]> git.proxmox.com Git - qemu.git/blob - arch_init.c
6089c5338660df0ee1a9316d2e7a9472155034dc
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 size_t size;
272
273 qemu_put_be64(f, offset | cont | flag);
274 size = 8;
275
276 if (!cont) {
277 qemu_put_byte(f, strlen(block->idstr));
278 qemu_put_buffer(f, (uint8_t *)block->idstr,
279 strlen(block->idstr));
280 size += 1 + strlen(block->idstr);
281 }
282 return size;
283 }
284
285 #define ENCODING_FLAG_XBZRLE 0x1
286
287 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
288 ram_addr_t current_addr, RAMBlock *block,
289 ram_addr_t offset, int cont, bool last_stage)
290 {
291 int encoded_len = 0, bytes_sent = -1;
292 uint8_t *prev_cached_page;
293
294 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
295 if (!last_stage) {
296 cache_insert(XBZRLE.cache, current_addr,
297 g_memdup(current_data, TARGET_PAGE_SIZE));
298 }
299 acct_info.xbzrle_cache_miss++;
300 return -1;
301 }
302
303 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
304
305 /* save current buffer into memory */
306 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
307
308 /* XBZRLE encoding (if there is no overflow) */
309 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
310 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
311 TARGET_PAGE_SIZE);
312 if (encoded_len == 0) {
313 DPRINTF("Skipping unmodified page\n");
314 return 0;
315 } else if (encoded_len == -1) {
316 DPRINTF("Overflow\n");
317 acct_info.xbzrle_overflows++;
318 /* update data in the cache */
319 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
320 return -1;
321 }
322
323 /* we need to update the data in the cache, in order to get the same data */
324 if (!last_stage) {
325 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
326 }
327
328 /* Send XBZRLE based compressed page */
329 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
330 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
331 qemu_put_be16(f, encoded_len);
332 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
333 bytes_sent += encoded_len + 1 + 2;
334 acct_info.xbzrle_pages++;
335 acct_info.xbzrle_bytes += bytes_sent;
336
337 return bytes_sent;
338 }
339
340
341 /* This is the last block that we have visited serching for dirty pages
342 */
343 static RAMBlock *last_seen_block;
344 /* This is the last block from where we have sent data */
345 static RAMBlock *last_sent_block;
346 static ram_addr_t last_offset;
347 static unsigned long *migration_bitmap;
348 static uint64_t migration_dirty_pages;
349 static uint32_t last_version;
350
351 static inline
352 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
353 ram_addr_t start)
354 {
355 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
356 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
357 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
358
359 unsigned long next = find_next_bit(migration_bitmap, size, nr);
360
361 if (next < size) {
362 clear_bit(next, migration_bitmap);
363 migration_dirty_pages--;
364 }
365 return (next - base) << TARGET_PAGE_BITS;
366 }
367
368 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
369 ram_addr_t offset)
370 {
371 bool ret;
372 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
373
374 ret = test_and_set_bit(nr, migration_bitmap);
375
376 if (!ret) {
377 migration_dirty_pages++;
378 }
379 return ret;
380 }
381
382 /* Needs iothread lock! */
383
384 static void migration_bitmap_sync(void)
385 {
386 RAMBlock *block;
387 ram_addr_t addr;
388 uint64_t num_dirty_pages_init = migration_dirty_pages;
389 MigrationState *s = migrate_get_current();
390 static int64_t start_time;
391 static int64_t num_dirty_pages_period;
392 int64_t end_time;
393
394 if (!start_time) {
395 start_time = qemu_get_clock_ms(rt_clock);
396 }
397
398 trace_migration_bitmap_sync_start();
399 memory_global_sync_dirty_bitmap(get_system_memory());
400
401 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
402 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
403 if (memory_region_test_and_clear_dirty(block->mr,
404 addr, TARGET_PAGE_SIZE,
405 DIRTY_MEMORY_MIGRATION)) {
406 migration_bitmap_set_dirty(block->mr, addr);
407 }
408 }
409 }
410 trace_migration_bitmap_sync_end(migration_dirty_pages
411 - num_dirty_pages_init);
412 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
413 end_time = qemu_get_clock_ms(rt_clock);
414
415 /* more than 1 second = 1000 millisecons */
416 if (end_time > start_time + 1000) {
417 s->dirty_pages_rate = num_dirty_pages_period * 1000
418 / (end_time - start_time);
419 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
420 start_time = end_time;
421 num_dirty_pages_period = 0;
422 }
423 }
424
425 /*
426 * ram_save_block: Writes a page of memory to the stream f
427 *
428 * Returns: The number of bytes written.
