]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86_64/kernel/traps.c
[PATCH] x86: Allow users to force a panic on NMI
[mirror_ubuntu-zesty-kernel.git] / arch / x86_64 / kernel / traps.c
1 /*
2 * linux/arch/x86-64/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11 /*
12 * 'Traps.c' handles hardware traps and faults after we have saved some
13 * state in 'entry.S'.
14 */
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/nmi.h>
29 #include <linux/kprobes.h>
30 #include <linux/kexec.h>
31 #include <linux/unwind.h>
32
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/atomic.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/i387.h>
40 #include <asm/kdebug.h>
41 #include <asm/processor.h>
42 #include <asm/unwind.h>
43 #include <asm/smp.h>
44 #include <asm/pgalloc.h>
45 #include <asm/pda.h>
46 #include <asm/proto.h>
47 #include <asm/nmi.h>
48
49 asmlinkage void divide_error(void);
50 asmlinkage void debug(void);
51 asmlinkage void nmi(void);
52 asmlinkage void int3(void);
53 asmlinkage void overflow(void);
54 asmlinkage void bounds(void);
55 asmlinkage void invalid_op(void);
56 asmlinkage void device_not_available(void);
57 asmlinkage void double_fault(void);
58 asmlinkage void coprocessor_segment_overrun(void);
59 asmlinkage void invalid_TSS(void);
60 asmlinkage void segment_not_present(void);
61 asmlinkage void stack_segment(void);
62 asmlinkage void general_protection(void);
63 asmlinkage void page_fault(void);
64 asmlinkage void coprocessor_error(void);
65 asmlinkage void simd_coprocessor_error(void);
66 asmlinkage void reserved(void);
67 asmlinkage void alignment_check(void);
68 asmlinkage void machine_check(void);
69 asmlinkage void spurious_interrupt_bug(void);
70
71 ATOMIC_NOTIFIER_HEAD(die_chain);
72 EXPORT_SYMBOL(die_chain);
73
74 int register_die_notifier(struct notifier_block *nb)
75 {
76 vmalloc_sync_all();
77 return atomic_notifier_chain_register(&die_chain, nb);
78 }
79 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
80
81 int unregister_die_notifier(struct notifier_block *nb)
82 {
83 return atomic_notifier_chain_unregister(&die_chain, nb);
84 }
85 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
86
87 static inline void conditional_sti(struct pt_regs *regs)
88 {
89 if (regs->eflags & X86_EFLAGS_IF)
90 local_irq_enable();
91 }
92
93 static inline void preempt_conditional_sti(struct pt_regs *regs)
94 {
95 preempt_disable();
96 if (regs->eflags & X86_EFLAGS_IF)
97 local_irq_enable();
98 }
99
100 static inline void preempt_conditional_cli(struct pt_regs *regs)
101 {
102 if (regs->eflags & X86_EFLAGS_IF)
103 local_irq_disable();
104 /* Make sure to not schedule here because we could be running
105 on an exception stack. */
106 preempt_enable_no_resched();
107 }
108
109 static int kstack_depth_to_print = 12;
110 #ifdef CONFIG_STACK_UNWIND
111 static int call_trace = 1;
112 #else
113 #define call_trace (-1)
114 #endif
115
116 #ifdef CONFIG_KALLSYMS
117 # include <linux/kallsyms.h>
118 void printk_address(unsigned long address)
119 {
120 unsigned long offset = 0, symsize;
121 const char *symname;
122 char *modname;
123 char *delim = ":";
124 char namebuf[128];
125
126 symname = kallsyms_lookup(address, &symsize, &offset,
127 &modname, namebuf);
128 if (!symname) {
129 printk(" [<%016lx>]\n", address);
130 return;
131 }
132 if (!modname)
133 modname = delim = "";
134 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
135 address, delim, modname, delim, symname, offset, symsize);
136 }
137 #else
138 void printk_address(unsigned long address)
139 {
140 printk(" [<%016lx>]\n", address);
141 }
142 #endif
143
144 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
145 unsigned *usedp, const char **idp)
146 {
147 static char ids[][8] = {
148 [DEBUG_STACK - 1] = "#DB",
149 [NMI_STACK - 1] = "NMI",
150 [DOUBLEFAULT_STACK - 1] = "#DF",
151 [STACKFAULT_STACK - 1] = "#SS",
152 [MCE_STACK - 1] = "#MC",
153 #if DEBUG_STKSZ > EXCEPTION_STKSZ
154 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
155 #endif
156 };
157 unsigned k;
158
159 /*
160 * Iterate over all exception stacks, and figure out whether
161 * 'stack' is in one of them:
162 */
163 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
164 unsigned long end;
165
166 /*
167 * set 'end' to the end of the exception stack.
