]> git.proxmox.com Git - qemu.git/blob - arch_init.c
1f737dc1eb00a87919a531193f5e958b8972cc09
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 qemu_put_be64(f, offset | cont | flag);
272 if (!cont) {
273 qemu_put_byte(f, strlen(block->idstr));
274 qemu_put_buffer(f, (uint8_t *)block->idstr,
275 strlen(block->idstr));
276 }
277
278 }
279
280 #define ENCODING_FLAG_XBZRLE 0x1
281
282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
283 ram_addr_t current_addr, RAMBlock *block,
284 ram_addr_t offset, int cont, bool last_stage)
285 {
286 int encoded_len = 0, bytes_sent = -1;
287 uint8_t *prev_cached_page;
288
289 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
290 if (!last_stage) {
291 cache_insert(XBZRLE.cache, current_addr,
292 g_memdup(current_data, TARGET_PAGE_SIZE));
293 }
294 acct_info.xbzrle_cache_miss++;
295 return -1;
296 }
297
298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
299
300 /* save current buffer into memory */
301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
302
303 /* XBZRLE encoding (if there is no overflow) */
304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
306 TARGET_PAGE_SIZE);
307 if (encoded_len == 0) {
308 DPRINTF("Skipping unmodified page\n");
309 return 0;
310 } else if (encoded_len == -1) {
311 DPRINTF("Overflow\n");
312 acct_info.xbzrle_overflows++;
313 /* update data in the cache */
314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
315 return -1;
316 }
317
318 /* we need to update the data in the cache, in order to get the same data */
319 if (!last_stage) {
320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
321 }
322
323 /* Send XBZRLE based compressed page */
324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
326 qemu_put_be16(f, encoded_len);
327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
328 bytes_sent = encoded_len + 1 + 2;
329 acct_info.xbzrle_pages++;
330 acct_info.xbzrle_bytes += bytes_sent;
331
332 return bytes_sent;
333 }
334
335 static RAMBlock *last_block;
336 static ram_addr_t last_offset;
337 static unsigned long *migration_bitmap;
338 static uint64_t migration_dirty_pages;
339 static uint32_t last_version;
340
341 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr,
342 ram_addr_t offset)
343 {
344 bool ret;
345 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
346
347 ret = test_and_clear_bit(nr, migration_bitmap);
348
349 if (ret) {
350 migration_dirty_pages--;
351 }
352 return ret;
353 }
354
355 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
356 ram_addr_t offset)
357 {
358 bool ret;
359 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
360
361 ret = test_and_set_bit(nr, migration_bitmap);
362
363 if (!ret) {
364 migration_dirty_pages++;
365 }
366 return ret;
367 }
368
369 static void migration_bitmap_sync(void)
370 {
371 RAMBlock *block;
372 ram_addr_t addr;
373 uint64_t num_dirty_pages_init = migration_dirty_pages;
374 MigrationState *s = migrate_get_current();
375 static int64_t start_time;
376 static int64_t num_dirty_pages_period;
377 int64_t end_time;
378
379 if (!start_time) {
380 start_time = qemu_get_clock_ms(rt_clock);
381 }
382
383 trace_migration_bitmap_sync_start();
384 memory_global_sync_dirty_bitmap(get_system_memory());
385
386 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
387 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
388 if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
389 DIRTY_MEMORY_MIGRATION)) {
390 migration_bitmap_set_dirty(block->mr, addr);
391 }
392 }
393 memory_region_reset_dirty(block->mr, 0, block->length,
394 DIRTY_MEMORY_MIGRATION);
395 }
396 trace_migration_bitmap_sync_end(migration_dirty_pages
397 - num_dirty_pages_init);
398 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
399 end_time = qemu_get_clock_ms(rt_clock);
400
401 /* more than 1 second = 1000 millisecons */
402 if (end_time > start_time + 1000) {
403 s->dirty_pages_rate = num_dirty_pages_period * 1000
404 / (end_time - start_time);
405 start_time = end_time;
406 num_dirty_pages_period = 0;
407 }
408 }
409
410 /*
411 * ram_save_block: Writes a page of memory to the stream f
412 *
413 * Returns: 0: if the page hasn't changed
414 * -1: if there are no more dirty pages
415 * n: the amount of bytes written in other case
416 */
417
418 static int ram_save_block(QEMUFile *f, bool last_stage)
419 {
420 RAMBlock *block = last_block;
421 ram_addr_t offset = last_offset;
422 int bytes_sent = -1;
423 MemoryRegion *mr;
424 ram_addr_t current_addr;
425
426 if (!block)
427 block = QTAILQ_FIRST(&ram_list.blocks);