429 * 0 means no dirty pages
430 */
431
432 static int ram_save_block(QEMUFile *f, bool last_stage)
433 {
434 RAMBlock *block = last_seen_block;
435 ram_addr_t offset = last_offset;
436 bool complete_round = false;
437 int bytes_sent = 0;
438 MemoryRegion *mr;
439 ram_addr_t current_addr;
440
441 if (!block)
442 block = QTAILQ_FIRST(&ram_list.blocks);
443
444 while (true) {
445 mr = block->mr;
446 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
447 if (complete_round && block == last_seen_block &&
448 offset >= last_offset) {
449 break;
450 }
451 if (offset >= block->length) {
452 offset = 0;
453 block = QTAILQ_NEXT(block, next);
454 if (!block) {
455 block = QTAILQ_FIRST(&ram_list.blocks);
456 complete_round = true;
457 }
458 } else {
459 uint8_t *p;
460 int cont = (block == last_sent_block) ?
461 RAM_SAVE_FLAG_CONTINUE : 0;
462
463 p = memory_region_get_ram_ptr(mr) + offset;
464
465 /* In doubt sent page as normal */
466 bytes_sent = -1;
467 if (is_dup_page(p)) {
468 acct_info.dup_pages++;
469 bytes_sent = save_block_hdr(f, block, offset, cont,
470 RAM_SAVE_FLAG_COMPRESS);
471 qemu_put_byte(f, *p);
472 bytes_sent += 1;
473 } else if (migrate_use_xbzrle()) {
474 current_addr = block->offset + offset;
475 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
476 offset, cont, last_stage);
477 if (!last_stage) {
478 p = get_cached_data(XBZRLE.cache, current_addr);
479 }
480 }
481
482 /* XBZRLE overflow or normal page */
483 if (bytes_sent == -1) {
484 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
485 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
486 bytes_sent += TARGET_PAGE_SIZE;
487 acct_info.norm_pages++;
488 }
489
490 /* if page is unmodified, continue to the next */
491 if (bytes_sent > 0) {
492 last_sent_block = block;
493 break;
494 }
495 }
496 }
497 last_seen_block = block;
498 last_offset = offset;
499
500 return bytes_sent;
501 }
502
503 static uint64_t bytes_transferred;
504
505 static ram_addr_t ram_save_remaining(void)
506 {
507 return migration_dirty_pages;
508 }
509
510 uint64_t ram_bytes_remaining(void)
511 {
512 return ram_save_remaining() * TARGET_PAGE_SIZE;
513 }
514
515 uint64_t ram_bytes_transferred(void)
516 {
517 return bytes_transferred;
518 }
519
520 uint64_t ram_bytes_total(void)
521 {
522 RAMBlock *block;
523 uint64_t total = 0;
524
525 QTAILQ_FOREACH(block, &ram_list.blocks, next)
526 total += block->length;
527
528 return total;
529 }
530
531 static void migration_end(void)
532 {
533 if (migration_bitmap) {
534 memory_global_dirty_log_stop();
535 g_free(migration_bitmap);
536 migration_bitmap = NULL;
537 }
538
539 if (XBZRLE.cache) {
540 cache_fini(XBZRLE.cache);
541 g_free(XBZRLE.cache);
542 g_free(XBZRLE.encoded_buf);
543 g_free(XBZRLE.current_buf);
544 g_free(XBZRLE.decoded_buf);
545 XBZRLE.cache = NULL;
546 }
547 }
548
549 static void ram_migration_cancel(void *opaque)
550 {
551 migration_end();
552 }
553
554 static void reset_ram_globals(void)
555 {
556 last_seen_block = NULL;
557 last_sent_block = NULL;
558 last_offset = 0;
559 last_version = ram_list.version;
560 }
561
562 #define MAX_WAIT 50 /* ms, half buffered_file limit */
563
564 static int ram_save_setup(QEMUFile *f, void *opaque)
565 {
566 RAMBlock *block;