168 */
169 switch (k + 1) {
170 /*
171 * TODO: this block is not needed i think, because
172 * setup64.c:cpu_init() sets up t->ist[DEBUG_STACK]
173 * properly too.
174 */
175 #if DEBUG_STKSZ > EXCEPTION_STKSZ
176 case DEBUG_STACK:
177 end = cpu_pda(cpu)->debugstack + DEBUG_STKSZ;
178 break;
179 #endif
180 default:
181 end = per_cpu(orig_ist, cpu).ist[k];
182 break;
183 }
184 /*
185 * Is 'stack' above this exception frame's end?
186 * If yes then skip to the next frame.
187 */
188 if (stack >= end)
189 continue;
190 /*
191 * Is 'stack' above this exception frame's start address?
192 * If yes then we found the right frame.
193 */
194 if (stack >= end - EXCEPTION_STKSZ) {
195 /*
196 * Make sure we only iterate through an exception
197 * stack once. If it comes up for the second time
198 * then there's something wrong going on - just
199 * break out and return NULL:
200 */
201 if (*usedp & (1U << k))
202 break;
203 *usedp |= 1U << k;
204 *idp = ids[k];
205 return (unsigned long *)end;
206 }
207 /*
208 * If this is a debug stack, and if it has a larger size than
209 * the usual exception stacks, then 'stack' might still
210 * be within the lower portion of the debug stack:
211 */
212 #if DEBUG_STKSZ > EXCEPTION_STKSZ
213 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
214 unsigned j = N_EXCEPTION_STACKS - 1;
215
216 /*
217 * Black magic. A large debug stack is composed of
218 * multiple exception stack entries, which we
219 * iterate through now. Dont look:
220 */
221 do {
222 ++j;
223 end -= EXCEPTION_STKSZ;
224 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
225 } while (stack < end - EXCEPTION_STKSZ);
226 if (*usedp & (1U << j))
227 break;
228 *usedp |= 1U << j;
229 *idp = ids[j];
230 return (unsigned long *)end;
231 }
232 #endif
233 }
234 return NULL;
235 }
236
237 static int show_trace_unwind(struct unwind_frame_info *info, void *context)
238 {
239 int n = 0;
240
241 while (unwind(info) == 0 && UNW_PC(info)) {
242 n++;
243 printk_address(UNW_PC(info));
244 if (arch_unw_user_mode(info))
245 break;
246 }
247 return n;
248 }
249
250 /*
251 * x86-64 can have upto three kernel stacks:
252 * process stack
253 * interrupt stack
254 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
255 */
256
257 void show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long * stack)
258 {
259 const unsigned cpu = safe_smp_processor_id();
260 unsigned long *irqstack_end = (unsigned long *)cpu_pda(cpu)->irqstackptr;
261 unsigned used = 0;
262
263 printk("\nCall Trace:\n");
264
265 if (!tsk)
266 tsk = current;
267
268 if (call_trace >= 0) {
269 int unw_ret = 0;
270 struct unwind_frame_info info;
271
272 if (regs) {
273 if (unwind_init_frame_info(&info, tsk, regs) == 0)
274 unw_ret = show_trace_unwind(&info, NULL);
275 } else if (tsk == current)
276 unw_ret = unwind_init_running(&info, show_trace_unwind, NULL);
277 else {
278 if (unwind_init_blocked(&info, tsk) == 0)
279 unw_ret = show_trace_unwind(&info, NULL);
280 }
281 if (unw_ret > 0) {
282 if (call_trace == 1 && !arch_unw_user_mode(&info)) {
283 print_symbol("DWARF2 unwinder stuck at %s\n",
284 UNW_PC(&info));
285 if ((long)UNW_SP(&info) < 0) {
286 printk("Leftover inexact backtrace:\n");
287 stack = (unsigned long *)UNW_SP(&info);
288 } else
289 printk("Full inexact backtrace again:\n");
290 } else if (call_trace >= 1)
291 return;
292 else
293 printk("Full inexact backtrace again:\n");
294 } else
295 printk("Inexact backtrace:\n");
296 }
297
298 /*
299 * Print function call entries within a stack. 'cond' is the
300 * "end of stackframe" condition, that the 'stack++'
301 * iteration will eventually trigger.
