]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/xtensa/kernel/process.c
flagday: don't pass regs to copy_thread()
[mirror_ubuntu-zesty-kernel.git] / arch / xtensa / kernel / process.c
1 /*
2 * arch/xtensa/kernel/process.c
3 *
4 * Xtensa Processor version.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 *
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15 * Kevin Chea
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
32 #include <linux/fs.h>
33 #include <linux/slab.h>
34 #include <linux/rcupdate.h>
35
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
41 #include <asm/mmu.h>
42 #include <asm/irq.h>
43 #include <linux/atomic.h>
44 #include <asm/asm-offsets.h>
45 #include <asm/regs.h>
46
47 extern void ret_from_fork(void);
48 extern void ret_from_kernel_thread(void);
49
50 struct task_struct *current_set[NR_CPUS] = {&init_task, };
51
52 void (*pm_power_off)(void) = NULL;
53 EXPORT_SYMBOL(pm_power_off);
54
55
56 #if XTENSA_HAVE_COPROCESSORS
57
58 void coprocessor_release_all(struct thread_info *ti)
59 {
60 unsigned long cpenable;
61 int i;
62
63 /* Make sure we don't switch tasks during this operation. */
64
65 preempt_disable();
66
67 /* Walk through all cp owners and release it for the requested one. */
68
69 cpenable = ti->cpenable;
70
71 for (i = 0; i < XCHAL_CP_MAX; i++) {
72 if (coprocessor_owner[i] == ti) {
73 coprocessor_owner[i] = 0;
74 cpenable &= ~(1 << i);
75 }
76 }
77
78 ti->cpenable = cpenable;
79 coprocessor_clear_cpenable();
80
81 preempt_enable();
82 }
83
84 void coprocessor_flush_all(struct thread_info *ti)
85 {
86 unsigned long cpenable;
87 int i;
88
89 preempt_disable();
90
91 cpenable = ti->cpenable;
92
93 for (i = 0; i < XCHAL_CP_MAX; i++) {
94 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
95 coprocessor_flush(ti, i);
96 cpenable >>= 1;
97 }
98
99 preempt_enable();
100 }
101
102 #endif
103
104
105 /*
106 * Powermanagement idle function, if any is provided by the platform.
107 */
108
109 void cpu_idle(void)
110 {
111 local_irq_enable();
112
113 /* endless idle loop with no priority at all */
114 while (1) {
115 rcu_idle_enter();
116 while (!need_resched())
117 platform_idle();
118 rcu_idle_exit();
119 schedule_preempt_disabled();
120 }
121 }
122
123 /*
124 * This is called when the thread calls exit().
125 */
126 void exit_thread(void)
127 {
128 #if XTENSA_HAVE_COPROCESSORS
129 coprocessor_release_all(current_thread_info());
130 #endif
131 }
132
133 /*
134 * Flush thread state. This is called when a thread does an execve()
135 * Note that we flush coprocessor registers for the case execve fails.
136 */
137 void flush_thread(void)
138 {
139 #if XTENSA_HAVE_COPROCESSORS
140 struct thread_info *ti = current_thread_info();
141 coprocessor_flush_all(ti);
142 coprocessor_release_all(ti);
143 #endif
144 }
145
146 /*
147 * this gets called so that we can store coprocessor state into memory and
148 * copy the current task into the new thread.
149 */
150 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
151 {
152 #if XTENSA_HAVE_COPROCESSORS
153 coprocessor_flush_all(task_thread_info(src));
154 #endif
155 *dst = *src;
156 return 0;
157 }
158
159 /*
160 * Copy thread.
161 *
162 * There are two modes in which this function is called:
163 * 1) Userspace thread creation,
164 * regs != NULL, usp_thread_fn is userspace stack pointer.
165 * It is expected to copy parent regs (in case CLONE_VM is not set
166 * in the clone_flags) and set up passed usp in the childregs.
167 * 2) Kernel thread creation,
168 * regs == NULL, usp_thread_fn is the function to run in the new thread
169 * and thread_fn_arg is its parameter.
170 * childregs are not used for the kernel threads.
171 *
172 * The stack layout for the new thread looks like this:
173 *
174 * +------------------------+
175 * | childregs |
176 * +------------------------+ <- thread.sp = sp in dummy-frame
177 * | dummy-frame | (saved in dummy-frame spill-area)
178 * +------------------------+
179 *
180 * We create a dummy frame to return to either ret_from_fork or
181 * ret_from_kernel_thread:
182 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
183 * sp points to itself (thread.sp)
184 * a2, a3 are unused for userspace threads,
185 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
186 *
187 * Note: This is a pristine frame, so we don't need any spill region on top of
188 * childregs.
189 *
190 * The fun part: if we're keeping the same VM (i.e. cloning a thread,
191 * not an entire process), we're normally given a new usp, and we CANNOT share
192 * any live address register windows. If we just copy those live frames over,
193 * the two threads (parent and child) will overflow the same frames onto the
194 * parent stack at different times, likely corrupting the parent stack (esp.
195 * if the parent returns from functions that called clone() and calls new
196 * ones, before the child overflows its now old copies of its parent windows).
