]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/xtensa/kernel/vectors.S
xtensa: reorganize SR referencing
[mirror_ubuntu-bionic-kernel.git] / arch / xtensa / kernel / vectors.S
1 /*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License. See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19 /*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 * a0: trashed, original value saved on stack (PT_AREG0)
29 * a1: a1
30 * a2: new stack pointer, original value in depc
31 * a3: dispatch table
32 * depc: a2, original value saved on stack (PT_DEPC)
33 * excsave_1: a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 * PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 * < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note: Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45 #include <linux/linkage.h>
46 #include <asm/ptrace.h>
47 #include <asm/current.h>
48 #include <asm/asm-offsets.h>
49 #include <asm/pgtable.h>
50 #include <asm/processor.h>
51 #include <asm/page.h>
52 #include <asm/thread_info.h>
53
54 #define WINDOW_VECTORS_SIZE 0x180
55
56
57 /*
58 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
59 *
60 * We get here when an exception occurred while we were in userland.
61 * We switch to the kernel stack and jump to the first level handler
62 * associated to the exception cause.
63 *
64 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
65 * decremented by PT_USER_SIZE.
66 */
67
68 .section .UserExceptionVector.text, "ax"
69
70 ENTRY(_UserExceptionVector)
71
72 xsr a3, excsave1 # save a3 and get dispatch table
73 wsr a2, depc # save a2
74 l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
75 s32i a0, a2, PT_AREG0 # save a0 to ESF
76 rsr a0, exccause # retrieve exception cause
77 s32i a0, a2, PT_DEPC # mark it as a regular exception
78 addx4 a0, a0, a3 # find entry in table
79 l32i a0, a0, EXC_TABLE_FAST_USER # load handler
80 jx a0
81
82 /*
83 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
84 *
85 * We get this exception when we were already in kernel space.
86 * We decrement the current stack pointer (kernel) by PT_SIZE and
87 * jump to the first-level handler associated with the exception cause.
88 *
89 * Note: we need to preserve space for the spill region.
90 */
91
92 .section .KernelExceptionVector.text, "ax"
93
94 ENTRY(_KernelExceptionVector)
95
96 xsr a3, excsave1 # save a3, and get dispatch table
97 wsr a2, depc # save a2
98 addi a2, a1, -16-PT_SIZE # adjust stack pointer
99 s32i a0, a2, PT_AREG0 # save a0 to ESF
100 rsr a0, exccause # retrieve exception cause
101 s32i a0, a2, PT_DEPC # mark it as a regular exception
102 addx4 a0, a0, a3 # find entry in table
103 l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
104 jx a0
105
106
107 /*
108 * Double exception vector (Exceptions with PS.EXCM == 1)
109 * We get this exception when another exception occurs while were are
110 * already in an exception, such as window overflow/underflow exception,
111 * or 'expected' exceptions, for example memory exception when we were trying
112 * to read data from an invalid address in user space.
113 *
114 * Note that this vector is never invoked for level-1 interrupts, because such
115 * interrupts are disabled (masked) when PS.EXCM is set.
116 *
117 * We decode the exception and take the appropriate action. However, the
118 * double exception vector is much more careful, because a lot more error
119 * cases go through the double exception vector than through the user and
120 * kernel exception vectors.
121 *
122 * Occasionally, the kernel expects a double exception to occur. This usually
123 * happens when accessing user-space memory with the user's permissions
124 * (l32e/s32e instructions). The kernel state, though, is not always suitable
125 * for immediate transfer of control to handle_double, where "normal" exception
126 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
127 * vmalloc memory, possibly requiring repair in a double exception handler.
128 *
129 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
130 * a boolean variable and a pointer to a fixup routine. If the variable
131 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
132 * zero indicates to use the default kernel/user exception handler.
133 * There is only one exception, when the value is identical to the exc_table
134 * label, the kernel is in trouble. This mechanism is used to protect critical
135 * sections, mainly when the handler writes to the stack to assert the stack
136 * pointer is valid. Once the fixup/default handler leaves that area, the
137 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
138 *
139 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
140 * nonzero address of a fixup routine before it could cause a double exception
141 * and reset it before it returns.
142 *
143 * Some other things to take care of when a fast exception handler doesn't
144 * specify a particular fixup handler but wants to use the default handlers:
145 *
146 * - The original stack pointer (in a1) must not be modified. The fast
147 * exception handler should only use a2 as the stack pointer.
148 *
149 * - If the fast handler manipulates the stack pointer (in a2), it has to
150 * register a valid fixup handler and cannot use the default handlers.
151 *
152 * - The handler can use any other generic register from a3 to a15, but it
153 * must save the content of these registers to stack (PT_AREG3...PT_AREGx)
154 *
155 * - These registers must be saved before a double exception can occur.