302 */
303 #define HANDLE_STACK(cond) \
304 do while (cond) { \
305 unsigned long addr = *stack++; \
306 if (kernel_text_address(addr)) { \
307 /* \
308 * If the address is either in the text segment of the \
309 * kernel, or in the region which contains vmalloc'ed \
310 * memory, it *may* be the address of a calling \
311 * routine; if so, print it so that someone tracing \
312 * down the cause of the crash will be able to figure \
313 * out the call path that was taken. \
314 */ \
315 printk_address(addr); \
316 } \
317 } while (0)
318
319 /*
320 * Print function call entries in all stacks, starting at the
321 * current stack address. If the stacks consist of nested
322 * exceptions
323 */
324 for ( ; ; ) {
325 const char *id;
326 unsigned long *estack_end;
327 estack_end = in_exception_stack(cpu, (unsigned long)stack,
328 &used, &id);
329
330 if (estack_end) {
331 printk(" <%s>", id);
332 HANDLE_STACK (stack < estack_end);
333 printk(" <EOE>");
334 /*
335 * We link to the next stack via the
336 * second-to-last pointer (index -2 to end) in the
337 * exception stack:
338 */
339 stack = (unsigned long *) estack_end[-2];
340 continue;
341 }
342 if (irqstack_end) {
343 unsigned long *irqstack;
344 irqstack = irqstack_end -
345 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
346
347 if (stack >= irqstack && stack < irqstack_end) {
348 printk(" <IRQ>");
349 HANDLE_STACK (stack < irqstack_end);
350 /*
351 * We link to the next stack (which would be
352 * the process stack normally) the last
353 * pointer (index -1 to end) in the IRQ stack:
354 */
355 stack = (unsigned long *) (irqstack_end[-1]);
356 irqstack_end = NULL;
357 printk(" <EOI>");
358 continue;
359 }
360 }
361 break;
362 }
363
364 /*
365 * This prints the process stack:
366 */
367 HANDLE_STACK (((long) stack & (THREAD_SIZE-1)) != 0);
368 #undef HANDLE_STACK
369
370 printk("\n");
371 }
372
373 static void _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long * rsp)
374 {
375 unsigned long *stack;
376 int i;
377 const int cpu = safe_smp_processor_id();
378 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
379 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
380
381 // debugging aid: "show_stack(NULL, NULL);" prints the
382 // back trace for this cpu.
383
384 if (rsp == NULL) {
385 if (tsk)
386 rsp = (unsigned long *)tsk->thread.rsp;
387 else
388 rsp = (unsigned long *)&rsp;
389 }
390
391 stack = rsp;
392 for(i=0; i < kstack_depth_to_print; i++) {
393 if (stack >= irqstack && stack <= irqstack_end) {
394 if (stack == irqstack_end) {
395 stack = (unsigned long *) (irqstack_end[-1]);
396 printk(" <EOI> ");
397 }
398 } else {
399 if (((long) stack & (THREAD_SIZE-1)) == 0)
400 break;
401 }
402 if (i && ((i % 4) == 0))
403 printk("\n");
404 printk(" %016lx", *stack++);
405 touch_nmi_watchdog();
406 }
407 show_trace(tsk, regs, rsp);
408 }
409
410 void show_stack(struct task_struct *tsk, unsigned long * rsp)
411 {
412 _show_stack(tsk, NULL, rsp);
413 }
414
415 /*
416 * The architecture-independent dump_stack generator
417 */
418 void dump_stack(void)
419 {
420 unsigned long dummy;
421 show_trace(NULL, NULL, &dummy);
422 }
423
424 EXPORT_SYMBOL(dump_stack);
425
426 void show_registers(struct pt_regs *regs)
427 {
428 int i;
429 int in_kernel = !user_mode(regs);
430 unsigned long rsp;
431 const int cpu = safe_smp_processor_id();
432 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
433
434 rsp = regs->rsp;
435
436 printk("CPU %d ", cpu);
437 __show_regs(regs);
438 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
439 cur->comm, cur->pid, task_thread_info(cur), cur);
440
441 /*
442 * When in-kernel, we also print out the stack and code at the
443 * time of the fault..