567 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
568
569 migration_bitmap = bitmap_new(ram_pages);
570 bitmap_set(migration_bitmap, 0, ram_pages);
571 migration_dirty_pages = ram_pages;
572
573 if (migrate_use_xbzrle()) {
574 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
575 TARGET_PAGE_SIZE,
576 TARGET_PAGE_SIZE);
577 if (!XBZRLE.cache) {
578 DPRINTF("Error creating cache\n");
579 return -1;
580 }
581 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
582 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
583 acct_clear();
584 }
585
586 qemu_mutex_lock_iothread();
587 qemu_mutex_lock_ramlist();
588 bytes_transferred = 0;
589 reset_ram_globals();
590
591 memory_global_dirty_log_start();
592 migration_bitmap_sync();
593 qemu_mutex_unlock_iothread();
594
595 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
596
597 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
598 qemu_put_byte(f, strlen(block->idstr));
599 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
600 qemu_put_be64(f, block->length);
601 }
602
603 qemu_mutex_unlock_ramlist();
604 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
605
606 return 0;
607 }
608
609 static int ram_save_iterate(QEMUFile *f, void *opaque)
610 {
611 int ret;
612 int i;
613 int64_t t0;
614 int total_sent = 0;
615
616 qemu_mutex_lock_ramlist();
617
618 if (ram_list.version != last_version) {
619 reset_ram_globals();
620 }
621
622 t0 = qemu_get_clock_ns(rt_clock);
623 i = 0;
624 while ((ret = qemu_file_rate_limit(f)) == 0) {
625 int bytes_sent;
626
627 bytes_sent = ram_save_block(f, false);
628 /* no more blocks to sent */
629 if (bytes_sent == 0) {
630 break;
631 }
632 total_sent += bytes_sent;
633 acct_info.iterations++;
634 /* we want to check in the 1st loop, just in case it was the 1st time
635 and we had to sync the dirty bitmap.
636 qemu_get_clock_ns() is a bit expensive, so we only check each some
637 iterations
638 */
639 if ((i & 63) == 0) {
640 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
641 if (t1 > MAX_WAIT) {
642 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
643 t1, i);
644 break;
645 }
646 }
647 i++;
648 }
649
650 qemu_mutex_unlock_ramlist();
651
652 if (ret < 0) {
653 bytes_transferred += total_sent;
654 return ret;
655 }
656
657 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
658 total_sent += 8;
659 bytes_transferred += total_sent;
660
661 return total_sent;
662 }
663
664 static int ram_save_complete(QEMUFile *f, void *opaque)
665 {
666 qemu_mutex_lock_ramlist();
667 migration_bitmap_sync();
668
669 /* try transferring iterative blocks of memory */
670
671 /* flush all remaining blocks regardless of rate limiting */
672 while (true) {
673 int bytes_sent;
674
675 bytes_sent = ram_save_block(f, true);
676 /* no more blocks to sent */
677 if (bytes_sent == 0) {
678 break;
679 }
680 bytes_transferred += bytes_sent;
681 }
682 migration_end();
683
684 qemu_mutex_unlock_ramlist();
685 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
686
687 return 0;
688 }
689
690 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
691 {
692 uint64_t remaining_size;
693
694 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
695
696 if (remaining_size < max_size) {
697 qemu_mutex_lock_iothread();