197 * One solution is to spill windows to the parent stack, but that's fairly
198 * involved. Much simpler to just not copy those live frames across.
199 */
200
201 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
202 unsigned long thread_fn_arg, struct task_struct *p)
203 {
204 struct pt_regs *childregs = task_pt_regs(p);
205
206 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
207 struct thread_info *ti;
208 #endif
209
210 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
211 *((int*)childregs - 3) = (unsigned long)childregs;
212 *((int*)childregs - 4) = 0;
213
214 p->thread.sp = (unsigned long)childregs;
215
216 if (!(p->flags & PF_KTHREAD)) {
217 struct pt_regs *regs = current_pt_regs();
218 unsigned long usp = usp_thread_fn ?
219 usp_thread_fn : regs->areg[1];
220
221 p->thread.ra = MAKE_RA_FOR_CALL(
222 (unsigned long)ret_from_fork, 0x1);
223
224 /* This does not copy all the regs.
225 * In a bout of brilliance or madness,
226 * ARs beyond a0-a15 exist past the end of the struct.
227 */
228 *childregs = *regs;
229 childregs->areg[1] = usp;
230 childregs->areg[2] = 0;
231
232 /* When sharing memory with the parent thread, the child
233 usually starts on a pristine stack, so we have to reset
234 windowbase, windowstart and wmask.
235 (Note that such a new thread is required to always create
236 an initial call4 frame)
237 The exception is vfork, where the new thread continues to
238 run on the parent's stack until it calls execve. This could
239 be a call8 or call12, which requires a legal stack frame
240 of the previous caller for the overflow handlers to work.
241 (Note that it's always legal to overflow live registers).
242 In this case, ensure to spill at least the stack pointer
243 of that frame. */
244
245 if (clone_flags & CLONE_VM) {
246 /* check that caller window is live and same stack */
247 int len = childregs->wmask & ~0xf;
248 if (regs->areg[1] == usp && len != 0) {
249 int callinc = (regs->areg[0] >> 30) & 3;
250 int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
251 put_user(regs->areg[caller_ars+1],
252 (unsigned __user*)(usp - 12));
253 }
254 childregs->wmask = 1;
255 childregs->windowstart = 1;
256 childregs->windowbase = 0;
257 } else {
258 int len = childregs->wmask & ~0xf;
259 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
260 &regs->areg[XCHAL_NUM_AREGS - len/4], len);
261 }
262 // FIXME: we need to set THREADPTR in thread_info...
263 if (clone_flags & CLONE_SETTLS)
264 childregs->areg[2] = childregs->areg[6];
265 } else {
266 p->thread.ra = MAKE_RA_FOR_CALL(
267 (unsigned long)ret_from_kernel_thread, 1);
268
269 /* pass parameters to ret_from_kernel_thread:
270 * a2 = thread_fn, a3 = thread_fn arg
271 */
272 *((int *)childregs - 1) = thread_fn_arg;
273 *((int *)childregs - 2) = usp_thread_fn;
274
275 /* Childregs are only used when we're going to userspace
276 * in which case start_thread will set them up.
277 */
278 }
279
280 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
281 ti = task_thread_info(p);
282 ti->cpenable = 0;
283 #endif
284
285 return 0;
286 }
287
288
289 /*
290 * These bracket the sleeping functions..
291 */
292
293 unsigned long get_wchan(struct task_struct *p)
294 {
295 unsigned long sp, pc;
296 unsigned long stack_page = (unsigned long) task_stack_page(p);
297 int count = 0;
298
299 if (!p || p == current || p->state == TASK_RUNNING)
300 return 0;
301
302 sp = p->thread.sp;
303 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
304
305 do {
306 if (sp < stack_page + sizeof(struct task_struct) ||
307 sp >= (stack_page + THREAD_SIZE) ||
308 pc == 0)
309 return 0;
310 if (!in_sched_functions(pc))
311 return pc;
312
313 /* Stack layout: sp-4: ra, sp-3: sp' */
314
315 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
316 sp = *(unsigned long *)sp - 3;
317 } while (count++ < 16);
318 return 0;
319 }
320
321 /*
322 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
323 * of processor registers. Besides different ordering,
324 * xtensa_gregset_t contains non-live register information that
325 * 'struct pt_regs' does not. Exception handling (primarily) uses
326 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
327 *
328 */
329
330 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
331 {
332 unsigned long wb, ws, wm;
333 int live, last;
334
335 wb = regs->windowbase;
336 ws = regs->windowstart;
337 wm = regs->wmask;
338 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
339
340 /* Don't leak any random bits. */
341
342 memset(elfregs, 0, sizeof(*elfregs));
343
344 /* Note: PS.EXCM is not set while user task is running; its
345 * being set in regs->ps is for exception handling convenience.
346 */
347
348 elfregs->pc = regs->pc;
349 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
350 elfregs->lbeg = regs->lbeg;
351 elfregs->lend = regs->lend;
352 elfregs->lcount = regs->lcount;
353 elfregs->sar = regs->sar;
354 elfregs->windowstart = ws;
355
356 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
357 last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
358 memcpy(elfregs->a, regs->areg, live * 4);
359 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
360 }
361
362 int dump_fpu(void)
363 {
364 return 0;
365 }