156 *
157 * - If we ever implement handling signals while in double exceptions, the
158 * number of registers a fast handler has saved (excluding a0 and a1) must
159 * be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
160 *
161 * The fixup handlers are special handlers:
162 *
163 * - Fixup entry conditions differ from regular exceptions:
164 *
165 * a0: DEPC
166 * a1: a1
167 * a2: trashed, original value in EXC_TABLE_DOUBLE_A2
168 * a3: exctable
169 * depc: a0
170 * excsave_1: a3
171 *
172 * - When the kernel enters the fixup handler, it still assumes it is in a
173 * critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
174 * The fixup handler, therefore, has to re-register itself as the fixup
175 * handler before it returns from the double exception.
176 *
177 * - Fixup handler can share the same exception frame with the fast handler.
178 * The kernel stack pointer is not changed when entering the fixup handler.
179 *
180 * - Fixup handlers can jump to the default kernel and user exception
181 * handlers. Before it jumps, though, it has to setup a exception frame
182 * on stack. Because the default handler resets the register fixup handler
183 * the fixup handler must make sure that the default handler returns to
184 * it instead of the exception address, so it can re-register itself as
185 * the fixup handler.
186 *
187 * In case of a critical condition where the kernel cannot recover, we jump
188 * to unrecoverable_exception with the following entry conditions.
189 * All registers a0...a15 are unchanged from the last exception, except:
190 *
191 * a0: last address before we jumped to the unrecoverable_exception.
192 * excsave_1: a0
193 *
194 *
195 * See the handle_alloca_user and spill_registers routines for example clients.
196 *
197 * FIXME: Note: we currently don't allow signal handling coming from a double
198 * exception, so the item markt with (*) is not required.
199 */
200
201 .section .DoubleExceptionVector.text, "ax"
202 .begin literal_prefix .DoubleExceptionVector
203
204 ENTRY(_DoubleExceptionVector)
205
206 /* Deliberately destroy excsave (don't assume it's value was valid). */
207
208 wsr a3, excsave1 # save a3
209
210 /* Check for kernel double exception (usually fatal). */
211
212 rsr a3, ps
213 _bbci.l a3, PS_UM_BIT, .Lksp
214
215 /* Check if we are currently handling a window exception. */
216 /* Note: We don't need to indicate that we enter a critical section. */
217
218 xsr a0, depc # get DEPC, save a0
219
220 movi a3, XCHAL_WINDOW_VECTORS_VADDR
221 _bltu a0, a3, .Lfixup
222 addi a3, a3, WINDOW_VECTORS_SIZE
223 _bgeu a0, a3, .Lfixup
224
225 /* Window overflow/underflow exception. Get stack pointer. */
226
227 mov a3, a2
228 movi a2, exc_table
229 l32i a2, a2, EXC_TABLE_KSTK
230
231 /* Check for overflow/underflow exception, jump if overflow. */
232
233 _bbci.l a0, 6, .Lovfl
234
235 /* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
236
237 /* Restart window underflow exception.
238 * We return to the instruction in user space that caused the window
239 * underflow exception. Therefore, we change window base to the value
240 * before we entered the window underflow exception and prepare the
241 * registers to return as if we were coming from a regular exception
242 * by changing depc (in a0).
243 * Note: We can trash the current window frame (a0...a3) and depc!
244 */
245
246 wsr a2, depc # save stack pointer temporarily
247 rsr a0, ps
248 extui a0, a0, PS_OWB_SHIFT, 4
249 wsr a0, windowbase
250 rsync
251
252 /* We are now in the previous window frame. Save registers again. */
253
254 xsr a2, depc # save a2 and get stack pointer
255 s32i a0, a2, PT_AREG0
256
257 wsr a3, excsave1 # save a3
258 movi a3, exc_table
259
260 rsr a0, exccause
261 s32i a0, a2, PT_DEPC # mark it as a regular exception
262 addx4 a0, a0, a3
263 l32i a0, a0, EXC_TABLE_FAST_USER
264 jx a0
265
266 .Lfixup:/* Check for a fixup handler or if we were in a critical section. */
267
268 /* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
269
270 movi a3, exc_table
271 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE # temporary variable
272
273 /* Enter critical section. */
274
275 l32i a2, a3, EXC_TABLE_FIXUP
276 s32i a3, a3, EXC_TABLE_FIXUP
277 beq a2, a3, .Lunrecoverable_fixup # critical!
278 beqz a2, .Ldflt # no handler was registered
279
280 /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
281
282 jx a2
283
284 .Ldflt: /* Get stack pointer. */
285
286 l32i a3, a3, EXC_TABLE_DOUBLE_SAVE
287 addi a2, a3, -PT_USER_SIZE
288
289 .Lovfl: /* Jump to default handlers. */
290
291 /* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
292
293 xsr a3, depc
294 s32i a0, a2, PT_DEPC
295 s32i a3, a2, PT_AREG0
296
297 /* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
298
299 movi a3, exc_table
300 rsr a0, exccause
301 addx4 a0, a0, a3
302 l32i a0, a0, EXC_TABLE_FAST_USER
303 jx a0
304
305 /*
306 * We only allow the ITLB miss exception if we are in kernel space.