698 migration_bitmap_sync();
699 qemu_mutex_unlock_iothread();
700 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
701 }
702 return remaining_size;
703 }
704
705 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
706 {
707 int ret, rc = 0;
708 unsigned int xh_len;
709 int xh_flags;
710
711 if (!XBZRLE.decoded_buf) {
712 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
713 }
714
715 /* extract RLE header */
716 xh_flags = qemu_get_byte(f);
717 xh_len = qemu_get_be16(f);
718
719 if (xh_flags != ENCODING_FLAG_XBZRLE) {
720 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
721 return -1;
722 }
723
724 if (xh_len > TARGET_PAGE_SIZE) {
725 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
726 return -1;
727 }
728 /* load data and decode */
729 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
730
731 /* decode RLE */
732 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
733 TARGET_PAGE_SIZE);
734 if (ret == -1) {
735 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
736 rc = -1;
737 } else if (ret > TARGET_PAGE_SIZE) {
738 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
739 ret, TARGET_PAGE_SIZE);
740 abort();
741 }
742
743 return rc;
744 }
745
746 static inline void *host_from_stream_offset(QEMUFile *f,
747 ram_addr_t offset,
748 int flags)
749 {
750 static RAMBlock *block = NULL;
751 char id[256];
752 uint8_t len;
753
754 if (flags & RAM_SAVE_FLAG_CONTINUE) {
755 if (!block) {
756 fprintf(stderr, "Ack, bad migration stream!\n");
757 return NULL;
758 }
759
760 return memory_region_get_ram_ptr(block->mr) + offset;
761 }
762
763 len = qemu_get_byte(f);
764 qemu_get_buffer(f, (uint8_t *)id, len);
765 id[len] = 0;
766
767 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
768 if (!strncmp(id, block->idstr, sizeof(id)))
769 return memory_region_get_ram_ptr(block->mr) + offset;
770 }
771
772 fprintf(stderr, "Can't find block %s!\n", id);
773 return NULL;
774 }
775
776 static int ram_load(QEMUFile *f, void *opaque, int version_id)
777 {
778 ram_addr_t addr;
779 int flags, ret = 0;
780 int error;
781 static uint64_t seq_iter;
782
783 seq_iter++;
784
785 if (version_id < 4 || version_id > 4) {
786 return -EINVAL;
787 }
788
789 do {
790 addr = qemu_get_be64(f);
791
792 flags = addr & ~TARGET_PAGE_MASK;
793 addr &= TARGET_PAGE_MASK;
794
795 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
796 if (version_id == 4) {
797 /* Synchronize RAM block list */
798 char id[256];
799 ram_addr_t length;
800 ram_addr_t total_ram_bytes = addr;
801
802 while (total_ram_bytes) {
803 RAMBlock *block;
804 uint8_t len;
805
806 len = qemu_get_byte(f);
807 qemu_get_buffer(f, (uint8_t *)id, len);
808 id[len] = 0;
809 length = qemu_get_be64(f);
810
811 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
812 if (!strncmp(id, block->idstr, sizeof(id))) {
813 if (block->length != length) {
814 ret = -EINVAL;
815 goto done;
816 }
817 break;
818 }
819 }
820
821 if (!block) {
822 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
823 "accept migration\n", id);
824 ret = -EINVAL;
825 goto done;
826 }
827
828 total_ram_bytes -= length;
829 }
830 }
831 }
832
833 if (flags & RAM_SAVE_FLAG_COMPRESS) {
834 void *host;
835 uint8_t ch;
836
837 host = host_from_stream_offset(f, addr, flags);
838 if (!host) {
