1121 * For (3), we use interrupts at 64Hz or user specified periodic
1122 * frequency, whichever is higher.
1123 */
1124 #include <linux/rtc.h>
1125
1126 #define DEFAULT_RTC_INT_FREQ 64
1127 #define RTC_NUM_INTS 1
1128
1129 static unsigned long UIE_on;
1130 static unsigned long prev_update_sec;
1131
1132 static unsigned long AIE_on;
1133 static struct rtc_time alarm_time;
1134
1135 static unsigned long PIE_on;
1136 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1137 static unsigned long PIE_count;
1138
1139 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
1140 static unsigned int hpet_t1_cmp; /* cached comparator register */
1141
1142 int is_hpet_enabled(void)
1143 {
1144 return vxtime.hpet_address != 0;
1145 }
1146
1147 /*
1148 * Timer 1 for RTC, we do not use periodic interrupt feature,
1149 * even if HPET supports periodic interrupts on Timer 1.
1150 * The reason being, to set up a periodic interrupt in HPET, we need to
1151 * stop the main counter. And if we do that everytime someone diables/enables
1152 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1153 * So, for the time being, simulate the periodic interrupt in software.
1154 *
1155 * hpet_rtc_timer_init() is called for the first time and during subsequent
1156 * interuppts reinit happens through hpet_rtc_timer_reinit().
1157 */
1158 int hpet_rtc_timer_init(void)
1159 {
1160 unsigned int cfg, cnt;
1161 unsigned long flags;
1162
1163 if (!is_hpet_enabled())
1164 return 0;
1165 /*
1166 * Set the counter 1 and enable the interrupts.
1167 */
1168 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1169 hpet_rtc_int_freq = PIE_freq;
1170 else
1171 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1172
1173 local_irq_save(flags);
1174 cnt = hpet_readl(HPET_COUNTER);
1175 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1176 hpet_writel(cnt, HPET_T1_CMP);
1177 hpet_t1_cmp = cnt;
1178 local_irq_restore(flags);
1179
1180 cfg = hpet_readl(HPET_T1_CFG);
1181 cfg &= ~HPET_TN_PERIODIC;
1182 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1183 hpet_writel(cfg, HPET_T1_CFG);
1184
1185 return 1;
1186 }
1187
1188 static void hpet_rtc_timer_reinit(void)
1189 {
1190 unsigned int cfg, cnt;
1191
1192 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1193 cfg = hpet_readl(HPET_T1_CFG);
1194 cfg &= ~HPET_TN_ENABLE;
1195 hpet_writel(cfg, HPET_T1_CFG);
1196 return;
1197 }
1198
1199 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1200 hpet_rtc_int_freq = PIE_freq;
1201 else
1202 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1203
1204 /* It is more accurate to use the comparator value than current count.*/
1205 cnt = hpet_t1_cmp;
1206 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1207 hpet_writel(cnt, HPET_T1_CMP);
1208 hpet_t1_cmp = cnt;
1209 }
1210
1211 /*
1212 * The functions below are called from rtc driver.
1213 * Return 0 if HPET is not being used.
1214 * Otherwise do the necessary changes and return 1.
1215 */
1216 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1217 {
1218 if (!is_hpet_enabled())
1219 return 0;
1220
1221 if (bit_mask & RTC_UIE)
1222 UIE_on = 0;
1223 if (bit_mask & RTC_PIE)
1224 PIE_on = 0;
1225 if (bit_mask & RTC_AIE)
1226 AIE_on = 0;
1227
1228 return 1;
1229 }
1230
1231 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1232 {
1233 int timer_init_reqd = 0;
1234
1235 if (!is_hpet_enabled())
1236 return 0;
1237
1238 if (!(PIE_on | AIE_on | UIE_on))
1239 timer_init_reqd = 1;
1240
1241 if (bit_mask & RTC_UIE) {
1242 UIE_on = 1;
1243 }
1244 if (bit_mask & RTC_PIE) {
1245 PIE_on = 1;
1246 PIE_count = 0;
1247 }
1248 if (bit_mask & RTC_AIE) {
1249 AIE_on = 1;
1250 }
1251
1252 if (timer_init_reqd)
1253 hpet_rtc_timer_init();
1254
1255 return 1;
1256 }
1257
1258 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1259 {
1260 if (!is_hpet_enabled())
1261 return 0;
1262
1263 alarm_time.tm_hour = hrs;
1264 alarm_time.tm_min = min;
1265 alarm_time.tm_sec = sec;
1266
1267 return 1;
1268 }
1269
1270 int hpet_set_periodic_freq(unsigned long freq)
1271 {
1272 if (!is_hpet_enabled())
1273 return 0;
1274
1275 PIE_freq = freq;
1276 PIE_count = 0;
1277
1278 return 1;
1279 }
1280
1281 int hpet_rtc_dropped_irq(void)
1282 {
1283 if (!is_hpet_enabled())
1284 return 0;
1285
1286 return 1;
1287 }
1288
1289 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1290 {
1291 struct rtc_time curr_time;
1292 unsigned long rtc_int_flag = 0;
1293 int call_rtc_interrupt = 0;
1294
1295 hpet_rtc_timer_reinit();
1296
1297 if (UIE_on | AIE_on) {
1298 rtc_get_rtc_time(&curr_time);
1299 }
1300 if (UIE_on) {
1301 if (curr_time.tm_sec != prev_update_sec) {
1302 /* Set update int info, call real rtc int routine */
1303 call_rtc_interrupt = 1;
1304 rtc_int_flag = RTC_UF;
1305 prev_update_sec = curr_time.tm_sec;
1306 }
1307 }
1308 if (PIE_on) {
1309 PIE_count++;
1310 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1311 /* Set periodic int info, call real rtc int routine */
1312 call_rtc_interrupt = 1;
1313 rtc_int_flag |= RTC_PF;
1314 PIE_count = 0;
1315 }
1316 }
1317 if (AIE_on) {
1318 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1319 (curr_time.tm_min == alarm_time.tm_min) &&
1320 (curr_time.tm_hour == alarm_time.tm_hour)) {
1321 /* Set alarm int info, call real rtc int routine */
1322 call_rtc_interrupt = 1;
1323 rtc_int_flag |= RTC_AF;
1324 }
1325 }
1326 if (call_rtc_interrupt) {
1327 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1328 rtc_interrupt(rtc_int_flag, dev_id, regs);
1329 }
1330 return IRQ_HANDLED;
1331 }
1332 #endif
1333
1334 static int __init nohpet_setup(char *s)
1335 {
1336 nohpet = 1;
1337 return 1;
1338 }
1339
1340 __setup("nohpet", nohpet_setup);
1341
1342 int __init notsc_setup(char *s)
1343 {
1344 notsc = 1;
1345 return 1;
1346 }
1347
1348 __setup("notsc", notsc_setup);