428
429 do {
430 mr = block->mr;
431 if (migration_bitmap_test_and_reset_dirty(mr, offset)) {
432 uint8_t *p;
433 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
434
435 p = memory_region_get_ram_ptr(mr) + offset;
436
437 if (is_dup_page(p)) {
438 acct_info.dup_pages++;
439 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
440 qemu_put_byte(f, *p);
441 bytes_sent = 1;
442 } else if (migrate_use_xbzrle()) {
443 current_addr = block->offset + offset;
444 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
445 offset, cont, last_stage);
446 if (!last_stage) {
447 p = get_cached_data(XBZRLE.cache, current_addr);
448 }
449 }
450
451 /* either we didn't send yet (we may have had XBZRLE overflow) */
452 if (bytes_sent == -1) {
453 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
454 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
455 bytes_sent = TARGET_PAGE_SIZE;
456 acct_info.norm_pages++;
457 }
458
459 /* if page is unmodified, continue to the next */
460 if (bytes_sent != 0) {
461 break;
462 }
463 }
464
465 offset += TARGET_PAGE_SIZE;
466 if (offset >= block->length) {
467 offset = 0;
468 block = QTAILQ_NEXT(block, next);
469 if (!block)
470 block = QTAILQ_FIRST(&ram_list.blocks);
471 }
472 } while (block != last_block || offset != last_offset);
473
474 last_block = block;
475 last_offset = offset;
476
477 return bytes_sent;
478 }
479
480 static uint64_t bytes_transferred;
481
482 static ram_addr_t ram_save_remaining(void)
483 {
484 return migration_dirty_pages;
485 }
486
487 uint64_t ram_bytes_remaining(void)
488 {
489 return ram_save_remaining() * TARGET_PAGE_SIZE;
490 }
491
492 uint64_t ram_bytes_transferred(void)
493 {
494 return bytes_transferred;
495 }
496
497 uint64_t ram_bytes_total(void)
498 {
499 RAMBlock *block;
500 uint64_t total = 0;
501
502 QTAILQ_FOREACH(block, &ram_list.blocks, next)
503 total += block->length;
504
505 return total;
506 }
507
508 static void migration_end(void)
509 {
510 if (migration_bitmap) {
511 memory_global_dirty_log_stop();
512 g_free(migration_bitmap);
513 migration_bitmap = NULL;
514 }
515
516 if (XBZRLE.cache) {
517 cache_fini(XBZRLE.cache);
518 g_free(XBZRLE.cache);
519 g_free(XBZRLE.encoded_buf);
520 g_free(XBZRLE.current_buf);
521 g_free(XBZRLE.decoded_buf);
522 XBZRLE.cache = NULL;
523 }
524 }
525
526 static void ram_migration_cancel(void *opaque)
527 {
528 migration_end();
529 }
530
531
532 static void reset_ram_globals(void)
533 {
534 last_block = NULL;
535 last_offset = 0;
536 last_version = ram_list.version;
537 }
538
539 #define MAX_WAIT 50 /* ms, half buffered_file limit */
540
541 static int ram_save_setup(QEMUFile *f, void *opaque)
542 {
543 RAMBlock *block;
544 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
545
546 migration_bitmap = bitmap_new(ram_pages);
547 bitmap_set(migration_bitmap, 0, ram_pages);
548 migration_dirty_pages = ram_pages;
549
550 bytes_transferred = 0;
551 reset_ram_globals();
552
553 if (migrate_use_xbzrle()) {
554 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
555 TARGET_PAGE_SIZE,
556 TARGET_PAGE_SIZE);
557 if (!XBZRLE.cache) {
558 DPRINTF("Error creating cache\n");
559 return -1;
560 }
561 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
562 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
563 acct_clear();
564 }
565
566 memory_global_dirty_log_start();
567 migration_bitmap_sync();
568
569 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
570
571 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
572 qemu_put_byte(f, strlen(block->idstr));
573 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
574 qemu_put_be64(f, block->length);
575 }
576
577 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
578
579 return 0;
580 }
581
582 static int ram_save_iterate(QEMUFile *f, void *opaque)
583 {
584 uint64_t bytes_transferred_last;
585 double bwidth = 0;
586 int ret;
587 int i;
588 uint64_t expected_downtime;
589 MigrationState *s = migrate_get_current();
590
591 if (ram_list.version != last_version) {
592 reset_ram_globals();
593 }
594
595 bytes_transferred_last = bytes_transferred;
596 bwidth = qemu_get_clock_ns(rt_clock);
597
598 i = 0;
599 while ((ret = qemu_file_rate_limit(f)) == 0) {
600 int bytes_sent;
601
602 bytes_sent = ram_save_block(f, false);
603 /* no more blocks to sent */
604 if (bytes_sent < 0) {
605 break;
606 }
607 bytes_transferred += bytes_sent;
608 acct_info.iterations++;
609 /* we want to check in the 1st loop, just in case it was the 1st time
610 and we had to sync the dirty bitmap.