839 return -EINVAL;
840 }
841
842 ch = qemu_get_byte(f);
843 memset(host, ch, TARGET_PAGE_SIZE);
844 #ifndef _WIN32
845 if (ch == 0 &&
846 (!kvm_enabled() || kvm_has_sync_mmu()) &&
847 getpagesize() <= TARGET_PAGE_SIZE) {
848 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
849 }
850 #endif
851 } else if (flags & RAM_SAVE_FLAG_PAGE) {
852 void *host;
853
854 host = host_from_stream_offset(f, addr, flags);
855 if (!host) {
856 return -EINVAL;
857 }
858
859 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
860 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
861 void *host = host_from_stream_offset(f, addr, flags);
862 if (!host) {
863 return -EINVAL;
864 }
865
866 if (load_xbzrle(f, addr, host) < 0) {
867 ret = -EINVAL;
868 goto done;
869 }
870 }
871 error = qemu_file_get_error(f);
872 if (error) {
873 ret = error;
874 goto done;
875 }
876 } while (!(flags & RAM_SAVE_FLAG_EOS));
877
878 done:
879 DPRINTF("Completed load of VM with exit code %d seq iteration "
880 "%" PRIu64 "\n", ret, seq_iter);
881 return ret;
882 }
883
884 SaveVMHandlers savevm_ram_handlers = {
885 .save_live_setup = ram_save_setup,
886 .save_live_iterate = ram_save_iterate,
887 .save_live_complete = ram_save_complete,
888 .save_live_pending = ram_save_pending,
889 .load_state = ram_load,
890 .cancel = ram_migration_cancel,
891 };
892
893 #ifdef HAS_AUDIO
894 struct soundhw {
895 const char *name;
896 const char *descr;
897 int enabled;
898 int isa;
899 union {
900 int (*init_isa) (ISABus *bus);
901 int (*init_pci) (PCIBus *bus);
902 } init;
903 };
904
905 static struct soundhw soundhw[] = {
906 #ifdef HAS_AUDIO_CHOICE
907 #ifdef CONFIG_PCSPK
908 {
909 "pcspk",
910 "PC speaker",
911 0,
912 1,
913 { .init_isa = pcspk_audio_init }
914 },
915 #endif
916
917 #ifdef CONFIG_SB16
918 {
919 "sb16",
920 "Creative Sound Blaster 16",
921 0,
922 1,
923 { .init_isa = SB16_init }
924 },
925 #endif
926
927 #ifdef CONFIG_CS4231A
928 {
929 "cs4231a",
930 "CS4231A",
931 0,
932 1,
933 { .init_isa = cs4231a_init }
934 },
935 #endif
936
937 #ifdef CONFIG_ADLIB
938 {
939 "adlib",
940 #ifdef HAS_YMF262
941 "Yamaha YMF262 (OPL3)",
942 #else
943 "Yamaha YM3812 (OPL2)",
944 #endif
945 0,
946 1,
947 { .init_isa = Adlib_init }
948 },
949 #endif
950
951 #ifdef CONFIG_GUS
952 {
953 "gus",
954 "Gravis Ultrasound GF1",
955 0,
956 1,
957 { .init_isa = GUS_init }
958 },
959 #endif
960
961 #ifdef CONFIG_AC97
962 {
963 "ac97",
964 "Intel 82801AA AC97 Audio",
965 0,
966 0,
967 { .init_pci = ac97_init }
968 },
969 #endif
970
971 #ifdef CONFIG_ES1370
972 {
973 "es1370",
974 "ENSONIQ AudioPCI ES1370",
975 0,
976 0,
977 { .init_pci = es1370_init }
978 },
979 #endif
980
981 #ifdef CONFIG_HDA
982 {
983 "hda",
984 "Intel HD Audio",
985 0,
986 0,
987 { .init_pci = intel_hda_and_codec_init }
988 },
989 #endif
990
991 #endif /* HAS_AUDIO_CHOICE */
992
993 { NULL, NULL, 0, 0, { NULL } }
994 };
995
996 void select_soundhw(const char *optarg)
997 {
998 struct soundhw *c;
999
1000 if (is_help_option(optarg)) {
1001 show_valid_cards:
1002
1003 #ifdef HAS_AUDIO_CHOICE
1004 printf("Valid sound card names (comma separated):\n");
1005 for (c = soundhw; c->name; ++c) {
1006 printf ("%-11s %s\n", c->name, c->descr);
1007 }
1008 printf("\n-soundhw all will enable all of the above\n");