307 * All other exceptions are unexpected and thus unrecoverable!
308 */
309
310 #ifdef CONFIG_MMU
311 .extern fast_second_level_miss_double_kernel
312
313 .Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
314
315 rsr a3, exccause
316 beqi a3, EXCCAUSE_ITLB_MISS, 1f
317 addi a3, a3, -EXCCAUSE_DTLB_MISS
318 bnez a3, .Lunrecoverable
319 1: movi a3, fast_second_level_miss_double_kernel
320 jx a3
321 #else
322 .equ .Lksp, .Lunrecoverable
323 #endif
324
325 /* Critical! We can't handle this situation. PANIC! */
326
327 .extern unrecoverable_exception
328
329 .Lunrecoverable_fixup:
330 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
331 xsr a0, depc
332
333 .Lunrecoverable:
334 rsr a3, excsave1
335 wsr a0, excsave1
336 movi a0, unrecoverable_exception
337 callx0 a0
338
339 .end literal_prefix
340
341
342 /*
343 * Debug interrupt vector
344 *
345 * There is not much space here, so simply jump to another handler.
346 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
347 */
348
349 .section .DebugInterruptVector.text, "ax"
350
351 ENTRY(_DebugInterruptVector)
352 xsr a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
353 jx a0
354
355
356
357 /* Window overflow and underflow handlers.
358 * The handlers must be 64 bytes apart, first starting with the underflow
359 * handlers underflow-4 to underflow-12, then the overflow handlers
360 * overflow-4 to overflow-12.
361 *
362 * Note: We rerun the underflow handlers if we hit an exception, so
363 * we try to access any page that would cause a page fault early.
364 */
365
366 .section .WindowVectors.text, "ax"
367
368
369 /* 4-Register Window Overflow Vector (Handler) */
370
371 .align 64
372 .global _WindowOverflow4
373 _WindowOverflow4:
374 s32e a0, a5, -16
375 s32e a1, a5, -12
376 s32e a2, a5, -8
377 s32e a3, a5, -4
378 rfwo
379
380
381 /* 4-Register Window Underflow Vector (Handler) */
382
383 .align 64
384 .global _WindowUnderflow4
385 _WindowUnderflow4:
386 l32e a0, a5, -16
387 l32e a1, a5, -12
388 l32e a2, a5, -8
389 l32e a3, a5, -4
390 rfwu
391
392
393 /* 8-Register Window Overflow Vector (Handler) */
394
395 .align 64
396 .global _WindowOverflow8
397 _WindowOverflow8:
398 s32e a0, a9, -16
399 l32e a0, a1, -12
400 s32e a2, a9, -8
401 s32e a1, a9, -12
402 s32e a3, a9, -4
403 s32e a4, a0, -32
404 s32e a5, a0, -28
405 s32e a6, a0, -24
406 s32e a7, a0, -20
407 rfwo
408
409 /* 8-Register Window Underflow Vector (Handler) */
410
411 .align 64
412 .global _WindowUnderflow8
413 _WindowUnderflow8:
414 l32e a1, a9, -12
415 l32e a0, a9, -16
416 l32e a7, a1, -12
417 l32e a2, a9, -8
418 l32e a4, a7, -32
419 l32e a3, a9, -4
420 l32e a5, a7, -28
421 l32e a6, a7, -24
422 l32e a7, a7, -20
423 rfwu
424
425
426 /* 12-Register Window Overflow Vector (Handler) */
427
428 .align 64
429 .global _WindowOverflow12
430 _WindowOverflow12:
431 s32e a0, a13, -16
432 l32e a0, a1, -12
433 s32e a1, a13, -12
434 s32e a2, a13, -8
435 s32e a3, a13, -4
436 s32e a4, a0, -48
437 s32e a5, a0, -44
438 s32e a6, a0, -40
439 s32e a7, a0, -36
440 s32e a8, a0, -32
441 s32e a9, a0, -28
442 s32e a10, a0, -24
443 s32e a11, a0, -20
444 rfwo
445
446 /* 12-Register Window Underflow Vector (Handler) */
447
448 .align 64
449 .global _WindowUnderflow12
450 _WindowUnderflow12:
451 l32e a1, a13, -12
452 l32e a0, a13, -16
453 l32e a11, a1, -12
454 l32e a2, a13, -8
455 l32e a4, a11, -48
456 l32e a8, a11, -32
457 l32e a3, a13, -4
458 l32e a5, a11, -44
459 l32e a6, a11, -40
460 l32e a7, a11, -36
461 l32e a9, a11, -28
462 l32e a10, a11, -24
463 l32e a11, a11, -20
464 rfwu
465
466 .text
467
468