611 qemu_get_clock_ns() is a bit expensive, so we only check each some
612 iterations
613 */
614 if ((i & 63) == 0) {
615 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
616 if (t1 > MAX_WAIT) {
617 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
618 t1, i);
619 break;
620 }
621 }
622 i++;
623 }
624
625 if (ret < 0) {
626 return ret;
627 }
628
629 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
630 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
631
632 /* if we haven't transferred anything this round, force
633 * expected_downtime to a very high value, but without
634 * crashing */
635 if (bwidth == 0) {
636 bwidth = 0.000001;
637 }
638
639 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
640
641 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
642 DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n",
643 expected_downtime, migrate_max_downtime());
644
645 if (expected_downtime <= migrate_max_downtime()) {
646 migration_bitmap_sync();
647 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
648 s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */
649
650 return expected_downtime <= migrate_max_downtime();
651 }
652 return 0;
653 }
654
655 static int ram_save_complete(QEMUFile *f, void *opaque)
656 {
657 migration_bitmap_sync();
658
659 /* try transferring iterative blocks of memory */
660
661 /* flush all remaining blocks regardless of rate limiting */
662 while (true) {
663 int bytes_sent;
664
665 bytes_sent = ram_save_block(f, true);
666 /* no more blocks to sent */
667 if (bytes_sent < 0) {
668 break;
669 }
670 bytes_transferred += bytes_sent;
671 }
672 migration_end();
673
674 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
675
676 return 0;
677 }
678
679 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
680 {
681 int ret, rc = 0;
682 unsigned int xh_len;
683 int xh_flags;
684
685 if (!XBZRLE.decoded_buf) {
686 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
687 }
688
689 /* extract RLE header */
690 xh_flags = qemu_get_byte(f);
691 xh_len = qemu_get_be16(f);
692
693 if (xh_flags != ENCODING_FLAG_XBZRLE) {
694 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
695 return -1;
696 }
697
698 if (xh_len > TARGET_PAGE_SIZE) {
699 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
700 return -1;
701 }
702 /* load data and decode */
703 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
704
705 /* decode RLE */
706 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
707 TARGET_PAGE_SIZE);
708 if (ret == -1) {
709 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
710 rc = -1;
711 } else if (ret > TARGET_PAGE_SIZE) {
712 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
713 ret, TARGET_PAGE_SIZE);
714 abort();
715 }
716
717 return rc;
718 }
719
720 static inline void *host_from_stream_offset(QEMUFile *f,
721 ram_addr_t offset,
722 int flags)
723 {
724 static RAMBlock *block = NULL;
725 char id[256];
726 uint8_t len;
727
728 if (flags & RAM_SAVE_FLAG_CONTINUE) {
729 if (!block) {
730 fprintf(stderr, "Ack, bad migration stream!\n");
731 return NULL;
732 }
733
734 return memory_region_get_ram_ptr(block->mr) + offset;
735 }
736
737 len = qemu_get_byte(f);
738 qemu_get_buffer(f, (uint8_t *)id, len);
739 id[len] = 0;
740
741 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
742 if (!strncmp(id, block->idstr, sizeof(id)))
743 return memory_region_get_ram_ptr(block->mr) + offset;
744 }
745
746 fprintf(stderr, "Can't find block %s!\n", id);
747 return NULL;
748 }
749
750 static int ram_load(QEMUFile *f, void *opaque, int version_id)
751 {
752 ram_addr_t addr;
753 int flags, ret = 0;
754 int error;
755 static uint64_t seq_iter;
756
757 seq_iter++;
758
759 if (version_id < 4 || version_id > 4) {
760 return -EINVAL;
761 }
762
763 do {