1009 #else
1010 printf("Machine has no user-selectable audio hardware "
1011 "(it may or may not have always-present audio hardware).\n");
1012 #endif
1013 exit(!is_help_option(optarg));
1014 }
1015 else {
1016 size_t l;
1017 const char *p;
1018 char *e;
1019 int bad_card = 0;
1020
1021 if (!strcmp(optarg, "all")) {
1022 for (c = soundhw; c->name; ++c) {
1023 c->enabled = 1;
1024 }
1025 return;
1026 }
1027
1028 p = optarg;
1029 while (*p) {
1030 e = strchr(p, ',');
1031 l = !e ? strlen(p) : (size_t) (e - p);
1032
1033 for (c = soundhw; c->name; ++c) {
1034 if (!strncmp(c->name, p, l) && !c->name[l]) {
1035 c->enabled = 1;
1036 break;
1037 }
1038 }
1039
1040 if (!c->name) {
1041 if (l > 80) {
1042 fprintf(stderr,
1043 "Unknown sound card name (too big to show)\n");
1044 }
1045 else {
1046 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1047 (int) l, p);
1048 }
1049 bad_card = 1;
1050 }
1051 p += l + (e != NULL);
1052 }
1053
1054 if (bad_card) {
1055 goto show_valid_cards;
1056 }
1057 }
1058 }
1059
1060 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1061 {
1062 struct soundhw *c;
1063
1064 for (c = soundhw; c->name; ++c) {
1065 if (c->enabled) {
1066 if (c->isa) {
1067 if (isa_bus) {
1068 c->init.init_isa(isa_bus);
1069 }
1070 } else {
1071 if (pci_bus) {
1072 c->init.init_pci(pci_bus);
1073 }
1074 }
1075 }
1076 }
1077 }
1078 #else
1079 void select_soundhw(const char *optarg)
1080 {
1081 }
1082 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1083 {
1084 }
1085 #endif
1086
1087 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1088 {
1089 int ret;
1090
1091 if (strlen(str) != 36) {
1092 return -1;
1093 }
1094
1095 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1096 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1097 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1098 &uuid[15]);
1099
1100 if (ret != 16) {
1101 return -1;
1102 }
1103 #ifdef TARGET_I386
1104 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1105 #endif
1106 return 0;
1107 }
1108
1109 void do_acpitable_option(const char *optarg)
1110 {
1111 #ifdef TARGET_I386
1112 if (acpi_table_add(optarg) < 0) {
1113 fprintf(stderr, "Wrong acpi table provided\n");
1114 exit(1);
1115 }
1116 #endif
1117 }
1118
1119 void do_smbios_option(const char *optarg)
1120 {
1121 #ifdef TARGET_I386
1122 if (smbios_entry_add(optarg) < 0) {
1123 fprintf(stderr, "Wrong smbios provided\n");
1124 exit(1);
1125 }
1126 #endif
1127 }
1128
1129 void cpudef_init(void)
1130 {
1131 #if defined(cpudef_setup)
1132 cpudef_setup(); /* parse cpu definitions in target config file */
1133 #endif
1134 }
1135
1136 int audio_available(void)
1137 {
1138 #ifdef HAS_AUDIO
1139 return 1;
1140 #else
1141 return 0;
1142 #endif
1143 }
1144
1145 int tcg_available(void)
1146 {
1147 return 1;
1148 }
1149
1150 int kvm_available(void)
1151 {
1152 #ifdef CONFIG_KVM
1153 return 1;
1154 #else
1155 return 0;
1156 #endif
1157 }
1158
1159 int xen_available(void)
1160 {
1161 #ifdef CONFIG_XEN
1162 return 1;
1163 #else
1164 return 0;
1165 #endif
1166 }
1167
1168
1169 TargetInfo *qmp_query_target(Error **errp)
1170 {
1171 TargetInfo *info = g_malloc0(sizeof(*info));
1172
1173 info->arch = TARGET_TYPE;
1174
1175 return info;
1176 }