444 */
445 if (in_kernel) {
446
447 printk("Stack: ");
448 _show_stack(NULL, regs, (unsigned long*)rsp);
449
450 printk("\nCode: ");
451 if (regs->rip < PAGE_OFFSET)
452 goto bad;
453
454 for (i=0; i<20; i++) {
455 unsigned char c;
456 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
457 bad:
458 printk(" Bad RIP value.");
459 break;
460 }
461 printk("%02x ", c);
462 }
463 }
464 printk("\n");
465 }
466
467 void handle_BUG(struct pt_regs *regs)
468 {
469 struct bug_frame f;
470 long len;
471 const char *prefix = "";
472
473 if (user_mode(regs))
474 return;
475 if (__copy_from_user(&f, (const void __user *) regs->rip,
476 sizeof(struct bug_frame)))
477 return;
478 if (f.filename >= 0 ||
479 f.ud2[0] != 0x0f || f.ud2[1] != 0x0b)
480 return;
481 len = __strnlen_user((char *)(long)f.filename, PATH_MAX) - 1;
482 if (len < 0 || len >= PATH_MAX)
483 f.filename = (int)(long)"unmapped filename";
484 else if (len > 50) {
485 f.filename += len - 50;
486 prefix = "...";
487 }
488 printk("----------- [cut here ] --------- [please bite here ] ---------\n");
489 printk(KERN_ALERT "Kernel BUG at %s%.50s:%d\n", prefix, (char *)(long)f.filename, f.line);
490 }
491
492 #ifdef CONFIG_BUG
493 void out_of_line_bug(void)
494 {
495 BUG();
496 }
497 EXPORT_SYMBOL(out_of_line_bug);
498 #endif
499
500 static DEFINE_SPINLOCK(die_lock);
501 static int die_owner = -1;
502 static unsigned int die_nest_count;
503
504 unsigned __kprobes long oops_begin(void)
505 {
506 int cpu = safe_smp_processor_id();
507 unsigned long flags;
508
509 /* racy, but better than risking deadlock. */
510 local_irq_save(flags);
511 if (!spin_trylock(&die_lock)) {
512 if (cpu == die_owner)
513 /* nested oops. should stop eventually */;
514 else
515 spin_lock(&die_lock);
516 }
517 die_nest_count++;
518 die_owner = cpu;
519 console_verbose();
520 bust_spinlocks(1);
521 return flags;
522 }
523
524 void __kprobes oops_end(unsigned long flags)
525 {
526 die_owner = -1;
527 bust_spinlocks(0);
528 die_nest_count--;
529 if (die_nest_count)
530 /* We still own the lock */
531 local_irq_restore(flags);
532 else
533 /* Nest count reaches zero, release the lock. */
534 spin_unlock_irqrestore(&die_lock, flags);
535 if (panic_on_oops)
536 panic("Fatal exception");
537 }
538
539 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
540 {
541 static int die_counter;
542 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
543 #ifdef CONFIG_PREEMPT
544 printk("PREEMPT ");
545 #endif
546 #ifdef CONFIG_SMP
547 printk("SMP ");
548 #endif
549 #ifdef CONFIG_DEBUG_PAGEALLOC
550 printk("DEBUG_PAGEALLOC");
551 #endif
552 printk("\n");
553 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
554 show_registers(regs);
555 /* Executive summary in case the oops scrolled away */
556 printk(KERN_ALERT "RIP ");
557 printk_address(regs->rip);
558 printk(" RSP <%016lx>\n", regs->rsp);
559 if (kexec_should_crash(current))
560 crash_kexec(regs);
561 }
562
563 void die(const char * str, struct pt_regs * regs, long err)
564 {
565 unsigned long flags = oops_begin();
566
567 handle_BUG(regs);
568 __die(str, regs, err);
569 oops_end(flags);
570 do_exit(SIGSEGV);
571 }
572
573 void __kprobes die_nmi(char *str, struct pt_regs *regs)
574 {
575 unsigned long flags = oops_begin();
576
577 /*
578 * We are in trouble anyway, lets at least try
579 * to get a message out.