764 addr = qemu_get_be64(f);
765
766 flags = addr & ~TARGET_PAGE_MASK;
767 addr &= TARGET_PAGE_MASK;
768
769 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
770 if (version_id == 4) {
771 /* Synchronize RAM block list */
772 char id[256];
773 ram_addr_t length;
774 ram_addr_t total_ram_bytes = addr;
775
776 while (total_ram_bytes) {
777 RAMBlock *block;
778 uint8_t len;
779
780 len = qemu_get_byte(f);
781 qemu_get_buffer(f, (uint8_t *)id, len);
782 id[len] = 0;
783 length = qemu_get_be64(f);
784
785 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
786 if (!strncmp(id, block->idstr, sizeof(id))) {
787 if (block->length != length) {
788 ret = -EINVAL;
789 goto done;
790 }
791 break;
792 }
793 }
794
795 if (!block) {
796 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
797 "accept migration\n", id);
798 ret = -EINVAL;
799 goto done;
800 }
801
802 total_ram_bytes -= length;
803 }
804 }
805 }
806
807 if (flags & RAM_SAVE_FLAG_COMPRESS) {
808 void *host;
809 uint8_t ch;
810
811 host = host_from_stream_offset(f, addr, flags);
812 if (!host) {
813 return -EINVAL;
814 }
815
816 ch = qemu_get_byte(f);
817 memset(host, ch, TARGET_PAGE_SIZE);
818 #ifndef _WIN32
819 if (ch == 0 &&
820 (!kvm_enabled() || kvm_has_sync_mmu()) &&
821 getpagesize() <= TARGET_PAGE_SIZE) {
822 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
823 }
824 #endif
825 } else if (flags & RAM_SAVE_FLAG_PAGE) {
826 void *host;
827
828 host = host_from_stream_offset(f, addr, flags);
829 if (!host) {
830 return -EINVAL;
831 }
832
833 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
834 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
835 if (!migrate_use_xbzrle()) {
836 return -EINVAL;
837 }
838 void *host = host_from_stream_offset(f, addr, flags);
839 if (!host) {
840 return -EINVAL;
841 }
842
843 if (load_xbzrle(f, addr, host) < 0) {
844 ret = -EINVAL;
845 goto done;
846 }
847 }
848 error = qemu_file_get_error(f);
849 if (error) {
850 ret = error;
851 goto done;
852 }
853 } while (!(flags & RAM_SAVE_FLAG_EOS));
854
855 done:
856 DPRINTF("Completed load of VM with exit code %d seq iteration "
857 "%" PRIu64 "\n", ret, seq_iter);
858 return ret;
859 }
860
861 SaveVMHandlers savevm_ram_handlers = {
862 .save_live_setup = ram_save_setup,
863 .save_live_iterate = ram_save_iterate,
864 .save_live_complete = ram_save_complete,
865 .load_state = ram_load,
866 .cancel = ram_migration_cancel,
867 };
868
869 #ifdef HAS_AUDIO
870 struct soundhw {
871 const char *name;
872 const char *descr;
873 int enabled;
874 int isa;
875 union {
876 int (*init_isa) (ISABus *bus);
877 int (*init_pci) (PCIBus *bus);
878 } init;
879 };
880
881 static struct soundhw soundhw[] = {
882 #ifdef HAS_AUDIO_CHOICE
883 #ifdef CONFIG_PCSPK
884 {
885 "pcspk",
886 "PC speaker",
887 0,
888 1,
889 { .init_isa = pcspk_audio_init }
890 },
891 #endif
892
893 #ifdef CONFIG_SB16
894 {
895 "sb16",
896 "Creative Sound Blaster 16",
897 0,
898 1,
899 { .init_isa = SB16_init }
900 },
901 #endif
902
903 #ifdef CONFIG_CS4231A
904 {
905 "cs4231a",
906 "CS4231A",
907 0,
908 1,
909 { .init_isa = cs4231a_init }
910 },
911 #endif
912
913 #ifdef CONFIG_ADLIB
914 {
915 "adlib",
916 #ifdef HAS_YMF262
917 "Yamaha YMF262 (OPL3)",
918 #else
919 "Yamaha YM3812 (OPL2)",
920 #endif
921 0,
922 1,
923 { .init_isa = Adlib_init }
924 },
925 #endif
926
927 #ifdef CONFIG_GUS
928 {
929 "gus",
930 "Gravis Ultrasound GF1",
931 0,
932 1,
933 { .init_isa = GUS_init }
934 },
935 #endif
936
937 #ifdef CONFIG_AC97
938 {
939 "ac97",
940 "Intel 82801AA AC97 Audio",
941 0,
942 0,
943 { .init_pci = ac97_init }
944 },
945 #endif
946
947 #ifdef CONFIG_ES1370
948 {
949 "es1370",
950 "ENSONIQ AudioPCI ES1370",
951 0,
952 0,
953 { .init_pci = es1370_init }
954 },
955 #endif
956
957 #ifdef CONFIG_HDA
958 {
959 "hda",
960 "Intel HD Audio",
961 0,
962 0,
963 { .init_pci = intel_hda_and_codec_init }
964 },
965 #endif
966
967 #endif /* HAS_AUDIO_CHOICE */
968
969 { NULL, NULL, 0, 0, { NULL } }
970 };
971
972 void select_soundhw(const char *optarg)
973 {
974 struct soundhw *c;
975
976 if (is_help_option(optarg)) {
977 show_valid_cards:
978
979 #ifdef HAS_AUDIO_CHOICE
980 printf("Valid sound card names (comma separated):\n");
981 for (c = soundhw; c->name; ++c) {
982 printf ("%-11s %s\n", c->name, c->descr);
983 }
984 printf("\n-soundhw all will enable all of the above\n");
985 #else
986 printf("Machine has no user-selectable audio hardware "
987 "(it may or may not have always-present audio hardware).\n");
988 #endif
989 exit(!is_help_option(optarg));
990 }
991 else {
992 size_t l;
993 const char *p;
994 char *e;
995 int bad_card = 0;
996
997 if (!strcmp(optarg, "all")) {
998 for (c = soundhw; c->name; ++c) {
999 c->enabled = 1;
1000 }
1001 return;
1002 }
1003
1004 p = optarg;
1005 while (*p) {
1006 e = strchr(p, ',');
1007 l = !e ? strlen(p) : (size_t) (e - p);
1008
1009 for (c = soundhw; c->name; ++c) {
1010 if (!strncmp(c->name, p, l) && !c->name[l]) {
1011 c->enabled = 1;
1012 break;
1013 }
1014 }
1015
1016 if (!c->name) {
1017 if (l > 80) {
1018 fprintf(stderr,
1019 "Unknown sound card name (too big to show)\n");
1020 }
1021 else {
1022 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1023 (int) l, p);
1024 }
1025 bad_card = 1;
1026 }
1027 p += l + (e != NULL);
1028 }
1029
1030 if (bad_card) {
1031 goto show_valid_cards;
1032 }
1033 }
1034 }
1035
1036 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1037 {
1038 struct soundhw *c;
1039
1040 for (c = soundhw; c->name; ++c) {
1041 if (c->enabled) {
1042 if (c->isa) {
1043 if (isa_bus) {
1044 c->init.init_isa(isa_bus);
1045 }
1046 } else {
1047 if (pci_bus) {
1048 c->init.init_pci(pci_bus);
1049 }
1050 }
1051 }
1052 }
1053 }
1054 #else
1055 void select_soundhw(const char *optarg)
1056 {
1057 }
1058 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1059 {
1060 }
1061 #endif
1062
1063 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1064 {
1065 int ret;
1066
1067 if (strlen(str) != 36) {
1068 return -1;
1069 }
1070
1071 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1072 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1073 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1074 &uuid[15]);
1075
1076 if (ret != 16) {
1077 return -1;
1078 }
1079 #ifdef TARGET_I386
1080 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1081 #endif
1082 return 0;
1083 }
1084
1085 void do_acpitable_option(const char *optarg)
1086 {
1087 #ifdef TARGET_I386
1088 if (acpi_table_add(optarg) < 0) {
1089 fprintf(stderr, "Wrong acpi table provided\n");
1090 exit(1);
1091 }
1092 #endif
1093 }
1094
1095 void do_smbios_option(const char *optarg)
1096 {
1097 #ifdef TARGET_I386
1098 if (smbios_entry_add(optarg) < 0) {
1099 fprintf(stderr, "Wrong smbios provided\n");
1100 exit(1);
1101 }
1102 #endif
1103 }
1104
1105 void cpudef_init(void)
1106 {
1107 #if defined(cpudef_setup)
1108 cpudef_setup(); /* parse cpu definitions in target config file */
1109 #endif
1110 }
1111
1112 int audio_available(void)
1113 {
1114 #ifdef HAS_AUDIO
1115 return 1;
1116 #else
1117 return 0;
1118 #endif
1119 }
1120
1121 int tcg_available(void)
1122 {
1123 return 1;
1124 }
1125
1126 int kvm_available(void)
1127 {
1128 #ifdef CONFIG_KVM
1129 return 1;
1130 #else
1131 return 0;
1132 #endif
1133 }
1134
1135 int xen_available(void)
1136 {
1137 #ifdef CONFIG_XEN
1138 return 1;
1139 #else
1140 return 0;
1141 #endif
1142 }
1143
1144
1145 TargetInfo *qmp_query_target(Error **errp)
1146 {
1147 TargetInfo *info = g_malloc0(sizeof(*info));
1148
1149 info->arch = TARGET_TYPE;
1150
1151 return info;
1152 }