580 */
581 printk(str, safe_smp_processor_id());
582 show_registers(regs);
583 if (kexec_should_crash(current))
584 crash_kexec(regs);
585 if (panic_on_timeout || panic_on_oops)
586 panic("nmi watchdog");
587 printk("console shuts up ...\n");
588 oops_end(flags);
589 nmi_exit();
590 local_irq_enable();
591 do_exit(SIGSEGV);
592 }
593
594 static void __kprobes do_trap(int trapnr, int signr, char *str,
595 struct pt_regs * regs, long error_code,
596 siginfo_t *info)
597 {
598 struct task_struct *tsk = current;
599
600 tsk->thread.error_code = error_code;
601 tsk->thread.trap_no = trapnr;
602
603 if (user_mode(regs)) {
604 if (exception_trace && unhandled_signal(tsk, signr))
605 printk(KERN_INFO
606 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
607 tsk->comm, tsk->pid, str,
608 regs->rip, regs->rsp, error_code);
609
610 if (info)
611 force_sig_info(signr, info, tsk);
612 else
613 force_sig(signr, tsk);
614 return;
615 }
616
617
618 /* kernel trap */
619 {
620 const struct exception_table_entry *fixup;
621 fixup = search_exception_tables(regs->rip);
622 if (fixup)
623 regs->rip = fixup->fixup;
624 else
625 die(str, regs, error_code);
626 return;
627 }
628 }
629
630 #define DO_ERROR(trapnr, signr, str, name) \
631 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
632 { \
633 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
634 == NOTIFY_STOP) \
635 return; \
636 conditional_sti(regs); \
637 do_trap(trapnr, signr, str, regs, error_code, NULL); \
638 }
639
640 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
641 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
642 { \
643 siginfo_t info; \
644 info.si_signo = signr; \
645 info.si_errno = 0; \
646 info.si_code = sicode; \
647 info.si_addr = (void __user *)siaddr; \
648 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
649 == NOTIFY_STOP) \
650 return; \
651 conditional_sti(regs); \
652 do_trap(trapnr, signr, str, regs, error_code, &info); \
653 }
654
655 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
656 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
657 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
658 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
659 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
660 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
661 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
662 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
663 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
664 DO_ERROR(18, SIGSEGV, "reserved", reserved)
665
666 /* Runs on IST stack */
667 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
668 {
669 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
670 12, SIGBUS) == NOTIFY_STOP)
671 return;
672 preempt_conditional_sti(regs);
673 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
674 preempt_conditional_cli(regs);
675 }
676
677 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
678 {
679 static const char str[] = "double fault";
680 struct task_struct *tsk = current;
681
682 /* Return not checked because double check cannot be ignored */
683 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
684
685 tsk->thread.error_code = error_code;
686 tsk->thread.trap_no = 8;
687
688 /* This is always a kernel trap and never fixable (and thus must
689 never return). */
690 for (;;)
691 die(str, regs, error_code);
692 }
693
694 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
695 long error_code)
696 {
697 struct task_struct *tsk = current;
698
699 conditional_sti(regs);
700
701 tsk->thread.error_code = error_code;
702 tsk->thread.trap_no = 13;
703
704 if (user_mode(regs)) {
705 if (exception_trace && unhandled_signal(tsk, SIGSEGV))
706 printk(KERN_INFO
707 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
708 tsk->comm, tsk->pid,
709 regs->rip, regs->rsp, error_code);
710
711 force_sig(SIGSEGV, tsk);
712 return;
713 }
714
715 /* kernel gp */
716 {
717 const struct exception_table_entry *fixup;
718 fixup = search_exception_tables(regs->rip);
719 if (fixup) {
720 regs->rip = fixup->fixup;
721 return;
722 }
723 if (notify_die(DIE_GPF, "general protection fault", regs,
724 error_code, 13, SIGSEGV) == NOTIFY_STOP)
725 return;
726 die("general protection fault", regs, error_code);
727 }
728 }
729
730 static __kprobes void
731 mem_parity_error(unsigned char reason, struct pt_regs * regs)
732 {
733 printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
734 printk("You probably have a hardware problem with your RAM chips\n");
735 if (panic_on_unrecovered_nmi)
736 panic("NMI: Not continuing");
737
738 /* Clear and disable the memory parity error line. */
739 reason = (reason & 0xf) | 4;
740 outb(reason, 0x61);
741 }
742
743 static __kprobes void
744 io_check_error(unsigned char reason, struct pt_regs * regs)
745 {
746 printk("NMI: IOCK error (debug interrupt?)\n");
747 show_registers(regs);
748
749 /* Re-enable the IOCK line, wait for a few seconds */
750 reason = (reason & 0xf) | 8;
751 outb(reason, 0x61);
752 mdelay(2000);
753 reason &= ~8;
754 outb(reason, 0x61);
755 }
756
757 static __kprobes void
758 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
759 { printk("Uhhuh. NMI received for unknown reason %02x.\n", reason);
760 printk("Dazed and confused, but trying to continue\n");
761 printk("Do you have a strange power saving mode enabled?\n");
762
763 if (panic_on_unrecovered_nmi)
764 panic("NMI: Not continuing");
765
766 }
767
768 /* Runs on IST stack. This code must keep interrupts off all the time.
769 Nested NMIs are prevented by the CPU. */
770 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
771 {
772 unsigned char reason = 0;
773 int cpu;
774
775 cpu = smp_processor_id();
776
777 /* Only the BSP gets external NMIs from the system. */
778 if (!cpu)
779 reason = get_nmi_reason();
780
781 if (!(reason & 0xc0)) {
782 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
783 == NOTIFY_STOP)
784 return;
785 #ifdef CONFIG_X86_LOCAL_APIC
786 /*
787 * Ok, so this is none of the documented NMI sources,
788 * so it must be the NMI watchdog.
789 */
790 if (nmi_watchdog_tick(regs,reason))
791 return;
792 if (!do_nmi_callback(regs,cpu))
793 #endif
794 unknown_nmi_error(reason, regs);
795
796 return;
797 }
798 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
799 return;
800
801 /* AK: following checks seem to be broken on modern chipsets. FIXME */
802
803 if (reason & 0x80)
804 mem_parity_error(reason, regs);
805 if (reason & 0x40)
806 io_check_error(reason, regs);
807 }
808
809 /* runs on IST stack. */
810 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
811 {
812 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
813 return;
814 }
815 preempt_conditional_sti(regs);
816 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
817 preempt_conditional_cli(regs);
818 }
819
820 /* Help handler running on IST stack to switch back to user stack
821 for scheduling or signal handling. The actual stack switch is done in
822 entry.S */
823 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
824 {
825 struct pt_regs *regs = eregs;
826 /* Did already sync */
827 if (eregs == (struct pt_regs *)eregs->rsp)
828 ;
829 /* Exception from user space */
830 else if (user_mode(eregs))
831 regs = task_pt_regs(current);
832 /* Exception from kernel and interrupts are enabled. Move to
833 kernel process stack. */
834 else if (eregs->eflags & X86_EFLAGS_IF)
835 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
836 if (eregs != regs)
837 *regs = *eregs;
838 return regs;
839 }
840
841 /* runs on IST stack. */
842 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
843 unsigned long error_code)
844 {
845 unsigned long condition;
846 struct task_struct *tsk = current;
847 siginfo_t info;
848
849 get_debugreg(condition, 6);
850
851 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
852 SIGTRAP) == NOTIFY_STOP)
853 return;
854
855 preempt_conditional_sti(regs);
856
857 /* Mask out spurious debug traps due to lazy DR7 setting */
858 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
859 if (!tsk->thread.debugreg7) {
860 goto clear_dr7;
861 }
862 }
863
864 tsk->thread.debugreg6 = condition;
865
866 /* Mask out spurious TF errors due to lazy TF clearing */
867 if (condition & DR_STEP) {
868 /*
869 * The TF error should be masked out only if the current
870 * process is not traced and if the TRAP flag has been set
871 * previously by a tracing process (condition detected by
872 * the PT_DTRACE flag); remember that the i386 TRAP flag
873 * can be modified by the process itself in user mode,
874 * allowing programs to debug themselves without the ptrace()
875 * interface.
876 */
877 if (!user_mode(regs))
878 goto clear_TF_reenable;
879 /*
880 * Was the TF flag set by a debugger? If so, clear it now,
881 * so that register information is correct.
882 */
883 if (tsk->ptrace & PT_DTRACE) {
884 regs->eflags &= ~TF_MASK;
885 tsk->ptrace &= ~PT_DTRACE;
886 }
887 }
888
889 /* Ok, finally something we can handle */
890 tsk->thread.trap_no = 1;
891 tsk->thread.error_code = error_code;
892 info.si_signo = SIGTRAP;
893 info.si_errno = 0;
894 info.si_code = TRAP_BRKPT;
895 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
896 force_sig_info(SIGTRAP, &info, tsk);
897
898 clear_dr7:
899 set_debugreg(0UL, 7);
900 preempt_conditional_cli(regs);
901 return;
902
903 clear_TF_reenable:
904 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
905 regs->eflags &= ~TF_MASK;
906 preempt_conditional_cli(regs);
907 }
908
909 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
910 {
911 const struct exception_table_entry *fixup;
912 fixup = search_exception_tables(regs->rip);
913 if (fixup) {
914 regs->rip = fixup->fixup;
915 return 1;
916 }
917 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
918 /* Illegal floating point operation in the kernel */
919 current->thread.trap_no = trapnr;
920 die(str, regs, 0);
921 return 0;
922 }
923
924 /*
925 * Note that we play around with the 'TS' bit in an attempt to get
926 * the correct behaviour even in the presence of the asynchronous
927 * IRQ13 behaviour
928 */
929 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
930 {
931 void __user *rip = (void __user *)(regs->rip);
932 struct task_struct * task;
933 siginfo_t info;
934 unsigned short cwd, swd;
935
936 conditional_sti(regs);
937 if (!user_mode(regs) &&
938 kernel_math_error(regs, "kernel x87 math error", 16))
939 return;
940
941 /*
942 * Save the info for the exception handler and clear the error.
943 */
944 task = current;
945 save_init_fpu(task);
946 task->thread.trap_no = 16;
947 task->thread.error_code = 0;
948 info.si_signo = SIGFPE;
949 info.si_errno = 0;
950 info.si_code = __SI_FAULT;
951 info.si_addr = rip;
952 /*
953 * (~cwd & swd) will mask out exceptions that are not set to unmasked
954 * status. 0x3f is the exception bits in these regs, 0x200 is the
955 * C1 reg you need in case of a stack fault, 0x040 is the stack
956 * fault bit. We should only be taking one exception at a time,
957 * so if this combination doesn't produce any single exception,
958 * then we have a bad program that isn't synchronizing its FPU usage
959 * and it will suffer the consequences since we won't be able to
960 * fully reproduce the context of the exception
961 */
962 cwd = get_fpu_cwd(task);
963 swd = get_fpu_swd(task);
964 switch (swd & ~cwd & 0x3f) {
965 case 0x000:
966 default:
967 break;
968 case 0x001: /* Invalid Op */
969 /*
970 * swd & 0x240 == 0x040: Stack Underflow
971 * swd & 0x240 == 0x240: Stack Overflow
972 * User must clear the SF bit (0x40) if set
973 */
974 info.si_code = FPE_FLTINV;
975 break;
976 case 0x002: /* Denormalize */
977 case 0x010: /* Underflow */
978 info.si_code = FPE_FLTUND;
979 break;
980 case 0x004: /* Zero Divide */
981 info.si_code = FPE_FLTDIV;
982 break;
983 case 0x008: /* Overflow */
984 info.si_code = FPE_FLTOVF;
985 break;
986 case 0x020: /* Precision */
987 info.si_code = FPE_FLTRES;
988 break;
989 }
990 force_sig_info(SIGFPE, &info, task);
991 }
992
993 asmlinkage void bad_intr(void)
994 {
995 printk("bad interrupt");
996 }
997
998 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
999 {
1000 void __user *rip = (void __user *)(regs->rip);
1001 struct task_struct * task;
1002 siginfo_t info;
1003 unsigned short mxcsr;
1004
1005 conditional_sti(regs);
1006 if (!user_mode(regs) &&
1007 kernel_math_error(regs, "kernel simd math error", 19))
1008 return;
1009
1010 /*
1011 * Save the info for the exception handler and clear the error.
1012 */
1013 task = current;
1014 save_init_fpu(task);
1015 task->thread.trap_no = 19;
1016 task->thread.error_code = 0;
1017 info.si_signo = SIGFPE;
1018 info.si_errno = 0;
1019 info.si_code = __SI_FAULT;
1020 info.si_addr = rip;
1021 /*
1022 * The SIMD FPU exceptions are handled a little differently, as there
1023 * is only a single status/control register. Thus, to determine which
1024 * unmasked exception was caught we must mask the exception mask bits
1025 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1026 */
1027 mxcsr = get_fpu_mxcsr(task);
1028 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1029 case 0x000:
1030 default:
1031 break;
1032 case 0x001: /* Invalid Op */
1033 info.si_code = FPE_FLTINV;
1034 break;
1035 case 0x002: /* Denormalize */
1036 case 0x010: /* Underflow */
1037 info.si_code = FPE_FLTUND;
1038 break;
1039 case 0x004: /* Zero Divide */
1040 info.si_code = FPE_FLTDIV;
1041 break;
1042 case 0x008: /* Overflow */
1043 info.si_code = FPE_FLTOVF;
1044 break;
1045 case 0x020: /* Precision */
1046 info.si_code = FPE_FLTRES;
1047 break;
1048 }
1049 force_sig_info(SIGFPE, &info, task);
1050 }
1051
1052 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1053 {
1054 }
1055
1056 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1057 {
1058 }
1059
1060 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1061 {
1062 }
1063
1064 /*
1065 * 'math_state_restore()' saves the current math information in the
1066 * old math state array, and gets the new ones from the current task
1067 *
1068 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1069 * Don't touch unless you *really* know how it works.
1070 */
1071 asmlinkage void math_state_restore(void)
1072 {
1073 struct task_struct *me = current;
1074 clts(); /* Allow maths ops (or we recurse) */
1075
1076 if (!used_math())
1077 init_fpu(me);
1078 restore_fpu_checking(&me->thread.i387.fxsave);
1079 task_thread_info(me)->status |= TS_USEDFPU;
1080 }
1081
1082 void __init trap_init(void)
1083 {
1084 set_intr_gate(0,&divide_error);
1085 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1086 set_intr_gate_ist(2,&nmi,NMI_STACK);
1087 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1088 set_system_gate(4,&overflow); /* int4 can be called from all */
1089 set_intr_gate(5,&bounds);
1090 set_intr_gate(6,&invalid_op);
1091 set_intr_gate(7,&device_not_available);
1092 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1093 set_intr_gate(9,&coprocessor_segment_overrun);
1094 set_intr_gate(10,&invalid_TSS);
1095 set_intr_gate(11,&segment_not_present);
1096 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1097 set_intr_gate(13,&general_protection);
1098 set_intr_gate(14,&page_fault);
1099 set_intr_gate(15,&spurious_interrupt_bug);
1100 set_intr_gate(16,&coprocessor_error);
1101 set_intr_gate(17,&alignment_check);
1102 #ifdef CONFIG_X86_MCE
1103 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1104 #endif
1105 set_intr_gate(19,&simd_coprocessor_error);
1106
1107 #ifdef CONFIG_IA32_EMULATION
1108 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1109 #endif
1110
1111 /*
1112 * Should be a barrier for any external CPU state.
1113 */
1114 cpu_init();
1115 }
1116
1117
1118 /* Actual parsing is done early in setup.c. */
1119 static int __init oops_dummy(char *s)
1120 {
1121 panic_on_oops = 1;
1122 return 1;
1123 }
1124 __setup("oops=", oops_dummy);
1125
1126 static int __init kstack_setup(char *s)
1127 {
1128 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1129 return 1;
1130 }
1131 __setup("kstack=", kstack_setup);
1132
1133 #ifdef CONFIG_STACK_UNWIND
1134 static int __init call_trace_setup(char *s)
1135 {
1136 if (strcmp(s, "old") == 0)
1137 call_trace = -1;
1138 else if (strcmp(s, "both") == 0)
1139 call_trace = 0;
1140 else if (strcmp(s, "newfallback") == 0)
1141 call_trace = 1;
1142 else if (strcmp(s, "new") == 0)
1143 call_trace = 2;
1144 return 1;
1145 }
1146 __setup("call_trace=", call_trace_setup);
1147 #endif